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Abstract 32	
 33	
Microorganisms are typically found as complex microbial communities that 34	
altogether govern global biogeochemical cycles. Microbes have developed highly 35	
regulated metabolic capabilities to efficiently use available substrates	 including 36	
preferential substrate usage that can result in diauxic shifts. This and other 37	
metabolic behaviors have been discovered in studies of microbes in mono-38	
culture when grown on low-complexity (e.g. two-component) mixtures of 39	
substrates, however, little is known about how species partition environmental 40	
substrates through substrate competition in more complex substrate mixtures. 41	
Here we use exometabolomic profiling to examine the time-varying substrate 42	
depletion from a mixture of 19 amino acids and glucose by two Pseudomonads 43	
and one Bacillus species isolated from ground water. We examine if the first 44	
substrates depleted result in maximal growth rate, or relate to growth medium or 45	
biomass composition and find surprisingly few correlations. Patterns of substrate 46	
depletion are modeled, and these models are used to examine if substrate usage 47	
preferences and substrate depletion kinetics of three microbial isolates can be 48	
used to predict the metabolism of the pooled isolates in co-culture.  We find that 49	
most of the substrates fit the model predictions, indicating that the microbes are 50	
not altering their behaviors for these substrates in the presence of competitors. 51	
Glucose and histidine were depleted more slowly than predicted, while proline, 52	
glycine, glutamate, lysine, and arginine were all consumed significantly faster; 53	
these compounds highlight substrates that could be involved in species-species 54	
interactions within the consortium.  55	
 56	
Introduction 57	
 58	
Microbial communities drive elemental cycling 1, such as the carbon cycle 2 and 59	
the nitrogen cycle 3. We are also learning that they are critical for the health of 60	
their host plant 4 or animal 5.  In both cases the net microbial metabolic 61	
processes are of particular interest for predicting nutrient cycles 6,7 and 62	
harnessing microbes to improve host health 8.The environments in which 63	
microbial communities live often contain complex mixtures of substrates, and 64	
understanding how microbial communities partition these substrates is central to 65	
predicting community metabolism and developing interventions that alter 66	
community structure and/or metabolic activities.  67	
 68	
Exometabolomics, also known as metabolic footprinting, is a powerful platform 69	
for studying how microbes and their consortia modify substrate pools, as analysis 70	
is only of the extracellular metabolites 9. With the development of 71	
exometabolomics pipelines, the metabolic connections between microbes have 72	
begun to be studied at a large scale and have allowed for a more comprehensive 73	
approach to monitoring the dynamic transformations of relatively complex 74	
mixtures of substrates 9. Some key examples include optimizing multiple steps of 75	
lignocellulose degradation 10,11, understanding metabolic interactions between 76	
species in mixed communities 12, and determining the ecological role of 77	
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individuals within a mixed community 13-15. We have recently found exometabolite 78	
niche partitioning in two soil environments where sympatric microbes were found 79	
to target largely non-overlapping portions of the available substrates, thus 80	
minimizing substrate competition 14. These experiments were focused on the 81	
endpoint depletion of substrates by isolates, not the temporal sequence of 82	
utilization. However, the order of substrate utilization (i.e. substrate preferences) 83	
may further discriminate the adaptive strategies of individual organisms for 84	
common substrates.  85	
 86	
While some work on mixed-substrate growth has been performed in continuous 87	
culture at steady state 16, understanding substrate usage and competition in 88	
batch cultures may have both ecological and practical applications. Many 89	
environmental processes happen with pulsed inputs: for example the release of 90	
substrates into the soil following rainfall, light-dark cycles, digestion in animals, 91	
etc. Additionally, some biotechnologies that use microorganisms are also batch 92	
processes, such as the large-scale fermentations of microbe-processed foods 93	
(e.g. cheese, wine, etc.). Most of these processes use mixed microbial cultures, 94	
including one-pot processes of biomass conversion to biofuels and other 95	
biosynthetic products 17-19. Studying the temporal substrate utilization by 96	
individuals is an important first step in developing approaches to better model 97	
these biochemical processes. 98	
 99	
As recently shown in the pioneering work by Behrends et al., the kinetics of 100	
substrate depletion from a mixture of substrates can be effectively fit using a few 101	
parameters 20: see Equation (1) in Materials and Methods. When compared 102	
across all substrates in an environment, these parameters have great potential in 103	
providing a direct measure of an organism’s substrate preferences within that 104	
environment, effectively creating a metabolic model for the organism. Such 105	
models may be useful in classifying microorganisms for in-depth characterization 106	
of their metabolism and regulatory networks to understand the biochemical or 107	
evolutionary basis for these preferences. Furthermore, when taken into 108	
consideration with other species’ models, they may also enable the prediction of 109	
the overall net metabolism of microbial consortia by aggregating individual 110	
contributions to environmental substrate usage. Observed deviations from these 111	
predictions could help identify interspecies interactions that modulate an 112	
organism’s metabolism, e.g. communication and antagonism between microbes 113	
within communities. 114	
 115	
Here we compare the temporal depletion of 20 substrates by 3 isolates and fit 116	
these data to the Behrends model (Equation 1), describing their substrate 117	
preferences within this ‘environment’. We then examine if the first substrates 118	
depleted result in maximal growth rate, or relate to growth medium or biomass 119	
composition. Finally, we developed a model that simply combines the usage 120	
profiles of individual species to test if a consortium initially composed of an equal 121	
mixture of each of the three isolates consumes substrates in an identical manner 122	
to when they are grown individually, i.e. the presence of other microbes does not 123	
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affect their substrate usage. Any deviations from this model may indicate 124	
compounds that are actively regulated. For example, if a compound is consumed 125	
significantly faster or earlier than predicted by the model, this would indicate an 126	
additional interaction between species such as synergistic or competitive growth. 127	
 128	
Results and Discussion 129	
 130	
In order to determine the substrate usage profiles of individuals, we designed a 131	
defined medium composed of sufficient levels of standard vitamins, minerals, 132	
phosphate, and ammonium, and limiting levels of carbon (glucose and nineteen 133	
amino acids (see Materials and Methods). This medium was designed such that 134	
the species would reach stationary phase within 12 hours and every substrate 135	
could be detected in a single LC-MS run.  136	
 137	
Bacilli and pseudomonads represent some of the most ubiquitous soil bacteria, 138	
and we selected the common soil bacterium Bacillus cereus for comparison with 139	
two closely related Pseudomonas species, Pseudomonas lini and Pseudomonas 140	
baetica (Supplemental Figure 1) that were isolated from groundwater; 141	
taxonomic assertions were confirmed by BLAST search results on the 142	
sequenced 16S rRNA gene. For simplicity, we will refer to the species as Bc  143	
(Bacillus cereus), Pl, (Pseudomonas lini), and Pb (Pseudomonas baetica). Each 144	
species was grown individually in the defined medium, with supernatant samples 145	
collected every hour for 12 hours, and one final time point at 26 hours.  146	
 147	
The absolute concentrations of the 20 growth substrates were quantified at each 148	
time point, and the data were fit to a previously described model for compound 149	
depletion during microbial batch culture 20 (Figure 1, Algorithm 1). We observed 150	
that all compounds followed the Behrends model over the course of growth for 151	
each species, with the exception of two compounds: glycine increased over the 152	
first 5 hours of culture from all three species and then decreased logarithmically, 153	
and the methionine depletion profile for Bc was indeterminable due to both 154	
variance in the data and a lack of time points from 12 to 24 hours (Supplemental 155	
File 1). These observations corroborate previous assertions that substrate 156	
utilization by microbes in batch culture follow the shape of a logistic growth type 157	
curve 20-22. 158	
 159	
To examine the sequence of substrate deletion in finer detail, we used the model 160	
to calculate the time at which each species depleted half of the total amount of 161	
each compound (Th), and when the compound was depleted from 90% to 10% of 162	
the total amount available to the species (usage window) (Figure 1), and 163	
mapped them onto the growth curve of each species (Figure 2A-C). For Bc, we 164	
observed that compounds were half-depleted in three distinct groups (Figures 165	
2A and D, dotted boxes). Bc initially utilized glucose, then a cluster of 13 amino 166	
acids that all had Th values within 0.25 h of each other during early logarithmic 167	
growth, and finally half-depleted remaining 6 substrates in late exponential and 168	
stationary phases. Neither of the pseudomonads appeared to utilize substrates in 169	
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these types of groups, but instead had a more even distribution throughout their 170	
growth curve (Figures 2B-D). However, the growth curve of Pb did show multiple 171	
growth phases (Figure 2C), and so compounds can be mapped to the growth 172	
phase in which they are half-depleted (Figure 2D). This observation is more in 173	
line with the traditional view of catabolite repression and multi-auxic growth, 174	
where a lag phase will be observed each time the organism reorganizes its 175	
metabolism to utilize different substrates 23.  176	
 177	
It is surprising that for these three species we observed three different 178	
combinations of growth curve and substrate utilization profile: a temporally 179	
distinct grouping of compound utilization with only one observed growth phase 180	
(Figure 2A), an even distribution of substrate utilization with only one growth 181	
phase (Figure 2B) and an even distribution over multiple growth phases (Figure 182	
2C). This is quite significant given that two of the species belong to the same 183	
genus (Pl and Pb). This suggests that the metabolic regulatory systems between 184	
the two species are different: while Pb slows down its growth, presumably 185	
because it is undergoing a large-scale “switch” of metabolic systems, Pl does 186	
not, which may indicate that either all its metabolic systems are constitutively 187	
active, or the regulation of the systems is so perfectly timed that the organism 188	
can seamlessly switch from one metabolic regime to another. Bc may also have 189	
an efficient metabolic regulatory system, as even though we observe distinct 190	
temporal gaps between groups of compounds, we did not observe multiple 191	
growth phases. 192	
 193	
To compare the differences in substrate depletion between species, we 194	
compared Th across the three species (Figure 2D and Supplemental Table 1). 195	
Across all three species, glutamine, glutamate, alanine, arginine, proline, and 196	
asparagine, were half-depleted within one hour of each other. Additionally, the Th 197	
values across all substrates for the two Pseudomonas species were close, but 198	
not identical, consistent with their short phylogenetic distance but different 199	
species identity (Figure 2D); a similar observation has been described previously 200	
22. Considering the differences in growth curves between the two species, this is 201	
quite intriguing, as the general order in which the species consume the 202	
metabolites is not different, but there is this difference in growth profiles, 203	
supporting the hypothesis that there could be significant physiological differences 204	
between such closely related species.  205	
 206	
Bc was markedly different from the two pseudomonads, differing greatly in the 207	
amount of time it depleted 8 of the compounds  (Figure 2D and Supplemental 208	
Table 1). Of these, the utilization of glucose was particularly interesting, as it was 209	
predominantly depleted before there was any appreciable increase in biomass 210	
(Figure 2A). This may indicate that there is a significant delay in substrate 211	
conversion to biomass in this species, or that Bc rapidly transforms glucose into 212	
some other compound, for example glycogen. 213	
 214	
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We next wondered if the preferred substrates offer some physiological benefit 215	
over less preferable substrates. It is a general assumption in microbiology that 216	
substrates consumed first may be more advantageous than those consumed 217	
later 24, and that this would depend on the competitive ‘strategy’ of the organism. 218	
Major strategies suggested include maximal biomass production rate, maximal 219	
growth rate and maximal biomass yield. Generally, copiotrophs are thought of as 220	
r-strategists (maximal growth rate) and oligotrophs as K-strategists (maximum 221	
yield) 25,26. Given the relatively fast growth rates and high substrate 222	
concentrations in this study we would expect that the order of substrate 223	
consumption would be related to maximal growth rate or biomass production rate 224	
27. 225	
 226	
We tested some of these general assumptions by comparing the calculated Th 227	
values and maximum usage rate of each compound to the specific growth rate, 228	
starting molarity of the compound, and predicted total protein composition of 229	
each species, in order to determine what the substrate preference order might be 230	
correlated with (Figure 3 and Supplemental Figure 3). The specific growth rate 231	
of a species on a compound was determined by growing the species on that 232	
compound as a sole carbon source (see Materials and Methods). Surprisingly, 233	
the only significant (p < 0.05) correlations between all of these tests were that the 234	
specific growth rate of Pl on a given compound was weakly correlated with the Th 235	
of that compound (r = -0.652, p = 0.030), and moderately correlated with the 236	
maximum depletion rate of that compound by Pl (r = 0.791, p = 0.004) (Figures 237	
3C,D). These correlations support the common assumptions listed above, 238	
especially for flux balance analysis, as the compound that provides the higher 239	
rate of growth is depleted earlier and more rapidly than others. It is interesting 240	
that glucose did not confer the fastest specific growth rate for any of the strains, 241	
despite glucose generally being considered a superior source of energy. This is 242	
not surprising, however, as it is known that pseudomonads preferentially use 243	
amino acids over glucose 28. The rationalization of this phenotype is that in the 244	
soil environments where many pseudomonads (and B. cereus) live, 245	
decomposition products such as amino acids and organic acids are more readily 246	
available than sugars 28. However, the lack of any strong or significant 247	
correlations in the bacillus and the other pseudomonad indicates that there are 248	
other factors at play that determine an organism’s preferred substrate usage. It is 249	
apparent that not all microbes prefer to use substrates sequentially at all; the 250	
grouping of substrate utilization by Bc is a striking example of this. The resources 251	
within the second utilization group (Figure 2A) conferred a wide range of specific 252	
growth rates, from zero to the highest observed for all substrates, and all were 253	
utilized within two hours of each other (Figure 3A). It is likely the case that the 254	
simultaneous usage of these substrates confers the greatest physiological 255	
advantage. Bc could possess a metabolic strategy that does not perfectly follow 256	
the well-established paradigm of catabolite repression. Ultimately, it is clear that 257	
bacteria dramatically differ in regulation of catabolite uptake, and it is not prudent 258	
to make general assumptions on microbial metabolism based solely on 259	
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observations from a few model organisms and/or the energetic potential of 260	
substrates. 261	
 262	
Our experiments to test these correlations yielded a number of interesting results 263	
in addition to those described above. First, all three species grew on glucose as 264	
the sole carbon source without added amino acids. This was not predicted based 265	
on genomic predictions of the species in the Integrated Microbial Genomes (IMG) 266	
database (img.jgi.doe.gov), which indicated auxotrophy for lysine, phenylalanine, 267	
tyrosine, histidine and serine in the case of Bc, and for lysine, histidine, leucine, 268	
and coenzyme A for Pl and Pb. This observation highlights that all computational 269	
predictions should be treated as only suggestions, and should always be tested 270	
experimentally before making any assertions. Additionally, there were a number 271	
of compounds that did not support growth as sole carbon sources, but were 272	
depleted throughout the growth of the species in our complete defined medium 273	
(Figure 3, lightly shaded compounds). This finding indicates that caution should 274	
be employed when making physiological assertions based on single-substrate 275	
studies, for example those that have individual substrates arrayed in multi-well 276	
plates; many microbes can only utilize certain compounds when other substrates 277	
are present, the phenomenon of co-metabolism 29. We should note, however, 278	
that we do not know the details of how these compounds are depleted in the rich 279	
defined medium, only that they are depleted from the medium; they may simply 280	
be exogenously transformed. Finally, we observed the maximum depletion rate 281	
of all the substrates by the three species to be less than 130 µg/mL/hour except 282	
for glutamate depletion by Bc, which we calculated to be about 640 µg/mL/hour 283	
(Supplemental Table 1). This rate corresponds to a near instantaneous 284	
depletion of glutamate by Bc at about 5 hours into the growth curve (see 285	
Supplemental File 1), which is towards the end of the second group of 286	
compounds utilized by this species (Figure 2A). Why glutamate would be 287	
depleted so much faster than the other compounds for Bc is a mystery, but it 288	
does suggest that there is something unique about the compound that requires 289	
or allows for the flux to be so rapid. Interestingly, in a previous study of 290	
metabolite depletion of a mixture of 470 compounds glutamate was one of two 291	
metabolites depleted by all of the isolates 14, so it is clearly an important or high-292	
value compound that Bc may have evolved to deplete quickly in order to gain a 293	
competitive advantage. 294	
 295	
 296	
Predicting consortium metabolism based on models of individual isolates 297	
 298	
Having modeled the substrate usage of each species for each compound, we 299	
hypothesized that these models could be combined to predict how a consortium 300	
composed of the three species might utilize the substrates. We simulated the 301	
time-dependent depletion of each compound by a consortium composed of the 302	
bacillus and two pseudomonads (see Materials and Methods, Equation 2, and 303	
Algorithm 2). Briefly, the functions describing the compound usage by each 304	
species were summed (Supplemental Figure 2A), and the time at which this 305	
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summed use curve reached the total available compound was determined. This 306	
time of depletion was then used to predict how much of a given metabolite each 307	
species would have utilized when grown in co-culture, and the compound usage 308	
by each species was re-modeled (Supplemental Figure 2B colored dashed 309	
lines) and added together to form the co-culture prediction (Supplemental 310	
Figure 2B solid black line). These predictive models allowed us to make several 311	
hypotheses that are relatively simple to test. First is the usage curve of each 312	
metabolite by the co-culture. Related to this, we can predict the time at which all 313	
of a given metabolite will be depleted, and when all metabolites will be depleted. 314	
From this we predict that 14 compounds will be nearly depleted (less than 10% of 315	
starting concentration) by six hours, and all but methionine will be completely 316	
consumed by 9 hours (Figure 4). Based on this, one could reasonably argue that 317	
a consortium composed of these three species would reach stationary phase 318	
sometime between 6 and 9 hours, in contrast to the individual species, which all 319	
reached stationary phase after 9 hours.  320	
 321	
To test our predictions, we inoculated a 3-member co-culture at equal optical 322	
density in the defined medium (see Materials and Methods), collected 323	
supernatant time points every hour, and measured the concentrations of all 20 324	
substrates as described for monocultures. We found that many of our predictions 325	
were valid: nearly all compounds (17) were depleted to below 10% of starting 326	
concentration by 6 hours (Figure 4, gold), and the co-culture accordingly 327	
reached stationary phase at this time as well (Supplemental Figure 4), 328	
presumably because all available substrates were consumed. 329	
 330	
Compounds that follow the model are evenly shared 331	
 332	
When analyzing the kinetics of depletion of the compounds, we observed that 333	
many (13) compounds agreed very well with the prediction, having R2 values 334	
greater than 0.9  (Figure 4). Most of the compounds with high R2 values began 335	
to decrease slightly earlier or at a slightly faster rate than predicted, which could 336	
be attributed to experimental error in initial culture density. However, the 337	
depletion of most compounds were still very close to the predicted model, 338	
indicating that the shared usage between the species could be very close to 339	
“blind” conditions, where the presence of other species does not affect the 340	
substrate usage decisions of each individual species. It is important to note that 341	
the high substrate concentrations likely explain the successful predictions using 342	
this simple modeling approach. Specifically, the substrate concentrations, initially 343	
at high micromolar concentrations, are likely well above the Km for the 344	
transporters and rate-limiting enzymes. For example many bacterial amino acid 345	
transporters have Km values in the low micromolar range 30,31, such that the 346	
transporters and enzymes are saturated. We anticipate that much more detailed 347	
models accounting for substrate concentration would be required at soil- and 348	
groundwater-relevant substrate concentrations, which can be as low as 0.5-10% 349	
of the concentrations used in this study (32 and Jenkins et al., in preparation).  350	
 351	
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Compounds that deviate from the model 352	
 353	
The remaining 7 compounds (glucose, histidine, glutamate, lysine, arginine, 354	
proline, and glycine) deviated significantly from our predictions (R2 < 0.9) (Figure 355	
4, red text), suggesting some additional species-species interaction(s) is/are 356	
present that affect the depletion of those compounds. It is intriguing that we 357	
detected metabolites that showed both positive and negative deviations.  358	
 359	
Glucose and histidine were both depleted more slowly than predicted. The 360	
simplest explanation for this is that the metabolic systems that deplete these 361	
compounds are indeed concentration dependent. Another possibility for this 362	
would be that there is a buildup of product in the co-culture that exerts feedback 363	
inhibition on the metabolism of these two compounds. This is easily rationalized 364	
for histidine utilization, which is an expensive process for bacteria 33; they may be 365	
exposed to better carbon sources in a mixed culture as a byproduct of another 366	
microbe. However, glucose being utilized slower is curious. In the monoculture 367	
experiments, we observed Bc to deplete glucose before it or either pseudomonad 368	
even started producing appreciable biomass (Figure 2). Perhaps this behavior is 369	
inhibited in the presence of the pseudomonads or is a result of changes in the 370	
community structure over the experiment, the assessment of which are 371	
unfortunately beyond the scope of the current study.   372	
 373	
In contrast, glycine, proline, lysine, arginine, and glutamate were all depleted 374	
faster than predicted. This is more difficult to explain and suggests at least one 375	
microbe has altered its phenotype due to the presence of other microbes, or that 376	
other exometabolites are influencing consortial behavior. For example, one 377	
species may have up-regulated metabolic pathways involving these compounds 378	
in an effort to outcompete others, either for the purpose of direct competition for 379	
the substrate, or in order to synthesize antibiotic compounds 34. Alternatively, 380	
another member may have otherwise sequestered those compounds, effectively 381	
taking them out of a common pool, for example by converting the compound into 382	
some storage molecule, or sequestering it in a way similar to how siderophores 383	
sequester iron. Testing these hypotheses would require an extensive untargeted 384	
metabolomics study, an extremely interesting direction for future studies. Another 385	
potential reason for this early depletion is that the co-culturing of these microbes 386	
has resulted in an emergent function of increased flux of the substrate(s) through 387	
the system. This could be due to a cross-feeding effect where one microbe 388	
depletes an inhibitory compound of another microbe or one microbe’s products 389	
induce the co-metabolism of that product and one of these substrates.  390	
 391	
Conclusions 392	
 393	
This study examining substrate competition for 20 abundant substrates by 3 394	
species demonstrates that at least some portion of the metabolic behavior of a 395	
microbial consortium can be predicted by measuring the metabolism of microbes 396	
grown in monoculture. This likely can also apply to more complex situations, for 397	
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example separately measuring the metabolism of an existing microbial 398	
community and a foreign isolate, and predicting what the metabolic function 399	
might be if the isolate were introduced into the community. In any system, 400	
compounds that do not fit the predictions indicate emergent functions of the 401	
coculture and may highlight substrates that are somehow affected by species-402	
species interactions. These may be occurring passively in the cases of feedback 403	
inhibition and co-metabolism, or actively in the case of one species altering its 404	
phenotype in order to outcompete others. Further studying these outlier 405	
substrates can shed light on metabolic interactions between microbes within a 406	
community. Ultimately, incorporating this predictive strategy when studying 407	
community metabolisms can help pinpoint interesting biological questions, as 408	
well as aid in the design of synthetic consortia. 409	
 410	
Materials and Methods 411	
 412	
Isolates and identification 413	
 414	
The 16S rRNA gene for each isolate was amplified using primers 27F 415	
(AGAGTTTGATCMTGGCTCAG) and 1492R (CGGTTACCTTGTTACGACTT), 416	
and sequenced at the Eurofins sequencing facility (Eurofins MWG Operon LLC, 417	
Louisville, KY). Forward and reverse sequences were manually merged and 418	
used as queries using nucleotide BLAST against the 16S rRNA sequence 419	
database at NCBI.  420	
 421	
Phylogenetic Tree Construction 422	
16S rRNA gene sequences were obtained from IMG (img.jgi.doe.gov), except for 423	
B. cereus, P. lini, and P. baetica, which were directly sequenced (see above). 424	
Gene sequences were aligned using MUSCLE 35,36, curated using GBlocks 37, 425	
and the tree was constructed using PhyML 38 with 100 bootstraps, using the 426	
phylogeny.fr web server 39,40. The final tree was rendered using FigTree 427	
(http://tree.bio.ed.ac.uk/software/figtree/). 428	
 429	
Growth medium and culturing 430	
 431	
All bacterial species were initially inoculated from frozen glycerol stocks onto an 432	
R2A agar plate prepared using Difco R2A Agar (BD, Franklin Lakes, NJ) and 433	
incubated overnight at 30 °C. The medium used for metabolomics experiments 434	
consisted of 1x Wolfe’s vitamins and 1x Wolfe’s minerals solutions 41, 1.5 mg/mL 435	
ammonium chloride, 0.6 mg/mL potassium phosphate, and 0.1 mg/mL each of D-436	
glucose and the following L-amino acids: alanine, aspartate, glutamate, 437	
phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, 438	
asparagine, proline, glutamine, arginine, serine, valine, threonine, and 439	
tryptophan. Tyrosine was additionally supplied at 0.01 mg/mL. Species were 440	
individually cultured in 5 mL of this medium overnight at 30 °C from the R2A 441	
plate, then washed 3x by centrifugation at 5,000 xg and resuspending in fresh 442	
medium. Washed cells were used to inoculate 50 mL of the medium in 250 mL 443	
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Erlenmeyer flasks, at an initial optical density (OD600) of 0.012-0.017 as 444	
measured by a SpectraMax Plus 384 plate reader. These cultures were 445	
incubated at 30 °C, shaking at 200 rpm. For co-culture experiments, 50 mL 446	
cultures were inoculated with an OD600 of 0.012 of each species, resulting in an 447	
initial co-culture density of 0.036. 200 µL of cell culture was aspirated for OD600 448	
measurements taken in a 96-well Falcon tissue culture plate with flat bottom. For 449	
all growth experiments, the water used to prepare the medium and uninoculated 450	
medium were incubated alongside the experimental flasks, as controls.  451	
 452	
Growth assays of species on individual carbon sources were performed in 96-453	
well Falcon tissue culture plates with flat bottom and low evaporation lid, in a total 454	
volume of 200 µL. The medium consisted of the same concentrations of Wolfe’s 455	
vitamins and minerals, ammonium chloride and potassium phosphate. Individual 456	
carbon sources were added at a concentration of 0.5 mg/mL. Species were pre-457	
cultured and washed as before, and wells were inoculated at an OD600 of 0.05. 458	
The plates were incubated at 30 °C, shaking at “medium” speed in BioTek 459	
Synergy HT and Tecan Infinite F200 Pro plate readers, for 48 h. 460	
 461	
Metabolomics sample extraction 462	
 463	
Hourly time points of 1 mL of cell culture and controls (see above) were aspirated 464	
and centrifuged at 5,000 xg to pellet the cells. 800 µL was aspirated from the top, 465	
taking care not to disturb the cell pellet, and split into two 400 µL aliquots, which 466	
were immediately frozen at -80 °C. A calibration curve was created with the 467	
medium used for culturing: 1x culture medium, 1/2x, 1/10x, 1/100x, 1/1000x, and 468	
1/10000x dilutions were prepared using culture medium without any carbon 469	
sources as the diluent. All experimental, control, and calibration curve samples 470	
were lyophilized overnight, and metabolites were extracted in 300 µL methanol 471	
with 25µM 13C-phenylalanine for use as an internal standard. Final extracted 472	
samples were stored in Agilent 96-well sample plates and immediately analyzed 473	
via LCMS or stored at -80 °C.  474	
 475	
Metabolomics data acquisition and quantification 476	
 477	
An Agilent 1290 LC system equipped with a ZIC-pHILIC column (150 mm × 2.1 478	
mm, 5 µm 100 Å, Merck SeQuant) was used for metabolite separation with the 479	
following LC conditions: solvent A, 5 mM ammonium acetate; solvent B, 9:1 480	
acetonitrile:H2O with 5 mM ammonium acetate; flowrate: 0.25 mL/min; timetable: 481	
0 min at 100% B, 1.5 min at 100% B, 25 min at 50% B, 26 min at 35% B, 32 min 482	
at 35% B, 33 min at 100% B, and 40 min at 100% B; column compartment 483	
temperature of 40 °C. Mass spectrometry analyses were performed using Agilent 484	
6460 triple quadrupole mass spectrometer. Agilent software (Santa Clara, CA): 485	
Optimizer was used for establishing fragmentor and collision cell voltages as well 486	
as precursor and product ion transitions while Mass Hunter QQQ Quantitative 487	
Analysis (version 6.0) was used for compound quantification. Retention times, 488	
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collision energies, and transitions for each compound are listed in Supplemental 489	
Table 2. 490	
 491	
Substrate depletion modeling 492	
 493	
The Anaconda package and IPython notebooks were used for all computational 494	
tasks 42, which will be made publicly available at https://github.com/biorack in the 495	
“Predicting metabolic properties of a microbial co-culture” repository upon 496	
manuscript publication by a peer-reviewed journal. Data were stored and 497	
organized using Pandas 43 and NumPy 44, and graphs created using Matplotlib 45. 498	
Metabolite depletion was modeled using leastsq from scipy.optimize 46, fitting 499	
the data to the Behrends model (eq 1):  500	
 501	
 𝜉 =

𝑎

1+ 𝑒
!!!!"
!

+ 𝑜 (Equation 1) 

 502	
Where a is amplitude and o is offset (see Figure 1). These two parameters were 503	
defined from the data: amplitude was defined to be the average of the t=0 data 504	
point and the maximum value data point in the data set of each compound, and 505	
offset was defined as the lowest value in the data set. All other parameters were 506	
solved using leastsq, with the criteria that they had to be positive values. The 507	
exact steps are shown in Algorithm 1: 508	
 509	
Algorithm 1: modeling depletion of each substrate by each species 

1 species ß the set of species used in the experiment 

2 substrates ß the set of compounds measured in the experiment 

3 t ß time dimension of the experiment 

4 for i in species: 

5 for j in compounds: 

6 dataij ß measurement series of substrate j 

7   oij ß minimum(data) 

8   aij ß average (dataij[0] and maximum(dataij)) 

9   leastsq parameter fitting of 𝑡!"!" and wij to data 

10 ξij =
!!"

!!!
!
!!!!"!"
!!"

+ 𝑜!" 
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Th and usage window values were calculated from the Behrends model. All 510	
correlation coefficients and p-values were calculated using the pearsonr function 511	
in the stats package of scipy.  512	
 513	
Co-culture predictions 514	
 515	
The equations representing the depletion of a compound by a species were 516	
subtracted from the initial starting concentration of the compound, creating an 517	
expression that represented the amount of compound used by each species over 518	
time; these are the curves shown in Supplemental Figure 2A. These 519	
expressions were summed to generate an approximate total usage curve, and 520	
the time at which this curve crossed the total amount of available compound was 521	
determined. The amount of available compound was defined to be the starting 522	
concentration of a compound minus the lowest offset parameter between the 523	
three species, as the species with the lowest offset parameter for a substrate will 524	
presumably deplete the substrate to that level, but not more, even in a co-culture.  525	
The time of total depletion was used to approximate the amount of compound 526	
that each species would have consumed by that time. The individual usage 527	
curves were capped at this compound level at this time, and transformed back to 528	
compound depletion curves, which were then used to re-fit to the Behrends 529	
equation, generating new models of compound depletion in mixed conditions. 530	
These new models were then summed, producing the predicted total co-culture 531	
usage of each compound. This can be summarized by the general Equation 2: 532	
 533	
 

𝐶 − 𝐶 −
𝑎!"′

1+ 𝑒
!!!!"!"!
!!"!

+ 𝑜!"′
!"#$%#!

!

 (Equation 2) 

 534	
Where C is the total amount of substrate j that is available to the mixed culture of 535	
set species. This is defined as the starting concentration of j minus the smallest 536	
oj in species. 𝑎!"′, 𝑜!"! , 𝑡!"!", and 𝑤!"′, are parameters that describe the depletion 537	
of j by species i in the co-culture of the individual in the set species, shown in 538	
Algorithm 2: 539	
 540	
Algorithm 2. Predicting co-culture substrate usage 
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1 for j in substrates: 

2 oj’ ß minimum (oj) 

3 C ß starting concentration of substrate j minus oj’ 

4 ψj ß 𝐶 − 𝜉!"
!"#$%#!
!  

5 
𝑡!! ß  t when ψj = C    

6 for i in species: 

7 
 Φij ß ξij(𝑡!!) 

8 
 temp ß ξij(𝑡!!:tn) = Φij 

9 
 oij’ ß ξij(𝑡!!) 

10 
aij’ ß starting concentration of substrate j minus oij’ 

11 leastsq parameter fitting of 𝑡!"!"′ and wij’ to temp 
 541	
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 684	

		685	
	686	
Figure	1.	Modeling	usage	parameters.	 	Example	curve	fitting	to	Behrends	model	687	
(cyan).	Blue	square	indicates	the	modeled	T50	parameter	of	the	Behrends	model,	or	688	
inflection	point	of	 the	curve,	and	the	width	parameter	of	 the	model	 is	depicted	by	689	
the	green	bar	centered	at	T50.	The	orange	square	represents	the	calculated	Th	value,	690	
or	when	half	of	 the	total	amount	of	compound	has	been	depleted,	and	the	red	bar	691	
depicts	the	calculated	usage	window,	or	time	when	the	compound	is	depleted	from	692	
90%	to	10%	of	the	total	amount	used	by	the	species.	 	693	
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	694	
Figure	2.	A-C)	Th	and	width	for	each	compound	mapped	onto	the	growth	curve	of	695	
each	 strain.	 Colored	 circles	 represent	 average	 Th	 and	 colored	 horizontal	 lines	696	
represent	 the	average	usage	window	(time	of	depletion	 from	90%	to	10%	of	 total	697	
resource	 used	 by	 the	 strain).	 Solid	 black	 line	 is	 the	 average	 OD600	 of	 each	 strain	698	
measured	 over	 time	 (n=3),	 with	 shading	 representing	 standard	 deviation.	 D)	699	
Comparison	 of	 Th	 values	 between	 strains,	 of	 all	 compounds,	 with	 error	 bars	700	
representing	standard	error.	Dashed	boxes	in	(A)	and	(D)	 indicate	the	grouping	of	701	
compounds	utilized	by	Bc,	and	dashed	brackets	in	(C)	and	(D)	indicate	the	different	702	
growth	phases	observed	for	Pb.	 	703	
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 704	
Figure	3.	Correlations	between	specific	growth	rate	on	a	compound	as	a	sole	carbon	705	
source,	and	Th	(A,	C,	E)	or	maximum	compound	depletion	rate	(B,	D,	F)	in	complete	706	
defined	medium	for	species	Bc	(A,	B),	Pl	(C,	D),	and	Pb	(E,	F).	Compounds	that	did	707	
not	support	growth	as	a	sole	carbon	source	(specific	growth	rate	of	zero)	are	shaded	708	
lighter	at	the	bottom	of	each	plot.	Pearson	correlation	coefficients	(r)	and	p-values	709	
(p)	for	the	set	of	compounds	for	which	the	specific	growth	rate	was	nonzero	are	710	
depicted	in	the	upper-right	of	each	plot.	Correlations	that	had	a	p-value	less	than	711	
0.05	were	colored	red.	Error	bars	depict	standard	error.	712	
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Figure	4.	Co-culture	observations	compared	to	predictions,	normalized	to	t0	714	
concentration	of	each	metabolite.	Blue,	green,	and	red	dashed	lines	represent	the	715	
observed	depletion	of	each	compound	by	Bc,	Pl,	and	Pb,	respectively,	when	grown	in	716	
isolation.	The	solid	black	line	is	the	predicted	depletion	of	a	co-culture	of	all	three	717	
strains.	The	golden	circles	represent	the	measured	compound	concentration	in	the	718	
co-culture	medium.	Error	bars	and/or	shading	represent	standard	error	(n=3).	719	
Glycine	at	time	point	4	could	not	be	calculated	because	the	measurement	was	720	
outside	the	dynamic	range	of	the	calibration	curve,	and	the	r2	was	not	determined	721	
(n.d.)	for	glycine.	Non-normalized	figure	is	shown	as	Supplemental	Figure	5.	722	
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