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Abstract

The cerebellum aids the learning and execution of fast co-
ordinated movements, with acquired information being stored
by plasticity of parallel fibre–Purkinje cell synapses. Accord-
ing to the current consensus, erroneously active parallel fibre
synapses are depressed by complex spikes arising as climbing
fibres signal movement errors. However, this theory cannot
solve the credit assignment problem of using the limited in-
formation from a global movement evaluation to optimise be-
haviour by guiding the plasticity in numerous neurones. We
identify the possible implementation of an algorithm solv-
ing this problem, whereby spontaneous complex spikes per-
turb ongoing movements, create an eligibility trace for plas-
ticity and signal resulting error changes to guide plasticity.
These error changes are extracted by adaptively cancelling
the average error. This framework, stochastic gradient de-
scent with estimated global errors, generates specific predic-
tions for synaptic plasticity rules that contradict the current
consensus. However, in vitro plasticity experiments under
physiological conditions verified our predictions, highlighting
the sensitivity of plasticity studies to unphysiological condi-
tions. Using numerical and analytical approaches we demon-
strate the convergence and estimate the capacity of learning
in our implementation. Finally, a similar mechanism may op-
erate during optimisation of action sequences by the basal
ganglia, where dopamine could both initiate movements and
signal rewards, analogously to the dual perturbation and cor-
rection role of the climbing fibre outlined here.
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1 Introduction
A central contribution of the cerebellum to motor control is thought to
be the learning and automatic execution of fast, coordinated movements.
Anatomically, the cerebellum consists of a convoluted, lobular cortex sur-
rounding the cerebellar nuclei (Fig. 1A). The main input to the cerebellum is
the heterogeneous mossy fibres, which convey multiple modalities of sensory,
contextual and motor information. They excite both the cerebellar nuclei
and the cerebellar cortex; in the cortex they synapse with the very abundant
granule cells, whose axons, the parallel fibres, excite Purkinje cells. Purk-
inje cells constitute the sole output of the cerebellar cortex and project an
inhibitory connection to the nuclei, which therefore combine a direct and a
transformed mossy fibre input with opposite signs. The largest cell type in
the nuclei, the projection neurones, send excitatory axons to several motor
effector systems, notably the motor cortex via the thalamus. Another nu-
clear cell type, the nucleo-olivary neurones, inhibit the inferior olive. The
cerebellum receives a second external input: climbing fibres from the infe-
rior olive, which form an extensive, ramified connection with the proximal
dendrites of the Purkinje cell. Each Purkinje cell receives a single climbing
fibre. A more modular diagram of the olivo-cerebellar connectivity relevant
to this paper is shown in Fig. 1B; numerous cell types and connections have
been omitted for simplicity.

Purkinje cells discharge two distinct types of action potential (Fig. 1C).
They nearly continuously emit simple spikes—standard, if brief, action pot-
entials—at frequencies that average 50Hz. This frequency is modulated
both positively and negatively by the intensity of inputs from the mossy
fibre–granule cell pathway (which can also recruit interneurones that inhibit
Purkinje cells; Eccles et al., 1967). Such modulations of Purkinje cell firing
are thought to underlie their contributions to motor control. In addition,
when the climbing fibre is active, an event that occurs continuously but in a
somewhat irregular pattern with a mean frequency of around 1Hz, the Purk-
inje cell emits a completely characteristic complex spike under the influence
of the intense excitation from the climbing fibre (Fig. 1C).

The history of research into cerebellar learning is dominated by the the-
ory due to Marr (1969) and Albus (1971). They suggested that the climbing
fibre acts as a ‘teacher’ to guide plasticity of parallel fibre–Purkinje cell
synapses. It was several years, however, before experimental support for
this hypothesis was obtained (Ito et al., 1982; Ito and Kano, 1982), while
the notion that the climbing fibre signalled errors had emerged by that time
(Ito, 1972, 1984). Error modalities thought to be represented by climbing
fibres include: pain, unexpected touch, imbalance, and retinal slip. Accord-
ing to the modern understanding of this theory, by signalling such movement
errors, climbing fibres induce long-term depression (LTD) of parallel fibre
synapses that were active at the same time (Ito et al., 1982; Ito and Kano,
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Figure 1: The cerebellar circuitry and properties of Purkinje cells.
A. Simplified circuit diagram. MF, mossy fibres; CN, (deep) cere-
bellar nuclei; GC, granule cells; Cb Ctx, cerebellar cortex; PF, par-
allel fibres; PC, Purkinje cells; PN, projection neurones; NO, nucleo-
olivary neurones; IO, inferior olive; CF, Climbing fibres. B. Modular
diagram. The signs of the synapses are indicated. The granule cell
and indirect inhibitory inputs they recruit have been subsumed into
a bidirectional mossy fibre–Purkinje cell input, M. Potentially plas-
tic inputs of interest here are denoted with an asterisk. i, input; o,
output; E(o), error (which is a function of the output). C. Typi-
cal Purkinje cell electrical activity from an intracellular patch-clamp
recording. Purkinje cells fire two types of action potential: sim-
ple spikes and, in response to climbing fibre input, complex spikes.
D. According to the consensus plasticity rule, a complex spike will
depress parallel fibre synapses active about 100ms earlier. The di-
agram depicts idealised excitatory postsynaptic currents (EPSCs)
before and after typical induction protocols inducing long-term po-
tentiation (LTP) or depression (LTD). Grey, control EPSC; blue,
green, post-induction EPSCs.
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1982; Sakurai, 1987; Crepel and Jaillard, 1991) or, more precisely, shortly
before (Wang et al., 2000; Sarkisov and Wang, 2008; Safo and Regehr, 2008).
A compensating long-term potentiation (LTP) is necessary to prevent synap-
tic saturation (Lev-Ram et al., 2002, 2003; Coesmans et al., 2004) and its
induction is reported to follow high-frequency parallel fibre activity in the
absence of complex spikes (Jörntell and Ekerot, 2002; Bouvier et al., 2016).
Plasticity of parallel fibre synaptic currents according to these plasticity
rules is diagrammed in Fig. 1D.

The Marr/Albus theory represents a form of supervised learning—in
which an external teacher provides the correct output. The theory is incom-
plete, however, as it does not describe how a global evaluation of movement
error can be processed to provide cell-specific instructions for plasticity to
large numbers of cells. In fact, the inverse problem of deducing the precise
synaptic changes required to correct an error within a large circuit control-
ling complex, arbitrary tasks is for all practical purposes intractable, a situa-
tion for which Minsky (1961) coined the term the credit assignment problem
(where credit implies maximisation of a reward rather then minimisation of
an error). But, for the following reasons, it is likely that the cerebellum is
able to solve this problem. The ability to learn arbitrary sensory-motor asso-
ciations would offer great advantage to an organism. Conversely, application
of an inadequate learning algorithm would have catastrophic behavioural
consequences, with the ‘learning’ potentially reinforcing the error-producing
action. However, such wrong-headed learning seems never to be observed,
strongly suggesting that the cerebellum does implement an algorithm able
to avoid this problem.

A suitable algorithm for solving the general cerebellar learning problem
would be stochastic gradient descent (Minsky, 1961), according to which the
objective function is explored by random variations in the network that alter
behaviour, with plasticity then retaining those variations that improve the
behaviour, as signalled by a decreased error or increased reward. Several pos-
sible mechanisms of varying biological plausibility have been proposed. In
particular, perturbations caused by synaptic release (Minsky, 1954; Seung,
2003) or external inputs (Doya and Sejnowski, 1988) have been suggested,
while extraction of changes in the objective function can, for instance, be
performed implicitly using a scheme proposed by Williams (1992). Although
the theoretical framework for gradient descent is well established, the goal
of identifying in the brain a network and cellular implementation of such an
algorithm has proved elusive.

The learning behaviour with the best established resemblance to stochas-
tic gradient ascent is the acquisition of song in male songbirds. The juvenile
song is refined by a trial and error process to approach a template memorised
from a tutor during a critical period (Konishi, 1965; Mooney, 2009). The
analogy with stochastic gradient ascent was made by Doya and Sejnowski
(1988) and was then further developed experimentally (Olveczky et al., 2005)
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and theoretically (Fiete et al., 2007). However, despite these very suggestive
behavioural correlates, relatively little progress has been made in verifying
model predictions for plasticity or identifying the structures responsible for
storing the template and evaluating its match with the song.

A gradient descent mechanism for the cerebellum has been proposed by
the group of Dean et al. (2002), who term their algorithm decorrelation.
Simply stated (Dean and Porrill, 2014), if both parallel fibre and climbing
fibre inputs to a Purkinje cell are assumed to vary about their respective
mean values, their correlation or anticorrelation indicates the local gradient
of the error function and thus the sign of the required plasticity. At the
optimum, which is a minimum of the error function, there should be no cor-
relation between variations of the climbing fibre rate and those of the parallel
fibre input. Hence the name: the algorithm aims to decorrelate parallel and
climbing fibre variations1. An appropriate plasticity rule is a modified co-
variance rule (Sejnowski, 1977, who moreover suggested in abridged form a
similar application to cerebellar learning). Although decorrelation provides
a suitable framework, its proponents are still in the process of developing a
cellular implementation (Menzies et al., 2010).

In summary, current theory contains a very simple plasticity rule but
probably requires unrealistically sophisticated evaluation of motor errors.
We sought to identify in the cerebellar circuitry the implementation an al-
gorithm transferring some of the algorithmic complexity from the evalua-
tion to the plasticity rule. Below we propose a cellular implementation of
stochastic gradient descent in the cerebellum that can achieve this goal. The
central feature of our implementation is that the climbing fibre plays a dual
role. In addition to its traditional function of conveying error information,
we propose that the inferior olive perturbs movements by producing spon-
taneous complex spikes in Purkinje cells (Harris, 1998) and simultaneously
creates an eligibility trace specific to the perturbed cells. That trace is then
exploited using error signalling by the climbing fibre.

1.1 Article outline

We outline the organisation of this article. Readers should be aware that,
although it contains an important experimental verification of a central pre-
diction of our hypothesis, a large part of the article is given over to concep-
tual analysis, modelling and mathematical investigation of the algorithm we

1The objective of decorrelation may appear at odds with the extensive literature re-
porting anti-correlation of Purkinje simple and complex spike modulations (e.g. Barmack
and Yakhnitsa, 2003). This contradiction may only be apparent, because the decorre-
lation should apply to random variations of the discharge of parallel and climbing fibres
about their means. Furthermore, most reports of anti-correlation were not obtained under
conditions of execution of a learnt movement; more often they involve unusual stimuli to
which the animal is naive, and the preparations were often anæsthetised or decerebrate.
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propose and its potential consequences for our understanding of cerebellar
function.

We begin with an analysis of the requirements (§3) for cerebellar learn-
ing and of the perceived deficiencies of the current theory. We then develop
an alternative algorithm based upon stochastic gradient descent, leading to
the proposal that spontaneous complex spikes represent perturbations in
a trial-and-error process (§4). We describe how this generates predictions
for plasticity rules in Purkinje cells that contradict the current literature.
There follows an experimental verification of these predictions (§5). We
then suggest an implementation for an additional plasticity process required
by the algorithm to extract the change of error (§6). A network simula-
tion demonstrates the functionality of the algorithmic implementation (§7),
while a more technical section (§8) establishes the convergence criteria and
explores numerically the storage capacity of the algorithm. Finally, in the
Discussion, we place our implementation in the context of the cerebellar lit-
erature and identify possible analogous mechanisms in other brain regions
and preparations (§9).

2 Methods

2.1 Electrophysiology

Animal experimentation methods were authorised by the ‘Charles Darwin
N°5’ ethics committee. Adult female C57Bl/6 mice (2–5 months old) were
anæsthetised with isoflurane (Nicholas Piramal Ltd, India) and killed by
decapitation. The cerebellum was rapidly dissected into cold solution con-
taining (in mM): 230 sucrose, 26 NaHCO3, 3 KCl, 0.8 CaCl2, 8 MgCl2, 1.25
NaH2PO4, 25 d-glucose supplemented with 50µm d-APV to protect the tis-
sue during slicing. 300µm sagittal slices were cut in this solution using a
Campden Instruments 7000smz and stored at 32 °C in a standard extracel-
lular saline solution containing: 125 NaCl, 2.5 KCl, 1.5 CaCl2, 1.8 MgCl2,
1.25 NaH2PO4, 26 NaHCO3 and 25 glucose, bubbled with 95% O2 and
5% CO2 (pH 7.4). Slices were visualised using an upright microscope with
a 40X, 0.8NA water-immersion objective and infrared optics (illumination
filter 750± 50nm). The recording chamber was continuously perfused at a
rate of 4–6mlmin−1 with a solution containing (mM): 125 NaCl, 2.5 KCl, 1.5
CaCl2, 1.8 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 25 d-glucose and 10 tricine,
a Zn2+ buffer (Paoletti et al., 1997), bubbled with 95% O2 and 5% CO2 (pH
7.4). Patch pipettes had resistances in the range 2–4MΩ with the internal
solutions given below. Unless otherwise stated, cells were voltage clamped
at −70mV in the whole-cell configuration. Voltages are reported without
correction for the junction potential, which was about 10mV (so true mem-
brane potentials were more negative than we report). Series resistances were
4–10MΩ and compensated with settings of ∼ 90% in a Multiclamp 700B
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amplifier (Molecular Devices). Whole-cell recordings were filtered at 2 kHz
and digitised at 10 kHz. Experiments were performed at 32–34 °C. The in-
ternal solution contained (in mM): 128 K-gluconate, 10 HEPES, 4 KCl, 2.5
K2HPO4, 3.5 Mg-ATP, 0.4 Na2-GTP, 0.5 l-(–)-malic acid, 0.008 oxaloacetic
acid, 0.18 α-ketoglutaric acid, 0.2 pyridoxal 5’-phosphate, 5 l-alanine, 0.15
pyruvic acid, 15 l-glutamine, 4 l-asparagine, 1 reduced l-glutathione, 0.5
NAD+, 5 phosphocreatine, 1.9 CaCl2, 1.5 MgCl2. Free [Ca2+] was calcu-
lated with Maxchelator (C. Patton, Stanford) to be 120 nM. Chemicals were
purchased from Sigma-Aldrich, d-APV from Tocris.

Recordings were made in the vermis of lobules three to eight of the
cerebellar cortex. Granule cell EPSCs were elicited with stimulation in the
granule cell layer with a glass pipette of tip diameter 8–12µm filled with
HEPES-buffered saline. Climbing fibre electrodes had ∼ 2µm diameter and
were also positioned in the granule cell layer. Images were taken every 5
min; experiments showing significant slice movement (> 20µm) were dis-
carded. Stimulation intensity was fixed at the beginning of the experiment
(1–15V; 50–200µs) and maintained unchanged during the experiment. Test
stimulation was applied at 0.1Hz for the granule cell input and climbing fi-
bres were stimulated at 0.5Hz during the entire recording, mimicking tonic
activity of the inferior olive in vivo (albeit at a slightly lower frequency).
Test granule cell stimulation consisted of two pulses separated by 50ms,
allowing the quantification of paired-pulse facilitation. Test climbing fibre
stimulation consisted of two pulses separated by 2.5ms (400Hz). The plas-
ticity induction protocol involved stimulating granule cells with 5 pulses at
200Hz every two seconds for 10min with various relative timings of climbing
fibre stimuli: a pair of climbing fibre stimuli at 400Hz, 11–15 or ∼ 500ms
after the start of the granule cell burst and/or four climbing fibre stimuli
at 400Hz, 100–115ms after the beginning of the granule cell burst (timing
diagrams will be shown in the Results). During induction, Purkinje cells
were recorded in current-clamp mode with zero holding current.

2.2 Analysis

Recordings were analysed from 75 cells in 55 animals. Slices were systemat-
ically changed after each recording. Animals supplied 1–3 cells to the anal-
ysis, usually with different induction protocols. Extending our modelling
results below using a mixed-effect model (call lmer in the lme4 R package)
to include animals as a random effect did not indicate that it was necessary
to take into account any between-animal variance, as this was reported to
be zero.

Inspection of acquired climbing fibre responses revealed some failures of
secondary stimuli in a fraction of cells, presumably because the second and
subsequent stimuli at short intervals fell within the relative refractory period.
As a complex spike was always produced these cells have been included in
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our analysis, but where individual data are displayed, we identify those cells
in which failures of secondary climbing fibre stimuli were observed before
the end of the induction period.

Analysis made use of Python scripts developed in house by Antonin
Blot. Analysis of EPSC amplitudes began by averaging all of the EPSCs
acquired to give a smooth time course. The time of the peak of this ‘global’
average response was determined. Subsequent measurement of amplitudes
of other averages or of individual responses was performed by averaging the
current over 0.5ms centred on the time of the peak of the global average.
The baseline calculated over 5ms shortly before the stimulus artefact was
subtracted to obtain the EPSC amplitude. Similar independent analyses
were performed for both EPSCs of the paired-pulse stimulation.

EPSCs were excluded from further analysis if the baseline current in
the sweep exceeded −1 nA at −70mV. Similarly, the analysis automatically
excluded EPSCs in sweeps in which the granule cell stimulation elicited an
action potential in the Purkinje cell (possibly through antidromic stimula-
tion of its axon or through capacitive coupling to the electrode). However,
during induction, in current clamp, such spikes were accepted. For display
of time series, granule cell responses were averaged in bins of 2 minutes.

The effects of series resistance changes were estimated by monitoring the
transient current flowing in response to a voltage step. The amplitude of
the current 2ms after the beginning of the capacity transient was measured.
We shall call this the ’dendritic access’. Modelling of voltage-clamp EPSC
recordings in a two-compartment model of a Purkinje cell (Llano et al., 1991)
suggests that this measure is approximately proportional to EPSC ampli-
tude as the series resistance changes over a reasonable range. It therefore
offers a better estimate of the effect on the EPSC amplitude of series resis-
tance changes than would the value of the series resistance (or conductance),
which is far from proportional to EPSC amplitude. Intuitively, this can be
seen to arise because the EPSC is filtered by the dendritic compartment and
the measure relates to the dendritic component of the capacitive transient,
whereas the series resistance relates to the somatic compartment. We there-
fore calculated Rres, the ratio of the dendritic access after induction (when
plasticity was assessed) to the value before induction, in order to predict the
changes the EPSC amplitude arising from changes of series resistance.

Because we elicited EPSCs using constant-voltage stimulation, variations
of the resistance of the tip of the stimulating electrode (for instance if cells
are drawn into it) could alter the stimulating current flow in the tissue.
We monitored this by measuring the amplitude of the stimulus artefact.
Specifically, we calculated Rstim, the after/before ratio of the stimulation
artefact amplitude.

We then used a robust linear model to examine the extent to which
changes of series resistance or apparent stimulation strength could confound
our measurements of plasticity, which we represented as the after/before
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ratio of EPSC amplitudes REPSC; the model (in R syntax) was:
REPSC ∼ protocol+Rres +Rstim
This showed that series resistance changes, represented by Rres, had a

significant influence (t-value 2.28, 69 degrees of freedom) with a slope close
to the predicted unity (1.13). In contrast, changes of the stimulus artefact
had no predictive value (slope -0.0008, t-value -0.003).

We did not wish to rely on the parametric significance tests of the linear
model for comparing the plasticity protocols (although all of comparisons
we report below as significant were also significant in the model). Instead,
we equalised the dendritic filtering and stimulation changes between groups
by eliminating those cells in which Rres or Rstim changed by more than 20%
from the mean values for all cells (0.94± 0.10 and 1.01± 0.19, respectively;
mean ± sd, n = 75). After this operation, which eliminated 17 cells out of 75
leaving 58 (from 47 animals), the mean ratios varied by only a few percent
between groups (ranges 5% and 2% for effective resistance and stimulus
artefact, respectively) and would be expected to have only a minimal resid-
ual influence. Normalising the amplitude ratios of the trimmed groups by
Rres did not alter the conclusions presented below. After this trimming,
the differences of REPSC between induction protocols were evaluated statis-
tically using two-tailed nonparametric tests implemented by the wilcox.test
command in R (R Core Team, 2013). Note that the remaining changes of
Rres imply that all EPSC amplitudes after induction were underestimated
by about 6% relative to those at the beginning of the recording.

2.3 Simulation methods

The model simulated in §7 was designed as follows (see also diagram in
Fig. 2). A total of S × L Purkinje cells were placed on a rectangular grid
of extent S in the sagittal plane and width L in the lateral direction. The
activity of each Purkinje cell during a ‘movement’ was characterised by its
firing rate

{PCs,l(t), s = 1, · · · , S, l = 1, · · · , L} (1)
in T time bins {t = 1, · · · , T}. Purkinje cells projected to L projection neu-
rones (PN) in the cerebellar nuclei, which also contained L nucleo-olivary
neurones (NO). The activities of both types of nuclear cells were also charac-
terised by their firing rates in the different time bins, {PNl(t), l = 1, · · · , L}
and {NOl(t), l = 1, · · · , L}. Mossy fibres, granule cells (parallel fibres) and
molecular layer interneurones were subsumed into a single cell type (M) with
N cells restricted to each row of L Purkinje cells, with a total of N×S mossy
fibres. Mossy fibre activity was represented in a binary manner, Mi,s(t) = 0
or 1, with {i = 1, · · · , N} and {s = 1, · · · , S}.

The connectivity was chosen such that all Purkinje cells in the sagittal
‘column’ l projected to the l-th nuclear projection neurone with identical in-
hibitory (negative) weights. Mossy fibres were chosen to project to Purkinje
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Figure 2: Diagram of the simulated network model. The details are
explained in the text.

cells with groups of N fibres at a given sagittal position s, contacting the
row of L Purkinje cells at the sagittal position with probability 1/2. Mossy
fibres were considered not to influence nucleo-olivary neurones except dur-
ing evaluation of movement errors and the induction of plasticity (described
below). The activity of Purkinje and cerebellar nuclear cells in the absence
of climbing fibre activity was thus

PCs,l(t) = Φ[
∑
i=1,N

wl
i,sσ

l
i,sMi,s(t)] (2)

PNl(t) = Φ[
∑

i=1,N ;s=1,S

uli,sMi,s(t) + u(PC→PN)

∑
s=1,S

PCs,l(t)] (3)

NOl(t) = Φ[
∑

i=1,N ;s=1,S

vli,sMi,s(t)], (4)
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where σl
i,s enforces the 1/2 probability of connection between a Purkinje

cell and a parallel fibre that traverses its dendritic tree: σl
i,s is equal to

1 or 0 with probability 1/2, independently drawn for each triple (i, s, l).
The f-I curve Φ was taken to be a saturating threshold linear function,
{Φ(r) = 0 for r < 0,Φ(I) = r, for 0 < r < rmax and Φ(I) = rmax for
r > rmax}. The weights uli,s were non-plastic and chosen such that a given
mossy fibre (i, s) contacted a single projection neurone among the L possible
ones. In other words, for each mossy fibre index (i, s), a number l(i,s) was
chosen at random with uniform probability among the L numbers {1, · · · , L}
and the weights

{
uli,s, l = 1, · · · , l

}
were determined as

uli,s = δl,l(i,s)u(M→PN), (5)

where u(M→PN) was a constant. The weights vli,s and wl
i,s were plastic and

followed the learning dynamics described below (see Eq. 11 and 12).
The learning task itself consisted of producing, in response to µ =

1, · · · , p, spatiotemporal patterns of mossy fibre inputs Mµ
i,s(t), the cor-

responding output target rates of the projection neurones {Rµ
l (t), l =

1, · · · , L, t = 1, · · · , T}. For each pattern µ, the inputs were obtained
by choosing at random with uniform probability NS/2 active fibres. For
each active fibre (i, s), a time bin tµ(i,s) was chosen at random with uni-
form probability and the activity of the fibre was set to 1 in this time bin,
Mµ

(i,s)(t) = δt,tµ
(i,s)

. The activity was set to zero in all time bins for the
NS/2 inactive fibres. The target rates where independently chosen with
uniform probability between 0 and 2rD for each projection neurone in each
pattern µ, where rD is the desired average firing rate for both projection
and nucleo-olivary neurones in the cerebellar nuclei.

The olivary neurones were not explicitly represented. It was assumed
that the L× S Purkinje cells were contacted by L climbing fibres with one
climbing fibre contacting the S Purkinje cells at a given lateral position.

The learning algorithm then proceeded as follows. Patterns {Mµ
i,s(t)}

were presented sequentially. After pattern µ was chosen, perturbations of
Purkinje cell firing by complex spikes were generated as follows. The prob-
ability that each climbing fibre emitted a perturbation complex spike was
taken to be ρ per pattern presentation; when a climbing fibre was active, it
was considered to perturb the firing of its Purkinje cells in a single time bin
chosen at random. Denoting by ηl(t) = 1 that climbing fibre l had emitted
a spike in time bin t (and ηl(t) = 0 when there was no spike), the S firing
rates of the Purkinje cell at position l (see Eq. 3) were taken to be

PCs,l(t) = Φ[
∑
i=1,N

wl
i,sσ

l
i,sMi,s(t) + ηl(t)A], s = 1, · · · , S, (6)

where A defines the amplitude of the complex-spike perturbation of Purkinje
cell firing.
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Given the pattern µ and the firing of Purkinje cells (Eq. (6)), the ac-
tivities of cerebellar nuclear neurones were given by Eqs. (3) and (4). The
current ‘error’ for pattern/movement µ was quantified by the distance of the
projection neurones’ activity from their target rates

Eµ =
∑

l=1,L;t=1,T

|PNµ
l (t)−Rµ

l (t)| (7)

The learning step after the presentation of pattern µ was determined by
the comparison (not explicitly implemented) in the olivary neurones be-
tween the excitation Eµ and the inhibition Iµ coming from the discharges
of nucleo-olivary neurones with

Iµ = κ
∑

l=1,L;t=1,T

NOµ
l (t) (8)

where κ ≈ 0.87 was a constant chosen empirically in order to reduce the
initial imbalance between error and inhibition in the olive. An error complex
spike was propagated to all Purkinje cells after a ‘movement’ only when
the olivary activity IO = Eµ − Iµ was positive. Accordingly, the weights
modifications of mossy fibre synapses on perturbed Purkinje cells (w) and
on nucleo-olivary neurones (v) were determined after presentation of pattern
µ by the sign c of IO, c = sign(IO), as,

wl
i,s → wl

i,s − αw c
∑
t=1,T

ηl(t)M
µ
i,s(t) (9)

vli,s → [vli,s + αv c
∑
t=1,T

Mµ
i,s(t)]+ (10)

where the brackets served to enforce a positivity constraint on the weights
vli,s ([x]+ = x, x > 0 and [x]+ = 0, x < 0).

In the reported simulations, the initial weights of the plastic synapses
were drawn from uniform distributions. For M → PC synapses wl

i,s was
drawn from [0, 8TrPC/N [ and for M → NO synapses, weights vli,s were
drawn from [0, 4TLrD/NS[. The non-plastic weights in Eq. (3) and (5)
were identical and constant for all synapses of a given type

u(M→PN) = 4TL rD/NS (11)
u(PC→PN) = −rD/(rPCS) (12)

These initial weights ensured initial average firing rates close to rPC and rD
in Purkinje cells and the cerebellar nuclear neurones, respectively.

The parameters used in the reported simulation are provided in Table 1.

Averaged over two patterns, the initial firing rates were PC = 50.1 ±
8.8Hz, PN = 29.9 ± 11.8Hz and NO = 29.9 ± 7.2Hz (mean ± sd of n =

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 21, 2016. ; https://doi.org/10.1101/053785doi: bioRxiv preprint 

https://doi.org/10.1101/053785


Table 1: Parameters used in the simulation shown in Fig. 2 and §7

Parameter Symbol Value
Sagittal extent S 10
Lateral extent L 40
Time bins per movement T 10
Mossy fibres per sagittal position N 2000
Maximum firing rate (all neurones) rmax 300Hz
pCS probability per cell per movement ρ 0.03
Amplitude of Purkinje cell firing perturbation A 2Hz
Learning rate of M → PC synapses αw 0.02
Learning rate of M → NO synapses αv 0.00012
Mean Purkinje cell firing rate rPC 50Hz
Mean firing rate for nuclear neurones rD 30Hz
M → PN synaptic weight u(M→PN) 2.4
PC → PN synaptic weight u(PC→PN) −2.4

pLT = 800 rates for cerebellar nuclear neurones and n = pLTS = 8000
rates for Purkinje cells).

Analysis in section §8 will show that the four key parameters governing
convergence of our learning algorithm are the learning rates of mossy fibre–
Purkinje cell synapses αw and mossy fibre–nucleo-olivary neurone synapses
αv, as well as the probability of a perturbation complex spike occurring
in a given movement in a given cell ρ, and the resulting amplitude of the
perturbation of Purkinje cell firing A. Increasing each of these 10% individ-
ually increased the final error (averaged over trials 70000–75000) by at most
11.6%, indicating that this final output was not ill-conditioned or finely
tuned with respect to these parameters.

The simulation was coded in C++.

3 Requirements for a general cerebellar learning
algorithm

We begin by analysing the current consensus theory of cerebellar learning
and highlight some of its potential deficiencies. The learning framework
is the following. Execution of a movement involves Purkinje cells produc-
ing trains of action potentials of varying frequencies at given times (Thach,
1968). We consider only the rate r(t), which is a function of time in the
movement. Purkinje cell output is combined with direct mossy fibre input in
the cerebellar nuclei, whose neurones must also produce varying spike trains.
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Figure 3: Analysis of requirements for cerebellar learning. A. Possi-
ble cell- and movement-specific error signals represented by complex
spike rate (CS rate) for (sub)movements m1 and m2 as functions of
Purkinje cell firing rate (r, optima ropt) within the consensus learn-
ing theory. The CS rate can instruct the direction of plasticity. B.
Illustration of firing and movement time courses during cerebellar
control of saccades. Eye movement (ω, angular velocity, bottom-
right axis) is preceded by a short burst of increased activity (r, top
and left axis) in Purkinje cells. Different time points have different
optima (ropt). The accuracy of the saccade can only be evaluated
once it is complete and visual information has been processed (Eval-
uation, thick black line). C. Possible global error function (E) whose
value cannot directly instruct optimising plasticity. Points I and I ′

have the same error, but require plasticity of different signs to ap-
proach r2opt. Stochastic gradient descent involves perturbing the rate
(δr) and determining the resulting error change (δE) to obtain the
gradient. D. Stochastic gradient descent illustrated in the context
of a saccade. A perturbation of the firing rate (δr, red vs. dotted)
tags simultaneously active synapses in that cell (eligibility trace at
bottom, red), allowing synapse-specific plasticity according to the
movement evaluation.
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Purkinje cells must learn to adapt the output of their cerebellar nuclear neu-
rone targets so as to minimise the movement error. Mossy fibre firing varies
during a movement, but we assume that it does not change during learning.
The minimisation of error is to be achieved through the plasticity of parallel
fibre synapses, which drive Purkinje cell activity (possibly with comple-
mentary modifications involving molecular layer interneurones; Jörntell and
Ekerot, 2002, 2003; Mittmann and Häusser, 2007). We shall assume that
LTP of active parallel fibre synapses increases the rate r and LTD decreases
it (Lev-Ram et al., 2003).

We plot possible cell-and-movement-specific error signals carried by climb-
ing fibres for two (sub)movements against the firing rate of a Purkinje cell in
Fig. 3A. Because coordinated movements require parallel output from many
parts of the cerebellum, it is unavoidable that individual Purkinje cells con-
tribute to the control of many different movements. We assume that there
is no explicit signal available to instruct the Purkinje cell as to which move-
ment, nor a fortiori which time point of that movement, is currently being
executed. We shall argue below that this introduces a significant implemen-
tation constraint.

The frequency of complex spikes can be increased or decreased below
their baseline rate of about 1Hz (e.g. Ke et al., 2009). The movements
have different optimal frequencies and opposite slopes. We first consider
movement m1, which is associated with a complex spike rate that is posi-
tively correlated with r. As complex spikes trigger LTD and parallel fibres
active in their absence are potentiated, we expect a stable or set point for
the rate, which is driven by the plastic synapses. The set point would corre-
spond to zero error and the non-zero baseline rate of complex spikes. Thus,
if the Purkinje cell rate is above optimum during m1, the synapses driving
it will be depressed, returning its activity towards the optimum; a converse
argument applies if the rate falls below the optimum.

This illustrates the first constraint on climbing fibre activity in the cur-
rent theory. The optimum rate of the Purkinje cell is defined by the set
point of climbing fibre activity. Because Purkinje cells have different op-
tima, the error processing that generates climbing fibre activity must be
endowed with sufficient information to define this set point correctly for
each cell and movement pair.

Movement m2 has a negative slope. We see that applying the same
plasticity rule will result in unstable learning, causing the firing rate to
diverge from the optimum. Thus, if the rate is too low, the increased error
will cause a high rate of complex spikes, leading to depression of the synapses
driving the Purkinje cell, which will then fire at an even lower frequency,
and so on. We therefore identify a second constraint: increases of Purkinje
cell firing must always affect movements so as to increase complex spike
frequency (d(CSrate)dr > 0). The same must be true within the circuitry of
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the cerebellum, but the synaptic signs of the Purkinje cell–nucleo-olivary
neurone–inferior olive loop do allow this condition to be satisfied (Chaumont
et al., 2013).

Although these requirements on the relations between error, complex
spike and Purkinje cell firing appear near-impossible to satisfy in general
for arbitrary movements, it may be possible to do so in the context of some
constrained behaviours, notably eye movements and simple reflexes. These
provide some of the best studied models of cerebellar learning: the vestibulo-
ocular reflex (Robinson, 1976; Ito et al., 1974; Blazquez et al., 2004), nicti-
tating membrane response/eyeblink conditioning (McCormick et al., 1982;
Yeo et al., 1984; Yeo and Hesslow, 1998), saccade adaptation (Optican and
Robinson, 1980; Dash and Thier, 2014; Soetedjo et al., 2008) and regula-
tion of limb movements by withdrawal reflexes (Ekerot et al., 1995; Garwicz
et al., 2002). All of these motor behaviours have in common that a given er-
ror could conceivably be associated with a suitable corrective action. Thus,
the corrective eye movement is exactly determined by the retinal slip, while
a puff of air directed at the cornea should always trigger a blink protecting
the eye. It can therefore be envisaged that this fixed error-correction rela-
tion could have been exploited during evolution to satisfy the hardwiring
requirements specified above.

The temporal characteristics of cerebellar motor control tasks neverthe-
less create additional obstacles for the traditional learning algorithm, be-
cause a single evaluation of the result of a movement may have to specify
complex temporal activity sequences. This can be seen in the context of
saccade adaptation. The Purkinje cells required for saccade adaptation dis-
play a characteristic population activity burst during a saccade (Thier et al.,
2000); this is diagrammed in Fig. 3B (adapted from Herzfeld et al., 2015).
This burst is quite brief, of the order of 50ms. During the burst, Purkinje
cells display abrupt changes of firing frequency, with changes of 100Hz in
20ms often being observed. Each time point of the population burst can
be considered as a separate submovement with a distinct optimal frequency
that must be learnt. The rapid modulation of Purkinje cell firing therefore
implies that very different plasticity occurs over intervals of no more than
20ms.

But the accuracy of a saccade can only be evaluated once it is complete.
Vision is moreover a particularly slow sense. This implies that specific and
different plasticity outcomes at time points 20ms apart during the Purk-
inje cell population burst must all be determined by a unique evaluation
occurring some time later. The timing of that evaluation and the complex
spikes it generates are quite likely to be subject to significant jitter. The
window for evaluation (based upon the post-movement period when excess
complex spikes are observed; Soetedjo et al., 2008) shown in Fig. 3B,D il-
lustrates the problem—it is broader than the saccade-related activity and
movement. Even more challenging, the burst of simple spike activity shown
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would presumably require LTP to become established, implying an absence
of complex spikes, as can be observed throughout the evaluation window
under the appropriate error conditions (Soetedjo et al., 2008). In other
words, the absence of complex spikes within a window of 150ms would need
to specify strong LTP at a time point 100ms before the beginning of the
evaluation window, but no plasticity at 80ms before the window2.

Although it may not be impossible for the traditional learning algorithm
to overcome these obstacles in the case of constrained movements like those
of the eye, it seems extremely challenging. And implementing such an al-
gorithm capable of solving more complex, arbitrary and high-dimensional
motor control tasks would pose even greater difficulties.

We next analyse the requirements for a more general cerebellar learn-
ing algorithm. More realistic, less-informative global error functions are
diagrammed in Fig. 3C. The global error E for two movements (or sub-
movements) is shown as a function of the firing rate r of the Purkinje cell,
assuming nothing else changes in the network (including the mossy fibre in-
put). Although the parabolic forms are of course arbitrary, learning should
seek whatever neighbouring minima exist in the error functions, such as r1opt
and r2opt. Contrary to the functions in Fig. 3A, those of Fig. 3C are not in-
structive of the sign of plasticity required to approach the optimum. Thus,
neither the existence nor the absolute value of the error signal is sufficient
to indicate the required sign of plasticity. This can be seen by considering
points I and I ′ on the error function of m2. They have identical error in-
tensities, but from I an increase in r and therefore LTP is required, while
from I ′ a decrease and therefore LTD is needed.

A key constraint on the learning algorithm is that the coordinates (r
and E) of the error function minima can vary between movements and even
with time within movements. That the ropt can vary within and between
movements is uncontroversial. If we imagine for the sake of argument that
the firing of a Purkinje cell controls the force of a muscle3, different motor
states may require different degrees of contraction, implying different Purk-
inje cell firing rates. In contrast, allowing for variation of the minimum error
between movements may initially appear unnecessary. However, the error in
a movement depends upon the degree of optimisation throughout the whole
network, which may be substantially different for the two movements, inde-
pendently of the behaviour of the cell depicted. We recall that the curves of
Fig. 3C show the error as the rate of that individual cell is altered.

It is apparent that, at the very least, the sign of the gradient of the error
function must be determined if plasticity is to reduce the error reliably and

2This saccade data was chosen to illustrate the general problems facing cerebellar
learning, but for this particular behaviour it should be noted that results that appear
remarkably divergent have been reported in learning studies (reviewed in Dash and Thier,
2014; Soetedjo et al., 2008).

3In reality, higher-level representations appear to be employed (Ebner et al., 2011).
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ultimately minimise it.
The decorrelation theory (Dean et al., 2002; Dean and Porrill, 2014)

offers an elegant implicit gradient descent algorithm, but the detailed im-
plementation suggested (Menzies et al., 2010) is unable to solve the temporal
credit assignment problem arising in movements that can only be evaluated
upon completion. We shall also see below that the present implementation
employs different plasticity rules to those of the theory we shall develop.

Stochastic gradient descent (Minsky, 1961) provides a plausible algo-
rithm for solving the cerebellar learning problem. Applied here (Fig. 3C), a
perturbation δr is effected and the resulting change of error δE determined.
Knowledge of the signs of both δr and δE is necessary and sufficient infor-
mation to minimise the error. Assuming the perturbation is sparse within
the network, it can be used to tag the perturbed circuit elements, creating
an eligibility trace that can be exploited to guide plasticity specific to those
elements (Fig. 3D).

4 The complex spike as trial and error
Our attempt to design a cerebellar implementation of stochastic gradient
descent began with a search for a source of perturbation δr. The fact
that Purkinje cells can contribute to different movements with arbitrary
and unknown sequencing imposes an implementation constraint preventing
simple-minded approaches like comparing movements performed twice in
succession. We recall that we assume that no explicit information categoris-
ing or identifying movements is available to the Purkinje cell. It is therefore
necessary that knowledge of both the presence and sign of δr be available
within the context of a single movement execution.

In practice, a number of different perturbation mechanisms can still sat-
isfy these requirements. For instance, any binary signal would be suitable,
since the sign of the perturbation would be determined by the simple pres-
ence or absence of the signal with respect to its mean. Several plausible
mechanisms along these lines have been proposed, including external mod-
ulatory inputs (Doya and Sejnowski, 1988; Fiete et al., 2007), failures and
successes of synaptic transmission (Seung, 2003) or the absence and pres-
ence of action potentials (Xie and Seung, 2004). However, none of these
mechanisms has yet attracted experimental support at the cellular level.

In the cerebellar context, parallel fibre synaptic inputs are so numerous
that the correlation between individual input variations and motor errors is
likely to be extremely weak, whereas we seek a perturbation that is suffi-
ciently salient to influence ongoing movement. Purkinje cell action poten-
tials are also a poor candidate, because they are not back-propagated to
parallel fibre synapses (Stuart and Häusser, 1994) and therefore probably
cannot guide their plasticity, but the ability to establish a synaptic eligibility
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trace is required. We considered bistable firing behaviour of Purkinje cells
(Loewenstein et al., 2005; Yartsev et al., 2009), with the down-state (or long
pauses) representing a clear perturbation towards lower (zero) firing rates.
However, exploratory plasticity experiments did not support this hypothe-
sis and the existence of bistability in vivo is disputed (Schonewille et al.,
2006a).

We then considered another possible perturbation of Purkinje cell fir-
ing: the complex spike triggered by the climbing fibre. We note that there
are probably two types of inferior olivary activity. Olivary neurones medi-
ate classical error signalling triggered by external synaptic input, but they
also exhibit continuous and irregular spontaneous activity in the absence of
overt errors. We suggest the spontaneous climbing fibre activations cause
synchronised perturbation complex spikes (pCSs) in small groups of Purk-
inje cells via the∼1:10 inferior olivary–Purkinje cell divergence (Schild, 1970;
Mlonyeni, 1973; Caddy and Biscoe, 1976) and dynamic synchronisation of
olivary neurones (through electrical coupling Llinás and Yarom, 1986; Bazz-
igaluppi et al., 2012a, or common drive). The excitatory perturbation—a
brief increase of firing rate (Ito and Simpson, 1971; Campbell and Hesslow,
1986; Khaliq and Raman, 2005; Monsivais et al., 2005)—feeds through the
cerebellar nuclei (changing sign) to the ongoing motor command and causes
a perturbation of the movement, which in turn may modify the error of the
movement. Harris (1998) has previously proposed a cerebellar learning algo-
rithm that implies a similar perturbation role for complex spikes, although
the rest of our implementation differs from his.

The perturbations could guide learning in the following manner. If a per-
turbation complex spike results in an increase of the error, the raised activity
of the perturbed Purkinje cells was a mistake and reduced activity would be
preferable; parallel fibre synapses active at the time of the perturbing com-
plex spikes should therefore be depressed. Conversely, if the perturbation
leads to a reduction of error (or does not increase it), the increased firing rate
should be consolidated by potentiation of the simultaneously active parallel
fibres.

How could an increase of the error following a perturbation be signalled
to the Purkinje cell? We suggest that the climbing fibre also performs this
function, although we postpone the description of a mechanism for achieving
it until later. Specifically, if the perturbation complex spike increases the
movement error, a secondary error complex spike (eCS) is emitted shortly
afterwards, on a time scale of the order of 100ms. This time scale is as-
sumed because it corresponds to the classical error signalling function of the
climbing fibre, because it allows sufficient time for feedback via the error
modalities known to elicit complex spikes (touch, pain, balance, vision) and
because such intervals are known to be effective in plasticity protocols (Wang
et al., 2000; Sarkisov and Wang, 2008; Safo and Regehr, 2008). The interval
could also be influenced by the oscillatory properties of olivary neurones
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Figure 4: Predicted plasticity rule. Synchronous activation of gran-
ule cell synapses and a perturbation complex spike (pCS) leads to
LTP (GP_, increased synaptic weight w; top left, red), while the ad-
dition of a succeeding error complex spike (eCS) leads to LTD (GPE,
top right, magenta). The bottom row illustrates the corresponding
‘control’ cases from which the perturbation complex spike is absent;
no plasticity should result (G__ blue and G_E green).

(Llinás and Yarom, 1986; Bazzigaluppi et al., 2012b).
The predicted plasticity rule is therefore as diagrammed in Fig. 4. Only

granule cell synapses active simultaneously with the perturbation complex
spike undergo plasticity (Fig. 4A,B), with the sign of the plasticity being
determined by the presence or absence of a subsequent error complex spike.
Granule cell synapses active in the absence of a synchronous perturbation
complex spike should not undergo plasticity, even if succeeded by an error
complex spike (Fig. 4C,D). We refer to these different protocols with the
abbreviations (and predicted outcome): G__ (no change), GP_ (LTP),
G_E (no change), GPE (LTD), where G indicates granule cell activity, P
the presence of a perturbation complex spike and E the presence of an error
complex spike. Note that both granule cells and climbing fibres are likely to
be active in high-frequency bursts rather than the single activations idealised
in Fig. 4.

Several of the predictions of this rule appear to be incompatible with

21

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 21, 2016. ; https://doi.org/10.1101/053785doi: bioRxiv preprint 

https://doi.org/10.1101/053785


the current consensus. Thus, parallel fibre synapses whose activity is si-
multaneous with (GP_) or followed by a complex spike (G_E) have been
reported to be depressed (Sakurai, 1987; Crepel and Jaillard, 1991; Lev-
Ram et al., 1995; Coesmans et al., 2004; Safo and Regehr, 2008), while we
predict potentiation and no change, respectively. Furthermore, parallel fibre
activity alone (G__) leads to potentiation (Lev-Ram et al., 2002; Jörntell
and Ekerot, 2002; Lev-Ram et al., 2003; Coesmans et al., 2004), while we
predict no change.

5 Synaptic plasticity under physiological conditions
As described above, the plasticity rules we predict for parallel fibre–Purkinje
cell synapses are, superficially at least, close to the opposite of the consen-
sus in the literature, to which we have contributed (Bidoret et al., 2009; Ly
et al., 2013; Bouvier et al., 2016). Current understanding of the conditions
for inducing plasticity give a key role to the intracellular calcium concentra-
tion (combined with nitric oxide signalling; Coesmans et al., 2004; Bouvier
et al., 2016), whereby high intracellular calcium concentrations are required
for LTD and lower concentrations lead to LTP. Standard experimental condi-
tions for studying plasticity in vitro, notably the extracellular concentration
of calcium, are likely to result in more elevated intracellular calcium con-
centrations during induction than pertain physiologically. Recognising that
this could alter plasticity outcomes, we set out to test whether our predicted
plasticity rules might be verified under more physiological conditions.

We made several changes to standard protocols (see Methods); one of the
changes was cerebellum-specific, but the others also apply to in vitro plastic-
ity studies in other brain regions. We did not block GABAergic inhibition.
We lowered the extracellular calcium concentration from the standard 2mM
(or higher) used in slice work to 1.5mM, which is near the maximum values
measured in vivo in rodents (Jones and Keep, 1988; Silver and Erecińska,
1990). We only used weak granule cell layer stimuli, which results in sparse
and spatially dispersed parallel fibre activity, avoiding the compact bundles
of parallel fibres almost universally employed. Interestingly, it has been re-
ported that standard protocols using granule cell stimulation are unable to
induce LTD (Marcaggi and Attwell, 2007). We used a pipette solution de-
signed to prolong energy supply in extended cells like the Purkinje cell (see
Methods). Experiments were carried out in adult mouse sagittal cerebellar
slices using otherwise standard patch-clamp techniques.

During induction, performed in current clamp without any injected cur-
rent, the granule cell input consisted of a burst of five stimuli at 200Hz,
reproducing the propensity of granule cells to burst at high frequencies
(Chadderton et al., 2004; Jörntell and Ekerot, 2006). The climbing fibre
input reflected the fact that these can occur in very high-frequency bursts
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(Eccles et al., 1966; Maruta et al., 2007). We used two stimuli at 400Hz to
represent the perturbation complex spike and four for the subsequent error
complex spike if it was included in the protocol. In a fraction of cells the
climbing fibre stimuli after the first were not reliable; our grounds for includ-
ing these cells are detailed in the Methods. The interval between the two
bursts of climbing fibre stimuli when the error complex spike was present
was about 100ms. We increased the interval between induction episodes
from the standard one second to two, to minimise any accumulating sig-
nal during induction. 300 such induction sequences were applied (Lev-Ram
et al., 2002).

Pairs of granule cell test stimuli with an interval of 50ms were applied
at 0.1Hz before and after induction; EPSCs were recorded in voltage clamp
at −70mV. Pairs of climbing fibre stimuli with a 2.5ms interval were ap-
plied at 0.5Hz throughout the test and induction periods; the interleaved
test granule cell stimulations were sequenced 0.5 s before the climbing fibre
stimulations. During induction, granule cell stimuli were applied in phase
or in anti-phase with these perturbation signals as required for the different
protocols described below. The analysis inclusion criteria and amplitude
measurement for the EPSCs are detailed in the Methods. The average am-
plitude of the granule cell EPSCs retained for analysis was −62 ± 46pA
(mean ± s.d., n = 58). The rise and decay time constants (of the global
averages) were 0.74 ± 0.36ms and 7.2 ± 2.7ms, respectively.

We first show the protocols relating to LTP (Fig. 5). A granule cell burst
was followed by a distant perturbation climbing fibre stimulus or the two
inputs were activated simultaneously. In the examples shown, the protocol
with simultaneous activation (GP_, Fig. 5C,D) caused a potentiation of
about 40%, while the temporally separate inputs caused a smaller change
of 15% in the opposite direction (G__, Fig. 5A,B). We note that individ-
ual outcomes were quite variable; group data and statistics will be shown
below. The mean paired-pulse ratio in our recordings was A2/A1 = 1.75 ±
0.32 (mean ± sd, n = 58). As here, no significant changes of paired-pulse
ratio were observed with any of the plasticity protocols (p = 0.32–0.90, n =
10–18).

During induction, cells would generally begin in a tonic firing mode, but
nearly all ceased firing by the end of the protocol. Specimen sweeps are
shown in Fig. 6 from later during induction protocols, when spiking had
ceased. The protocol was predicted to produce LTD. As before, a granule
cell burst was paired with the perturbation climbing fibre, but now a longer
burst of climbing fibre stimuli was appended 100ms later, representing an
error complex spike (GPE, Fig. 6C,D). A clear LTD of about 40% developed
following the induction. In contrast, if the perturbation complex spike was
omitted, leaving the error complex spike (G_E, Fig. 6A,B), no clear change
of synaptic weight occurred (an increase of about 10%).

The time course of the changes of EPSC amplitude are shown in nor-
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Figure 5: Simultaneous granule cell and climbing fibre activity in-
duces LTP. A. Membrane potential (blue) of a Purkinje cell during
an induction protocol (G__) where a burst of 5 granule cell stimuli
at 200Hz was followed after 0.5 s by a pair of climbing fibre stim-
uli at 400Hz. B. Average EPSCs recorded up to 10 minutes before
(black) and 20–30 minutes after the end of the protocol of A (blue).
Paired test stimuli (triangles) were separated by 50ms and revealed
the facilitation typical of the granule cell input to Purkinje cells. In
this case, the induction protocol resulted in a small reduction (blue
vs. black) of the amplitude of responses to both pulses. C. Purkinje
cell membrane potential (red) during a protocol (GP_) where the
granule cells and climbing fibres were activated simultaneously, with
timing otherwise identical to A. D. EPSCs recorded before (black)
and after (red) the protocol in C. A clear potentiation was observed
in both of the paired-pulse responses.
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Figure 6: LTD requires simultaneous granule cell and climbing fibre
activity closely followed by an additional complex spike. A. Mem-
brane potential of a Purkinje cell (green) during a protocol where a
burst of 5 granule cell stimuli at 200Hz was followed after 100ms by 4
climbing fibre stimuli at 400Hz (G_E). B. Average EPSCs recorded
up to 10 minutes before (black) and 20–30 minutes after the end of
the protocol of A (green). The interval between the paired test stim-
uli (triangles) was 50ms. The induction protocol resulted in little
change (green vs. black) of the amplitude of either pulse. C. Purk-
inje cell membrane potential (magenta) during the same protocol as
in A with the addition of a pair of climbing fibre stimuli simultane-
ous with the granule cell stimuli (GPE). D. EPSCs recorded before
(black) and after (magenta) the protocol in C. A clear depression
was observed in both of the paired-pulse responses.
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malised form in Fig. 7. The distributions of the relative changes of EPSC
amplitude for the different protocols are also shown; they reveal that the
data are quite noisy. A numerical summary of the group data and statistical
comparisons is given in Table 2.

These results therefore provide experimental support for all four plas-
ticity rules predicted by our proposed mechanism of stochastic gradient de-
scent. We argue in the Discussion that the apparent contradiction of these
results with the literature is not unexpected if the likely effects of our altered
conditions are considered in the light of known mechanisms of potentiation
and depression.
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Figure 7: Time courses of plasticity. A number, B box-and-whisker
plots of individual plasticity ratios (coloured lines represent the
means, open symbols represent cells with failures of climbing fibre
stimulation; see Methods) and C time course of the mean EPSC
amplitude for GP_ (red) and G__ (blue) protocols of Fig. 5, nor-
malised to the pre-induction amplitude. Averages every 2 minutes,
mean ± sem. Non-integer n arise because the numbers of responses
averaged were normalised by those expected in two minutes, but
some responses were excluded (see Methods) and some recordings
did not extend to the extremities. Induction lasted for 10 minutes
starting at time 0. D, E and F Similar plots for the GPE (magenta)
and G_E (green) protocols of Fig. 6.
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A1 A2
Comparison Mean SD p Mean SD p n

GP_ 1.40 0.40 0.0001 1.31 0.28 0.0006 15
GPE 0.53 0.15 0.001 0.56 0.16 0.002 10
G__ 0.97 0.42 0.77 0.94 0.39 0.42 18
G_E 0.98 0.44 0.60 0.95 0.35 0.42 15
GP_ vs G__ 0.01 0.005
GPE vs G_E 0.0009 0.0007
GP_ vs G_E 0.005 0.002
GPE vs G__ 0.004 0.005
G__ vs G_E 0.93 0.96

Table 2: Group data and statistical tests for plasticity outcomes for
the first (A1) and second (A2) EPSCs of paired-pulse stimuli. In the
upper half of the table, the ratios of EPSC amplitudes after/before
induction are described and compared with a null hypothesis of no
change (ratio = 1). The GP_ and GPE protocols both induced
robust changes, while the control protocols (G__, G_E) did not.
The bottom half of the table provides the p-values for comparisons
between the after/before ratios of different protocols. The p-values
were calculated using the Wilcoxon rank sum test.

6 Extraction of the change of error
Above we have provided experimental evidence in support of the counterin-
tuitive synaptic plasticity rules predicted by our proposed learning mecha-
nism. In that mechanism, following a perturbation complex spike, the sign
of plasticity is determined by the absence or presence of a follow-up er-
ror complex spike that signals whether the movement error increased (spike
present) or decreased (spike absent). We now return to the outstanding
problem of finding a mechanism able to extract this change of error, δE .

Several roughly equivalent schemes have been proposed, including sub-
traction of the average error (Barto et al., 1983) and decorrelation (Dean
and Porrill, 2014), a specialisation of the covariance rule (Sejnowski, 1977).
Perhaps the most popular method is an elegant implicit extraction of δE
due to Williams (1992). However, in general, these suggestions have not
extended to detailed cellular implementations and we believe that design-
ing biologically plausible implementations is not necessarily trivial. For in-
stance, the method of Williams makes use of a small difference between two
products, which would require accurate multiplication, an operation that
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we exclude as implausible. A more plausible method for extracting δE pre-
dates the Williams method (Barto et al., 1983; Doya and Sejnowski, 1988).
It involves subtracting the average error from the trial-to-trial error. The
residual of the subtraction is then simply the variation of the error δE as
desired.

As mechanism for this subtraction, we propose that the excitatory synap-
tic drive to the inferior olive is on average balanced by input from the
GABAergic nucleo-olivary neurones. A diagram is shown in Fig. 8 to il-
lustrate how this might work in the context of repetitions of a single move-
ment (we extend the mechanism to multiple interleaved movements below).
Briefly, a feedback plasticity reinforces the inhibition whenever it is too weak
to prevent an error complex spike from being emitted. When the inhibition
is strong enough to prevent an error complex spike, the inhibition is weak-
ened. If the variations of the strength of the inhibition are sufficiently small,
the level of inhibition provides a good approximation of the average error.
In consequence, error complex spikes are emitted when the error exceeds the
(estimated) average; this occurs when the perturbation increases the error.
In other words, this mechanism enables extraction of the sign of δE in the
context of a single movement realisation. In support of such a mechanism,
there is evidence that inhibition in the olive builds up during learning and
reduces the probability of complex spikes (Kim et al., 1998).

For this mechanism to work it must be possible to distinguish perturba-
tion from error complex spikes. More than one plasticity mechanism could
produce the desired cancellation of excitatory drive to the inferior olive. We
outline two possibilities here, but it will be necessary in the implementation
below to make a concrete if somewhat arbitrary choice; we shall make it on
the basis of the available, circumstantial evidence.

The first possible mechanism would involve plasticity of the nucleo-
olivary synapses. Perturbation and error complex spikes would be distin-
guished in an appropriate plasticity rule by the presence of excitatory synap-
tic input to the olive. This would offer a simple implementation, since plastic
and cancelled inputs would be at neighbouring synapses (possibly even in
the same olivary glomeruli: de Zeeuw et al., 1998); information about olivary
spikes would also be directly available. However, the lack of published evi-
dence and our own unsuccessful exploratory experiments led us to consider
an alternative plasticity locus.

A second possible implementation for cancelling the average error sig-
nal would make the mossy fibre to nucleo-olivary neurone synapses plastic
(Fig. 1B). The presence of an error complex spike would need to potentiate
these inputs, thereby increasing inhibitory drive to the olive and tending to
reduce the likelihood of future error complex spikes being emitted. Inversely,
the absence of the error complex spike should depress the same synapses.
Movement specificity could be conferred by applying the plasticity only to
active mossy fibres, the patterns of which would differ between movements.
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Figure 8: Adaptive tracking to cancel the mean error input to the
inferior olive. A. The olive is assumed to receive an excitatory signal
representing movement error E and an inhibitory input I from the
nucleo-olivary neurones of the cerebellar nuclei. B. The inputs to the
inferior olive are represented in discrete time—each bar can be taken
to represent a discrete movement realisation. The error (blue) varies
about its average (dashed blue line) because perturbation complex
spikes influence the movement and associated error randomly. The
strength of the inhibition is shown by the green trace. When the
excitatory error input exceeds the inhibition, an error complex spike
is emitted (bottom black trace) and the inhibition is strengthened by
plasticity, either directly or indirectly. In the converse situation and
in the consequent absence of an error complex spike, the inhibition
is weakened. In this way the inhibition tracks the average error and
the emission of an error complex spike signals an error exceeding
the estimated average. Note that spontaneous perturbation complex
spikes are omitted from this diagram.
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This would enable movement-specific cancellation as long as the overlap
between mossy fibre patterns was not too great.

How would information about the presence or absence of the error com-
plex spike be supplied to the nucleo-olivary neurones? A direct connection
between climbing fibre collaterals and nucleo-olivary neurones exists (de
Zeeuw et al., 1997), but recordings of cerebellar neurones following stim-
ulation of the olive suggests that this input is not strong, probably eliciting
no more than a single spike per activation (Bengtsson et al., 2011). The
function of this apparently weak input is unknown.

An alternative route to the cerebellar nuclear neurones for information
about the error complex spike is via the Purkinje cells. Climbing fibres excite
Purkinje cells which in turn inhibit cerebellar nuclear neurones, in which a
strong inhibition can cause a distinctive rebound of firing (Llinás and Müh-
lethaler, 1988). It has been reported that peripheral stimulation of the
climbing fibre receptive field, which might be expected to trigger the emis-
sion of error complex spikes, causes large IPSPs and an excitatory rebound
in cerebellar nuclear neurones (Bengtsson et al., 2011). These synaptically
induced climbing fibre–related inputs were stronger than spontaneously oc-
curring IPSPs. In our conceptual framework, this could be interpreted as
indicating that error complex spikes are stronger and/or arise in a greater
number of olivary neurones than perturbation complex spikes. The two
types of complex spike would therefore be distinguishable, at least in the
cerebellar nuclei.

Plasticity of active mossy fibre inputs to cerebellar neurones has been re-
ported that follows a rule similar to that our implementation requires. Thus,
mossy fibres that burst before a hyperpolarisation (possibly the result of an
error complex spike) that triggers a rebound have their inputs potentiated
(Pugh and Raman, 2008), while mossy fibres that burst without a succeed-
ing hyperpolarisation and rebound are depressed (Zhang and Linden, 2006).
It should be noted, however, that this plasticity was studied at the input to
projection neurones and not at that to the nucleo-olivary neurones. Never-
theless, the existence of highly suitable plasticity rules in a cell type closely
related to the nucleo-olivary neurones encouraged us to choose the cerebellar
nuclei as the site of the plasticity that leads to cancellation of the excitatory
input to the olive.

We now consider how synaptic integration in the olive leads to emission
or not of error complex spikes. The nucleo-olivary synapses (in most olivary
nuclei) display a remarkable degree of delayed and long-lasting release (Best
and Regehr, 2009), suggesting that inhibition would build up during a com-
mand and thus be able to oppose the excitatory inputs signalling movement
errors that appear some time after the command is transmitted. The error
complex spike would therefore be produced (or not) after the command. On
this basis, we shall make the simplifying assumption that the cerebellum
generates a relatively brief motor control output or ‘command’, of the order
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of 100ms or less and a single error calculation is performed after the end of
that command. As for the saccade example in the Introduction, many move-
ments can only be evaluated after completion. In effect, this corresponds to
an offline learning rule.

Climbing fibres are generally described as possessing highly specific mod-
alities and receptive fields that are stereotypically linked to functional re-
gionalisation in the cerebellum (Garwicz et al., 1998; Jörntell et al., 1996).
Despite this, we shall make the simplifying assumption that all olivary cells
serving a microzone transmit an error complex spike in a correlated man-
ner. We return to the important issue of climbing fibre modalities in the
Discussion.

7 Simulations
Above we outlined a mechanism for extracting the error change δE in the
context of a single movement realisation; it is based on adapting the in-
hibitory input to the inferior olive to cancel the average excitatory error
input in a movement-specific manner. To verify that this mechanism could
operate successfully in conjunction with the scheme for cortical plasticity
already described, we turned to simulation.

Before describing the model, it is important to make the point that
any implementation will need to make concrete choices between alternative
mechanisms that can in some cases be quite numerous and where the avail-
able evidence can only offer a poor guide, notably as concerns the properties
of nuclear and olivary neurones and connections. Our aim here is therefore
limited to showing that one specific implementation can implement stochas-
tic gradient descent using cellular mechanisms that are plausible.

A reduced model of a cerebellar microzone was developed and is de-
scribed in detail in §2.3. In overview, mossy fibre input patterns drove
Purkinje and cerebellar nuclear neurones during commands of 10 discrete
time bins. Purkinje cell activity was perturbed by randomly occurring com-
plex spikes. The learning task was to adjust the output patterns of the
nuclear projection neurones to randomly chosen targets. Cancellation of the
average error was implemented by plasticity at the mossy fibre to nucleo-
olivary neurone synapse while modifications of the mossy fibre pathway input
to Purkinje cells reflected the rules outlined in §4. Synaptic weights were
updated offline after each command. Error complex spikes were considered
to be broadcast if the error exceeded the integral of inhibitory input to the
olive during the movement. There were thus 400 (40 projection neurones ×
10 time bins) variables to optimise using a single error value.

In a simplification that improved learning performance, the weight of
the Purkinje cell–nucleo-olivary neurone connection was set to zero. This
prevented the perturbations adding noise to the tracking of the average er-
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ror. However, the connection was nevertheless assumed to be capable of
signalling the presence of error complex spikes in order to guide the tracking
plasticity. This apparent inconsistency could be resolved in vivo if the indi-
rect effects of complex spikes were poorly transmitted to the inferior olive,
possibly because of the specific dynamics of nucleo-olivary neurones and
their output synapses (Najac and Raman, 2015; Best and Regehr, 2009).

The progress of the simulation is illustrated in Fig. 9, in which two differ-
ent movements were successfully optimised in parallel; only one is shown.
The global error is the sum of absolute differences between the projection
neurone outputs and their target values. This can be seen to decrease
throughout the simulation, indicating the progressive improvement of the
learnt command. The effect of learning on the difference between the out-
put and the target values can be seen in Fig. 9C and D. The initial match is
very poor because of random initial weight assignments, but it has become
almost exact by the end of the simulation.

The optimisation only proceeds once the inhibitory input to the olive
has successfully subtracted the average error, which is an excitatory input
to the olive. Thus, in Fig. 9B it can be seen that the initial values of the
inhibitory and excitatory (error) inputs to the olive differed. The inhibition
tends towards the error. Until the two match, the overall error shows no
systematic improvement. This confirms the need for accurate subtraction of
the mean error to enable extraction of the error changes necessary descend
the error gradient. This simulation supports the feasibility of our proposed
cerebellar implementation of stochastic gradient descent.
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Figure 9: Simulated cerebellar learning by stochastic gradient de-
scent with estimated global errors. The total error (E , blue) at the
cerebellar nuclear output and the cancelling inhibition (I, green)
reaching the inferior olive are plotted as a function of trial number
in A and B for one of two interleaved patterns learnt in parallel.
An approximately 10-fold reduction of error was obtained. It can
be seen in A that the cancelling inhibition follows the error very
closely over most of the learning time course. However, the zoom in
B shows that there is no systematic reduction in error until the inhi-
bition accurately cancels the mean error. C. Initial firing profile of
a typical cerebellar nuclear projection neurone (PN , magenta); the
simulation represented 10 time bins with initially random frequency
values per neurone, with a mean of 30Hz. The target firing profile
for the same neurone (R, grey) is also plotted. D. At the end of the
simulation, the firing profile closely matched the target.
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8 Stochastic gradient descent with estimated global
errors

The simulations above provide a proof of concept for the proposed mecha-
nism of cerebellar learning. Nonetheless, the specific scheme of stochastic
gradient descent operating with estimated errors appears worthy of more de-
tailed mathematical examination. Even the relatively simple network model
in the simulations of §7 contains several parameters. It is by no means ob-
vious to determine the regions of parameter space in which the model con-
verges to the desired outputs or to find the parameter values that maximise
convergence speed given a level of admissible residual error. To address these
issues, we abstract the core mechanism of stochastic gradient descent with
an estimated global error in order to highlight the role of four key parame-
ters. Analysis of this mechanism will show that this algorithm, even in this
very reduced form, exhibits a variety of dynamical regimes, which we char-
acterise. We then show how the key parameters and the different dynamical
learning regimes directly appear in an analog perceptron description of the
type considered in the previous section. We estimate the algorithm’s storage
capacity numerically. Finally, we outline properties that lie beyond our core
description and that remain to be analysed in the future.

8.1 Minimal equivalent implementation

We begin by reducing the cerebellum-like scheme of Fig. 1B to its essence
in Fig. 10. Purkinje cells and cerebellar nuclear projection neurones were
combined into a single cell type, P . Learning a pattern (movement) requires
adjustment of the rates Pi(t), i = 1, · · · , NP of NP P cells to target values
Ri, i = 1, · · · , NP . For now we consider only the rate of the P cell, without
considering how it is produced (by synaptic inputs; the analysis will be
extended below). The movement error E is defined as

E(τ) = 1

NP

∑
i

|Pi(τ)−Ri| (13)

Note that here τ represents trial number rather than temporal variations
within a single movement realisation. In this simplified model, P cell activity
during a movement is characterised by a single value rather than a sequence
of values in time.

The proposed core operation of the algorithm for one movement can be
described as follows. At each time step, one cell ic is chosen at random and
tested (perturbed by the climbing fibre): its firing rate is increased by A > 0
and becomes Pic(τ)+A. The value of the global error corresponding to this
perturbed firing rate is thus

Ep =
1

NP

∑
i

|Pi(τ) + δi,ic A−Ri| (14)
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Figure 10: Simplified circuitry implementing stochastic gradient de-
scent with estimated global errors. Purkinje cells and cerebellar
nuclear projection neurones are collapsed into a single cell type P
which provides the output o. These cells receive an excitatory plas-
tic input from mossy fibres (M). Mossy fibres also drive a plastic
inhibitory input I, via the nucleo-olivary neurones, to the inferior
olive (IO). The inferior olive receives an excitatory error input E .
The olivary neurones emit spikes that are transmitted to the P cells
via the climbing fibre c.

where we have used the Kronecker δi,j notation (δi,j = 1 if i = j and 0
otherwise).

The value of the perturbed error Ep is compared to the current value of
the estimated global error I(τ), which is represented by the strength of the
inhibitory M → IO input. Then Pic(τ) and I(τ) are updated depending on
whether Ep is smaller or greater than I(τ).

• if Ep > I(τ) the perturbation is judged to have increased the error and
therefore to have the wrong sign: the perturbed firing rate needs to
be decreased. Concurrently, I needs to be increased since it is judged
too low compared to the real value of the error. Thus Pic(τ) and I(τ)
are changed to

Pic(τ + 1) = [Pic(τ)−∆P ]+ (15)
I(τ + 1) = I(τ) + ∆I (16)

with the brackets indicating rectification (which imposes the constraint
that firing rates are non-negative). The other rates are not changed
Pi(τ + 1) = Pi(τ) for i 6= ic

• if Ep < I(τ), the converse reasoning leads to changes of Pic(τ) and
I(τ) in opposite directions

Pic(τ + 1) = Pic(τ) + ∆P (17)
I(τ + 1) = [I(τ)−∆I]+ (18)
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These updates by themselves are, however, not sufficient to lead to con-
vergence. It is not difficult to verify that they preserve the quantity

k =
I(τ)
β

+
1

N

∑
i

Pi(τ) (19)

where we have introduced
β = N

∆I
∆P

(20)

This conserved quantity prevents the learning dynamics from reaching the
vicinity of the desired state {(Pi = Ri, i = 1, · · · , N), I = 0)} (when the
value of k does not initially correspond to the specific desired final values).
Minimal changes to the procedure are sufficient to remove this undesirable
feature. One such modification that we here consider consists of performing
the updates described by Equations (15-18), of ‘type ∆P∆I’, only for a
random fraction ρ of the time steps. For the complementary (1−ρ) fraction
of time steps, updates of type ∆I are performed as described above but
without any perturbation (A = 0) and without any update of the Pis (only
the estimated error I(τ) is updated in updates of type ∆I).

This abstract model depends on the 4 parameters (besides the number
of cells N): A, the amplitude of the rate perturbation, ∆P and ∆I, the
update amplitudes of the rate and error estimate, respectively, and ρ, which
describes the probability of a update of type∆P∆I (and the complementary
probability 1 − ρ of ∆I updates). The target firing rates are chosen in
the range [0, Rmax], which simply fixes the firing rate scale. We would
like to determine the conditions on the 4 parameters A,∆P,∆I and ρ for
the algorithm to ‘converge’4. We would also like to understand how they
determine the rate of convergence and the residual error.

8.2 Convergence in the one-cell case

We analyse here the simplest case when the firing rate P of a single cell needs
to be adjusted to reach a target value R (the case N = 1 of the abstract
model above). Stochastic gradient descent is conveniently analysed with a
phase-plane description, by following the values (P, I) from one update to
the next in the (P, I) plane. The dynamics randomly alternates between
updates of type ∆P∆I and ∆I, which we consider in turn.

For updates of type ∆P∆I, an update depends upon whether the per-
turbed error Ep = |P −R+A| is larger or smaller than the estimated error
I. Namely, it depends on the location of the current (P, I) with respect to
the two lines in the P -I plane, C±, {P +A−R = ±I}, of slopes ±1 (see

4 For simplicity, we here consider only constant perturbation and learning steps. There-
fore, at best the rate and the error hovers around the target rates and zero error, in a
bounded domain of size prescribed by the magnitude of the constant perturbation and
learning steps. We say that the algorithm converges when this situation is reached.
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Figure 11: Reduced model: one-cell dynamics in the (P, I) plane. A.
The increment of updates of type ∆P∆I (blue arrows) and of type
∆I (green arrows) are shown. Updates of type ∆P∆I change sign
when the C+ and C− lines (dashed) are crossed. Updates of type
∆I change sign when the D+ and D− lines (solid) are crossed. The
convergence of the rate P toward its target rate R (and the allied
reduction of estimated error I) takes place as (P, I)moves downward
between the C+, D+ lines, i.e. the (C+, D+) corridor, or between the
C−, D− lines, i.e. the (C−, D−) corridor. B. When the perturbation
amplitude is large enough, the convergence dynamics primarily takes
place along one of the two lines of a convergence corridor. The
chosen lines depend on the ratio β = ∆I/∆P between the error
and rate increment and on the probability ρ of choosing updates of
type ∆P∆I. The diagram shows the selected lines depending on the
values of β and ρ. The parameters of four cases illustrated in Fig. 12
are indicated (red dots).

Figure 11). Note that the lines D define the error function. The dynamics
of Equations (15-18) is such that each update moves the point (P, I) by
adding to it the vectorial increment ±(∆P,−∆I) with the + sign holding
in the quadrant above the lines C± and the minus sign elsewhere. These
updates move the point (P, I) towards the lines C±.

For updates of type ∆I, updates similarly depend on the location of
the point (P, I) with respect to the lines D±, {P −R = ±I}, since the cell
firing rate is not perturbed in these updates. In the quadrant above the
lines D±, an update moves the point (P, I) downwards by ∆I, i.e. adds
the vectorial increment (0,−∆I). In the complementary domain of the
(P, I) plane, an update moves the point (P, I) upwards by ∆I, i.e. adds the
opposite vectorial increment (0,∆I). Both updates move (P, I) towards the
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lines D±.
Updates of type ∆P∆I and ∆I are performed with respective probabil-

ities ρ and (1−ρ). In the quadrant above the lines C+ and D−, these mixed
updates lead the couple (P, I) to perform a random walk with a systematic
mean rightward-downward drift per update equal to

ρ(∆P,−∆I)+(1−ρ)(0,−∆I) = (ρ∆P,−∆I), for (P, I) above C+ and D−
(21)
Below the lines C− and D+, the updates are opposite and the mean drift
per update is leftward-upward, equal to

(−ρ∆P,∆I), for (P, I) below C− and D+ (22)

Depending on its initial condition and the exact set of drawn updates, this
leads (P, I) to reach either one of the two ‘convergence corridors’, between
the lines C+ and D+, or between the lines C− and D− (see Figure 11)5.

Stochastic gradient descent dynamics thus proceeds in three successive
phases, as seen in the simulations of §7. First, the firing rate and estimated
error (P, I) drift from the initial condition towards one convergence corridor.
The duration of this phase depends on the location of the initial (P, I) with
respect to the convergence corridors and on the average drift (Equations
(21) or (22)).

When a corridor is reached, in a second phase, (P, I) follows a stochastic
walk in the corridor with, under suitable conditions, a mean linear decrease
in time with bounded fluctuations. In a final phase, (P, I) fluctuates around
the intersection of C+ and D−, namely (R−A/2, A/2).

Convergence is thus controlled by the dynamics in the two corridors.
A sufficient condition for convergence is that a single update cannot cross
the two boundary lines of a corridor at once. The crossing of the (C+, D+)
corridor by a single ∆P∆I update provides the most stringent requirement
namely,

A > ∆I +∆P = ∆I(1 + 1/β) (23)

When this condition is met, alternation between the two types of updates
produce a mean downward drift of the error. This downward drift controls
the convergence rate and depends on the relative size of the perturbation
and the discrete ∆P and ∆I modifications (in other words, the number
of modifications that are needed to cross the convergence corridor). For
simplicity, we consider the case where the perturbation A is large compared
to∆P and∆I, so that oscillations basically take place around one line of the

5In the triangular domain below the line C−, the mean leftward-upward drift has an
angle greater than the 3π/4 inclination of the C− line for ρ∆P > ∆I (i.e. β < ρ). In
this case, the mean drift does not ensure that the (P, I) trajectory crosses the C− line.
However, if P becomes zero before crossing C−, the positivity constraint on the rate,
imposes that subsequent updates are strictly upward, until (P, I) reaches C−.
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Figure 12: Reduced model: four cases of stochastic gradient descent
learning for one cell. Caption on next page.
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Figure 12: Reduced model: four cases of stochastic gradient descent
learning for one cell. Figure on previous page. A. Dynamics in the
(P, I) plane for ρ = 0.2 and β = 2 (A = 2,∆P = 1,∆I = 2). Tra-
jectories (solid lines) from different initial conditions (filled circles)
are represented in the (P, I) plane. The trajectories converge by
oscillating around D+ in the C+/D+ ‘corridor’ and around D− in
the C−/D− ‘corridor’. B. Time courses of P (τ) with correspond-
ing colours. The slope of convergence (dotted lines) predicted by
Equation (25, 26) agrees well with the observed convergence rate
(although in the simulation the perturbation amplitude A is compa-
rable to ∆P = 1 and ∆I). C, D. Same graphs for ρ = 0.5. The
trajectories converge by oscillating around C+ in the C+/D+ ‘corri-
dor’. E, F. Same graphs for ρ = 0.75. The trajectories converge by
oscillating around C− in the C−/D− ‘corridor’. G, H. Same graphs
for ρ = 0.75 and β = 0.5 ( i.e. A = 2,∆P = 1,∆I = 0.5). The
trajectories converge by oscillating around C+, which is the only
attractive line.

corridor, as illustrated in Figure 12. This amounts to being able to neglect
the probability of crossing the other line of the corridor. The convergence
rate then depends on the corridor line around which it takes place and can
be obtained by noting that around a given corridor line, one of the two types
of updates always has the same sign.

In the (C+, D+) corridor, performing type ∆P∆I updates for fraction
ρ of the steps and type ∆I updates for the complementary fraction (1− ρ)
leads to the average displacement per step,

ρ(−∆P, δI) + (1− ρ)(0,−∆I) = (−ρ∆P, (2ρ− 1)∆I) (24)

Thus, as summarised in Figure 11B

• for ρ < β/(1+2β) the average displacement leads to D+ (Figure 12A).
The average displacement can be obtained by noting that for a large
A, the (P, I) trajectory does not cross the C+ line6. Therefore, all the
type ∆P∆I updates are of the same sign, of the form (−∆P,∆I), and
chosen with probability ρ. Since updates of type ∆I do not change
the value of P , P approaches its target rate with a mean speed per
step Vc,

D+ : Vc = −ρ∆P (25)
Comparison between this computed drift and simulated trajectories is
shown in Figure 12B.

6More accurately, we neglect the number of crossings of the C+ line which is exponen-
tially smaller in A/ sup (∆P,∆I) than the number of crossings of the D+ line.
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• for ρ > β/(1+2β), the average displacement leads to C+ (Fig. 12C,E,G).
In this case, all type ∆I updates are of the same sign, of the form
(0,−∆I). In contrast, a fraction f of type ∆P∆I updates are of
the form (−∆P,∆I), while a fraction (1 − f) is of the opposite form
(∆P,−∆I) with f to be determined. The average drift is thus (1 −
ρ)(0,−∆I)+ρ[f(−∆P,∆I)+(1−f)(∆P,−∆I)] = (ρ(1−2f)∆P, [(ρ−
1)+ρ(2f−1)∆I). Requiring that this drift have slope 1, like C+, gives
2f − 1 = β(1 − ρ)/[(1 + β)ρ] and f = (β + ρ)/[2ρ(1 + β)] (which in-
deed obeys 0 < f < 1 in the parameter domain considered). Thus, P
approaches its target rate with a mean speed per step Vc,

C+ : Vc = − 1− ρ

1 + β
∆I (26)

Comparison between this computed drift and simulated trajectories is
shown in Fig. 12D,F,H.

In the (C−, D−) corridor, the average drift per step is opposite to the drift
in the (C+, D+) corridor (Equation (24)). Thus,

• for β > 1 and ρ > β/(2β − 1) the average displacement leads to
C− (Fig. 12E). Updates of type ∆I are always of the form (0,∆I),
while a fraction f of type ∆P∆I updates are of the form (∆P,−∆I)
and a fraction (1 − f) are of the opposite form (−∆P,∆I). Again,
since the average drift is along C− of slope -1, one obtains 2f − 1 =
β(1− ρ)/β− 1)ρ] or f = (β− ρ)/[2ρ(β− 1) (which obeys 0 < f < 1 in
the parameter domain considered). The convergence speed Vc is thus,

C− : Vc =
1− ρ

β − 1
∆I (27)

Comparison between this computed drift and simulated trajectories is
shown in Fig. 12F.

• for β < 1, or (β > 1, ρ < β/(2β − 1)), the complementary parameter
domain, the drift in the corridor leads toD− (Fig. 12A,C). The domain
β < 1 can be excluded since when the point (P, I) crossesD−, the drift
in the upper quadrant (C+, D−) tends to bring it to the other corridor
(C+, D+)(Fig. 12G). Near the lineD−, type∆P∆I updates are always
of the form (∆P,−∆I). The convergence speed Vc is thus

D− : Vc = ρ∆P (28)

Comparison between this computed drift and simulated trajectories is shown
in Fig. 12B,D.

The expressions obtained for the convergence rates allow us to address
the question of parameter optimisation and the fastest convergence rate for
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a final given error (assumed for now to be determined by A namely an error
of about A/2).

We consider first the (C+, D+) corridor and optimise the three parame-
ters ρ,∆I and ∆P in turn.

Since Vc is linear in ρ for convergence around the two lines, the maximal
|Vc| is obtained by maximising ρ for convergence around D+ or maximising
it for convergence around C+. In both cases, the maximal speed is obtained
at the boundary of the respective parameter domains ρ = β/(1 + β) and is
equal to

|Vc| =
∆I

1 + 2β
=

∆I∆P

∆P + 2∆I
(29)

We would like to optimise ∆I and ∆P taking into account the conver-
gence constraint ∆I + ∆P < A. Unfortunately, we cannot rigorously do
this, since we have determined the convergence rate only for ∆I,∆P � A.
Therefore, we shall assume that the expression (29) is approximately cor-
rect in the whole convergence domain and make use of it to determine the
optimal values of ∆I and ∆P . Since |Vc| in Equation (29) is homogeneous
of degree 1 in ∆I and ∆P , its maximal value is obtained on the convergence
domain boundary ∆I+∆P = A. Then, an elementary maximisation yields
the optimal parameters

∆I =
A

1 +
√
2
, ∆P =

√
2A

1 +
√
2
, β = 1/

√
2, ρ =

√
2

1 +
√
2

(30)

and the maximal convergence rate in the (C+, D+) corridor

|Vc| =
A

(1 +
√
2)2

' A

6
(31)

For these parameters, since β < 1, the (C−, D−) corridor is not a stable
attractor and need not be considered.

A similar optimisation for the (C−, D−) corridor alone would give as
limiting optimal values ∆P = ∆I = A/2, together with ρ = 1 and a rate
|vc| = A/2. However, these parameters give a vanishingly slow convergence
along the C+ line, in the other corridor. Thus, the choice of optimal pa-
rameters will depend on the statistics of the initial condition (P, I) and how
different rates are combined, but choices intermediate between these values
and (30) are likely to yield the fastest overall convergence rate under most
conditions.

8.3 Convergence and capacity in an analog perceptron model

In order to show how the previous results map onto a model of the type
simulated in §7, we consider learning of multiple associations for an analog
perceptron with the algorithm of stochastic gradient descent with estimated
global errors.
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The architecture is again the simplified circuit of Fig. 10, with NM =
1000 mossy fibres projecting onto a single P cell, with weights wi, i =
1, . . . , NM (which are all positive or zero). Np random patterns are generated
randomly. Activities of mossy fibres in different patterns are i.i.d. binary
random variables Mµ

i with coding level f (i.e. Mi = 1 with probability f and
0 with probability 1 − f ; in the present simulations f = 0.2. The Purkinje
cell desired rates for the Np patterns are i.i.d. uniform variables Rµ from 0
to Pmax.

In the case of the stochastic gradient descent rule, at each trial there is
a probability ρ of a perturbation of amplitude A, so that

P =

[
1√
NM

(∑
i

wiM
µ
i − θNM

)]
+

+ ηA (32)

where η = 1 with probability ρ and η = 0 otherwise, which thus introduces
a random perturbation of amplitude A into the P -cell firing. The error is
defined as E = |P−Rµ|. Comparison with previously obtained results for the
capacity of this analog perceptron (Clopath and Brunel, 2013) motivates our
choice of weights normalisation and the parameterisation of the threshold
as θ = Pmax

√
f/[12(1− f)γ], where γ is a composite parameter reflecting

the statistics of input and output firing, but here is equal to one.
An inferior olivary neuron receives this excitatory error signal but it

also receives inhibitory inputs from the nucleo-olivary neurones driven by
the mossy fibre inputs (which we have denoted M above), with weights
vi. These are also plastic and sign-constrained. They represent the current
estimated error. The net drive of the inferior olivary neurone is

IO = E − I, with I =
1

fNM

∑
i

viM
µ
i (33)

The climbing fibre signal controlling plasticity is

c = sign(IO)

Weights are changed according to the following rule. Weights of M →
P synapses active simultaneously with a perturbation are increased if c is
negative and decreased if it is positive. Weights of M → IO synapses are
increased if c is positive and decreased if not. Thus

wi = [wi − αw c ηMµ
i ]+ (34)

vi = [vi + αv cM
µ
i ]+ (35)

with the brackets indicating rectification (to impose the excitatory con-
straint).

The parameters of the simplified model of the previous subsection can
be written as a function of those controlling the learning process in the
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Figure 13: Convergence and capacity for an analog percep-
tron. A. Convergence for a single learned pattern (error E vs. num-
ber of presentations of the pattern, τ). Blue: examples of individual
realisations. Black: average convergence (n = 100). Dashed: the
convergence rate predicted by Equation (26). B. Same as A, but
mean error E for 10 patterns. The convergence is slower, but the
asymptotic mean error is similar to the single pattern case. C. Con-
vergence for different numbers of patterns p. D. Mean error after
10000 presentations per pattern as a function of the number of pat-
terns p. All averages are of n = 100 realisations. Parameters: a
single P cell; target P cell firing rates uniformly distributed between
0 and Pmax = 100Hz; NM = 1000; the activity of P cell inputs is
random binary, with coding level f = 0.2; P cell threshold θ corre-
sponding to γ = 1. A = 2, ρ = 0.2; αw = 1/(f

√
NM ) corresponding

to ∆P = 1, Equation (36); αv = 2, so ∆I = 2, Equation (37).
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present analog perceptron. The probability ρ of the two types of updates
(with and without perturbation) and the amplitude of perturbation A are
clearly identical in both models. In order to relate the previous ∆P and
∆I to the present amplitude change of the weights αw at mossy fibre–P
cell inputs and αv for the indirect drive to the inferior olive from mossy
fibres, we note that far below maximal learning capacity, the number of
silent synapses is presumably small and the rectification constraints can be
neglected in Equations (34,35). Therefore, the weight modifications result
in the changes ∆P , of the perceptron firing rate, and ∆I, of the inhibitory
input I to the olive,

∆P =
1√
NM

∑
i

αwM
µ
i = αwf

√
NM (36)

∆I =
1

fNM

∑
i

αvM
µ
i = αv (37)

The convergence rate estimates of the previous section are compared
with direct stochastic gradient descent learning simulations of the analog
perceptrons in Fig. 13. As shown in Fig. 13A, the convergence rate for
single patterns agrees well with the estimate (26). For a larger number
of patterns below the maximal learning capacity, the convergence rate per
pattern (Fig. 13B) becomes smaller but is still quite comparable to the single
pattern learning rates and the asymptotic mean error is similar in the two
cases. Finally, as shown in Fig. 13C,D, attempting to learn a number of
patterns Np greater than a critical number Nc (Nc ' 20 for the parameters
of Fig. 13), the final error increases with Np.

While the simple abstract model is useful to understand convergence be-
low Nc, the existence of Nc and the underlying interference between different
patterns lie beyond its scope. It can be noted that with the parameters used
in Fig. 13, although Nc is certainly smaller than the maximal capacity com-
puted in Clopath and Brunel (2013), it is nevertheless of the same order
of magnitude. Analysing precisely how Nc depends on the different model
parameters remains an interesting task for future studies.

9 Discussion

9.1 A cellular implementation of stochastic gradient descent

Having analysed the requirements and constraints for a general cerebellar
learning algorithm, we sought to identify within the cerebellar system an
implementation of stochastic gradient descent. This should comprise sev-
eral elements: a source of perturbations, a mechanism for extracting the
change of error, and a plasticity rule incorporating this information. We
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identified a strong constraint on any implementation requiring each calcula-
tion to be made in the context of a single movement realisation. This arises
from the potentially arbitrary sequencing of movements with different op-
tima. We also sought a mechanism that only makes use of plausible cellular
calculations: summation of excitation and inhibition in the presence of a
threshold.

We suggest that the perturbation is provided by the complex spike, which
has suitable properties: spontaneous, irregular activity, an unambiguous
sign, salience at a cellular and network level, and the ability to influence
synaptic plasticity. This choice of perturbation is largely sufficient to de-
termine the predicted cerebellar cortical plasticity rules: only granule cell
inputs active at the same time as a perturbation complex spike undergo plas-
ticity, whose sign is determined by the absence (LTP) or presence (LTD) of a
succeeding error complex spike. We have verified that this complex synaptic
plasticity rule does operate as predicted, in vitro under conditions designed
to be more physiological than is customary.

A more involved mechanism seems to be required to read off the change of
error. The general mechanism we propose involves subtraction of the average
error to expose the random variations caused by the perturbations of the
movement. The subtraction results from adaptive tracking of the excitatory
input to the olivary neurones by the inhibitory input from the nucleo-olivary
neurones of the cerebellar nuclei. We chose to place the plasticity at the
mossy fibre–nucleo-olivary neurone synapse, mostly because of the existence
of suitable plasticity rules at the mossy fibre synapse onto the neighbouring
projection neurones. However, plasticity in the olive at the nucleo-olivary
input would probably be functionally equivalent and we do not intend to
rule out this or alternative sites of the error-cancelling plasticity.

By simulating a simplified cerebellar network implementing this mecha-
nism, we established the ability of our proposed mechanism to learn multiple
arbitrary outputs, optimising 400 variables per movement with a single error
value. More formal analysis of a simplified version of stochastic gradient de-
scent with estimated global errors established convergence of the algorithm
and allowed us to estimate its storage capacity. The analysis also highlighted
a potential benefit of retaining a low probability of complex spike emission—
to enable the tracking plasticity to occur independently of the plasticity at
parallel fibre–Purkinje cell synapses.

9.2 Implications for studies of synaptic plasticity

The plasticity rules for parallel fibre–Purkinje cell synapses predicted by
our algorithm appeared to be almost completely incompatible with the well
established consensus. However, once we eliminated known deviations from
physiological conditions, we were able to verify the four predicted outcomes.

We made several changes to the experimental conditions, only one of
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which is specific to the cerebellum. One—leaving synaptic inhibition intact—
has long been recognised as being of potential importance, with debates re-
garding its role in hippocampal LTP dating back decades (Wigström and
Gustafsson, 1983a,b; Arima-Yoshida et al., 2011).

We also made use of a lower extracellular calcium concentration than
those almost universally employed in studies of plasticity in vitro. In vivo
measurements of the extracellular calcium concentration suggest that it does
not exceed 1.5mM in rodents, yet most studies use at least 2mM. A 25%
alteration of calcium concentration could plausibly change plasticity out-
comes, given the numerous nonlinear calcium-dependent processes involved
in synaptic transmission and plasticity (Nevian and Sakmann, 2006; Graup-
ner and Brunel, 2007).

A major change of conditions we effected was cerebellum-specific. Nearly
all studies of granule cell–Purkinje cell plasticity have employed stimulation
of parallel fibres in the molecular layer. Such concentrated, synchronised in-
put activity is unlikely ever to arise physiologically. Instead of this, we stimu-
lated in the granule cell layer, a procedure expected to generate a much more
spatially dispersed input on the Purkinje cell, presumably leading to min-
imised dendritic depolarisations. Changing the stimulation method has been
reported to prevent induction of LTD using standard protocols (Marcaggi
and Attwell, 2007).

Although we cannot predict in any detail the mechanistic alterations re-
sulting from these changes of conditions, it is nevertheless likely that intra-
cellular calcium concentrations during induction will be reduced, and most
of the changes we observed can be interpreted in this light. It has long been
suggested that high calcium concentrations during induction lead to LTD,
while lower calcium concentrations generate LTP (Coesmans et al., 2004);
we have recently modelled the induction of this plasticity, incorporating both
calcium and nitric oxide signalling (Bouvier et al., 2016). Consistently with
this viewpoint, protocols that under standard conditions produce LTD—
simultaneous activation of granule cells and climbing fibres—could plausibly
produce LTP in the present conditions as a result of reduced intracellular
calcium. Analogously, granule cell stimulation that alone produces LTP un-
der standard conditions might elicit no change if calcium signalling were
attenuated under our conditions.

Interestingly, LTP resulting from conjunctive granule cell and climbing
fibre stimulation has been previously reported, in vitro (Mathy et al., 2009;
Suvrathan et al., 2016) and in vivo (Wetmore et al., 2014). In contrast,
our results do not fit well with several other studies of plasticity in vivo
(Ito et al., 1982; Jörntell and Ekerot, 2002, 2003, 2011). However, in all
of these studies quite intense stimulation of parallel and/or climbing fibre
inputs was used, which may result in greater depolarisations and calcium
entry than usually encountered. This difference could therefore account for
the apparent discrepancy with the results we predict and have found in vitro.

48

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 21, 2016. ; https://doi.org/10.1101/053785doi: bioRxiv preprint 

https://doi.org/10.1101/053785


In summary, while in vitro studies of plasticity under unphysiological
conditions are likely to reveal the molecular mechanisms leading to potenti-
ation and depression, the precise outcomes from given stimulation protocols
may be difficult to extrapolate to the in vivo setting.

9.3 Current evidence regarding stochastic gradient descent

As mentioned in the introductory sections, the general cerebellar learning
algorithm we propose here is not necessarily required in situations where
movements are simple or constrained, admitting a fixed mapping between er-
rors and corrective action. Furthermore, such movements constitute the near
totality of well studied models of cerebellar learning. Thus, the vestibulo-
ocular reflex and saccade adaptation involve eye movements, which are natu-
rally constrained, while the eyeblink is a stereotyped protective reflex. There
is therefore a possibility that our mechanism does not operate in the cere-
bellar regions involved in ocular motor behaviour even if it does operate
elsewhere.

In addition, these ocular behaviours display error functions that appear
to be incompatible with our assumptions (see Fig. 3C). In particular, dis-
turbance of a well optimised movement would be expected to increase error.
However, it has been reported multiple times that climbing fibre activity can
provide directional error information, including reductions of climbing fibre
activity below baseline (e.g. Soetedjo et al., 2008); this would be reminiscent
of the curves of Fig. 3A. This argument is not totally conclusive, however.
Firstly, we recall that the error is represented by the input to the inferior
olive, not its output. It is thus possible that inputs from the nucleo-olivary
neurones (or external inhibitory inputs) to the olive also have their activity
modified by the disturbance of the movement, causing the reduction of climb-
ing fibre activity. Secondly, what matters for our algorithm is the temporal
sequence of perturbation and error complex spikes, but these second-order
statistics of complex spike activity have never been investigated. Similarly,
it has been reported that learning and plasticity (LTD) occur in the absence
of modulation of climbing fibre activity (Ke et al., 2009). Although this is
difficult to reconcile with either the standard theory or our algorithm, it
does not entirely rule out the existence of perturbation-error complex spike
pairs that we predict lead to LTD.

Beyond the predictions for the plasticity rules at parallel fibre–Purkinje
cell synapses tested above, there are a number of aspects of our theory that
do fit well with existing observations. The simple existence of spontaneous
climbing fibre activity is one. Additional suggestive features concern the
evolution of climbing fibre activity during eyeblink conditioning (Ohmae
and Medina, 2015). Once conditioning has commenced, the probability of
complex spikes in response to the unconditioned stimulus decreases, which
would be consistent with the build up of the inhibition cancelling the av-
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erage error signal in the olive. Furthermore, omission of the unconditioned
stimulus then causes a reduction in the probability of complex spikes below
the baseline rate, strongly suggesting a specifically timed inhibitory signal
has indeed developed at the time of the unconditioned stimulus (Kim et al.,
1998).

We suggest that the cancellation of average error involves plasticity at
mossy fibre–nucleo-olivary neurone synapses. To date no study has reported
such plasticity, but the nucleo-olivary neurones have only rarely been stud-
ied. Plasticity at the mossy fibre synapses on projection neurones has been
studied both in vitro (Pugh and Raman, 2006, 2008; Zhang and Linden,
2006) and in vivo (Ohyama et al., 2006), but is not used in our proposed
algorithm. Axonal remodelling and synaptogenesis of mossy fibres in the
cerebellar nuclei may underlie this plasticity (Kleim et al., 2002; Boele et al.,
2013; Lee et al., 2015) and could also contribute to the putative plasticity
at mossy fibre synapses on nucleo-olivary neurones.

Finally, our theory of course predicts that perturbation complex spikes
perturb ongoing movements. Stone and Lisberger (1986) reported the ab-
sence of complex-spike-triggered eye movements in the context of the vesti-
bulo-ocular reflex. However, it has now been proven by optogenetic ap-
proaches that increasing Purkinje cell activity can cause eye movement
(Nguyen-Vu et al., 2013), so the existence of a perturbation is likely to be a
quantitative question. Useful perturbations presumably cannot be smaller
than the visual detection limit (in the ocular system). However, it is known
that the visual system is very sensitive to retinal slip (Murakami, 2004), so
it may be necessary to carry out high-resolution measurements and care-
ful averaging to confirm or exclude the existence of exploitable movement
perturbations.

9.4 Climbing fibre receptive fields and the bicycle problem

There is an extensive literature characterising the modalities and receptive
fields of climbing fibres. The great majority of reports are consistent with
a view according to which climbing fibres have fixed, specific modalities
or very restricted receptive fields, with neighbouring fibres having similar
properties (Garwicz et al., 1998; Jörntell et al., 1996). Examples would be a
climbing fibre driven by retinal slip in a specific direction (Graf et al., 1988)
or responding only to a small patch of skin (Garwicz et al., 2002). These re-
ceptive fields are quite stereotyped and have proven to be reliable landmarks
in the functional regionalisation of the cerebellum; they are moreover tightly
associated with the genetically specified zebrin patterning of the cerebellum
(Schonewille et al., 2006b; Mostofi et al., 2010; Apps and Hawkes, 2009).

The apparently extreme specialisation of climbing fibres implies a hith-
erto unrecognised limitation of the learning abilities of the cerebellum. This
arises from the inescapable fact that a portion of the cerebellum receiving a
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Figure 14: Diagram illustrating two possible solutions to the ‘bicycle
problem’: how to use vestibular error information to guide learning
of arm movements to ride a bicycle. In the ‘output convergence’ solu-
tion, the output from cerebellar regions receiving different climbing
fibre modalities converge onto a motor unit (represented by a mus-
cle in the diagram). In the ‘error broadcast’ solution, error complex
spikes are transmitted beyond their traditional receptive fields, ei-
ther by divergent synaptic inputs and/or via the strong electrical
coupling between inferior olivary neurones.
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single, specific type of error information can only optimise a movement with
the aid of that feedback and none other. Thus, a cerebellar region control-
ling an animal’s forelimb might typically receive climbing fibres driven by
cutaneous and proprioceptive input from part of that limb (Garwicz et al.,
2002). This would enable learning of simple withdrawal reflexes, but would
be unable to contribute to the learning of tasks guided by other error signals.

We can illustrate this with a more human behaviour: riding a bicycle,
which is often taken as an example of a typical cerebellar behaviour. This is
an acquired skill for which there is little apparent evolutionary precedent. It
is likely to involve learning somewhat arbitrary arm movements in response
to vestibular input (it is possible to ride a bike with one’s eyes closed).
The error signals guiding learning could be vestibular, visual or possibly
cutaneous/nociceptive (as a result of a fall), but not necessarily those related
to the arm whose movement is learnt. How can such disparate or uncommon
but sometimes essential error signals contribute to cerebellar control of the
arm? We call this the ‘bicycle problem’.

At least two, non-exclusive solutions to this problem can be envisaged.
The first we term ‘output convergence’; it involves the convergence of mul-
tiple cerebellar regions receiving climbing fibres of different modalities onto
each specific motor element (for instance a muscle) being controlled. Strik-
ing, if partial, evidence for this is found in a study by Ruigrok et al. (2008),
who injected the retrograde, trans-synaptic tracer rabies virus into individ-
ual muscles. Multiple cerebellar zones were labelled, showing that they all
contribute to the control of those muscles, as posited. What is currently
less clear is whether such separate zones receive climbing fibre inputs with
different modalities. We note that the output convergence solution to the
bicycle problem implies that the synaptic changes in those regions receiv-
ing the appropriate error information must outweigh any drift in synaptic
weights from those regions deprived of meaningful error information. This
could be implemented by adaptation of the learning rate, an algorithmic
extension we suggest below.

We term the second solution to the bicycle problem the ‘error broad-
cast’ solution. According to this, error inputs to the olive are broadcast
to olivary neurones (and Purkinje cells) outside the traditional receptive
field. Although the weight of literature appears to be against this, there are
both possible mechanisms and a small amount of supporting data for this
suggestion. In terms of mechanism, the well known electrical coupling of
olivary neurones (Devor and Yarom, 2002) could recruit cells that do not
directly receive suprathreshold synaptic input. This may occur much more
frequently in vivo than in the quiescent/anæsthetised conditions employed
for most studies of climbing fibre receptive fields. Evidence for ‘broadcast’
of what we would term error complex spikes in vivo involves auditory and
visual stimuli (Mortimer, 1975; Ozden et al., 2012); these stimuli may be
correlated with startle responses. Eyeblink conditioning using a visual un-
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conditioned stimulus has also been reported (Rogers et al., 1999).
The existence of broadcast error complex spikes would provide a mecha-

nism explaining the giant IPSPs in the cerebellar nuclei elicited by peripheral
stimulation (Bengtsson et al., 2011) and could also account for the correla-
tion between visual smooth pursuit behaviour and the nature of individual
complex spikes (Yang and Lisberger, 2014): behaviour could only correlate
with a single cell if others were receiving the same input.

9.5 Possible extensions to the algorithm

Our implementation of cerebellar stochastic gradient descent and its simu-
lation were purposefully kept as simple as possible, to provide a proof-of-
concept with a minimum of assumptions and to simplify parallel analyses.
It is likely that parts of the implementation will need to be altered and/or
extended as further information becomes available.

Probably the most uncertain element of the implementation is the adap-
tive site in the cancellation of the average error. We chose to make the
mossy fibre–nucleo-olivary neurone synapse plastic, but the plasticity could
certainly operate in the olive instead of or in addition to the cerebellar nu-
clear site. Further studies of synaptic transmission and plasticity in both
structures are clearly warranted in this context.

A simplification in our implementation is that it represents brief, discrete
commands in what amounts to an offline learning rule. Error complex spikes
are only emitted after the command and indeed were not simulated explicitly.
This has the great advantage of avoiding the question of whether Purkinje
cells that have not received a perturbation complex spike would interpret a
broadcast error complex spike as a perturbation. We believe that plausible
cellular mechanisms exist that would enable the Purkinje cell to distinguish
the two types of input. The most obvious would be that, as already hinted
at in the literature, error complex spikes are likely to be stronger. An
extended synaptic plasticity rule could therefore include a case in which an
error complex spike received in the absence of a recent perturbation spike
has a neutral plasticity effect. There is currently little data on which to base
a detailed implementation.

An open question is whether different relative timings of parallel and
climbing fibre activity would result in different plasticity outcomes. In par-
ticular, one might hypothesise that parallel fibres active during a pause fol-
lowing a perturbation complex spike might display plasticity of the opposite
sign to that reported here for synchrony with the complex spike itself.

A potentially unsatisfactory aspect of our simulations was the time taken
to learn. Of the order or 100 000 iterations were required to optimise the
400 independent variables of the cerebellar output. Stochastic gradient de-
scent is inherently slow, since just one or a few of those variables can be
perturbed in one movement realisation, and the weight changes are further-

53

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 21, 2016. ; https://doi.org/10.1101/053785doi: bioRxiv preprint 

https://doi.org/10.1101/053785


more individually small. Before considering possible acceleration methods,
we note that some motor behaviours are repeated huge numbers of times.
An obvious example is locomotion. Thus, public health campaigns in vogue
in the USA at the time of writing aim for people to take 10 000 steps per
day. So, clearly, a target of a few hundred thousand steps could be achieved
in a matter of days or weeks.

Part of the slowness of learning results from the conflicting pressures on
the plastic weight changes. Large changes allow rapid learning, but could
prevent accurate optimisation. An obvious extension of our implementation
that would resolve this conflict would be to allow large plastic changes far
from the optimum but to reduce them as the optimum is approached. The
information required to do this is available as the net drive (error excitation
− cancellation inhibition) to the olivary neurones at the time of emission of
an error complex spike. If the drive is strong, one can imagine a long burst
of action potentials being emitted. There is in vitro (Mathy et al., 2009)
and in vivo (Yang and Lisberger, 2014; Rasmussen et al., 2013) evidence
that climbing fibre burst length can influence plasticity in Purkinje cells.
It seems possible that the same could be true in the cerebellar nuclei (or
alternative plastic site in the subtraction of the average error). However,
the above mechanism for adapting learning rates would only work directly
in the LTD direction, since olivary cells cannot signal the strength of a net
inhibition when no error complex spike is emitted.

A mechanism that could regulate the speed of learning in both LTP and
LTD directions would be to target perturbations to the time points where
they would be most useful—those with the greatest errors. This might be
achieved by increasing the probability (and possibly the strength) of the per-
turbation complex spikes shortly before strongly unbalanced (excitatory or
inhibitory) inputs to the olive. This process offers a possible interpretation
for various observations of complex spikes occurring before error evaluation:
related to movements (Bauswein et al., 1983; Kitazawa et al., 1998) or trig-
gered by conditioned stimuli (Rasmussen et al., 2014; Ohmae and Medina,
2015).

Movement-specific adaptations of the learning rates could provide an ex-
planation for the phenomenon of ‘savings’, according to which relearning a
task after extinction occurs at a faster rate than the initial learning. The
adaptations could plausibly be maintained during extinction and therefore
persist until the relearning phase. These adaptations could appear to rep-
resent memories of previous errors (Herzfeld et al., 2014).

Finally, the output convergence solution we proposed above for the bicy-
cle problem could also reflect a parallelisation strategy enabling the compu-
tations involved in stochastic gradient descent to be scaled from the small
circuit we have simulated to the whole cerebellum. As mentioned above,
this would probably require one of the above schemes for adjusting learn-
ing rates in a way that would allow plasticity in regions with ‘useful’ error
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information to dominate changes in those without.

9.6 Insight into learning in other brain regions

We believe that our proposed implementation of stochastic gradient descent
offers possible insight into learning processes in other brain regions.

To date, the most compelling evidence for a stochastic gradient descent
mechanism has been provided in the context of the acquisition of birdsong.
A specific nucleus, the ‘LMAN’ has been shown to be responsible for song
variability during learning and also to be required for learning (Doya and
Sejnowski, 1988; Olveczky et al., 2005). Its established role is therefore
analogous to our perturbation complex spike. Our suggestion that the same
input (the climbing fibre) signals both perturbation and error change may
also apply in the birdsong context, where it would imply that LMAN also
assumes the role of determining the sign of plasticity at the connections it
perturbed. However, such an idea has for now not been examined and there
is as yet a poor understanding of how the trial song is evaluated and of the
mechanism for transmitting that information to the adaptive site; indeed
the adaptive site itself has not been identified unequivocally.

We see a stronger potential analogy with our mechanism of stochastic
gradient descent in the learning of reward-maximising action sequences by
the basal ganglia. Under the stimulus of cortical inputs, ensembles of striatal
medial spiny neurones become active, with the resulting activity partition
determining the actions selected by disinhibition of central pattern gener-
ators through inhibition of the globus pallidus (Grillner et al., 2005). It
is thought that the system learns to favour the actions that maximise the
(discounted) reward, which is signalled by activity bursts in dopaminergic
midbrain neurones and phasic release of dopamine, notably in the striatum
itself (Schultz, 1986). This has been argued (Schultz et al., 1997) to re-
flect reinforcement learning or more specifically temporal difference learning
(Sutton and Barto, 1998).

We note that temporal difference learning can be decomposed into two
problems: linking actions to potential future rewards and a gradient as-
cent to maximise reward. In respect of the gradient ascent, we note that
dopamine has a second, very well known action in the striatum: it is neces-
sary for the initiation of voluntary movements, since reduction of dopamin-
ergic input to the striatum is the cause of Parkinson’s disease, in which
volitional movement is severely impaired. The key point is to combine the
two roles of the dopaminergic system in the initiation of movement and in
signalling reward. The initiation of movement by dopamine, which could
contribute to probabilistic action selection, would be considered analogous
to our perturbation complex spike and could create an eligibility trace. A
subsequent reward signal would result in plasticity of eligible synapses rein-
forcing the selection of that action, with possible sites of plasticity including
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the cortico-striatal synapses that were successful in exciting an ensemble of
striatal neurones7. This would constitute a mechanism of gradient ascent
analogous to that we have proposed for gradient descent in the cerebellar
system.

Of particular interest is whether correct optimisation also involves a
mechanism for subtracting the average error in order to extract gradient
information. Such subtraction would be entirely consistent with the reports
of midbrain dopaminergic neurones responding more weakly to expected re-
wards and responding with sub-baseline firing to omission of a predicted re-
ward. These phenomena moreover appear to involve an adaptive inhibitory
mechanism (Eshel et al., 2015). These observations could be interpreted
as a subtraction of the average reward by a process analogous to that we
propose for the extraction of the change of error δE .

9.7 Conclusion

We have proposed a complete and plausible mechanism of stochastic gradi-
ent descent in the cerebellar system, in which the climbing fibre perturbs
movements, creates an eligibility trace, signals error changes and guides
plasticity at the sites of perturbation. We verify predicted plasticity rules
that contradict the current consensus and highlight the importance of study-
ing plasticity under physiological conditions. The gradient descent requires
extraction of the change of error and we propose an adaptive inhibitory
mechanism for doing this via cancellation of the average error. Our im-
plementation of stochastic gradient descent suggests the operation of an
analogous mechanism (of gradient ascent) in the basal ganglia initiated and
rewarded by dopaminergic signalling.
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12 Changes
Some minor textual changes are not listed.

12.1 Version 21-Nov-2016

1. The concentration of K-gluconate in the pipette solution was corrected
to 128mM from 148mM, a typographical error.

2. In Fig. 3A and the associated text, ‘CS rate’ was introduced to rep-
resent climbing fibre acticity signalling a cell-and-movement-specific
error signal and to distinguish that from the global error E . The leg-
end and corresponding text have been modified appropriately.

3. The largest n in the analysis of paired-pulse ratios was corrected to 18
from 15.

4. Added reference to Suvrathan et al. (2016).

5. It is now specified that female mice were used and we have added
statement about animal experimentation authorisation.
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