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1 Summary

Gene co-expression network differential analysis is designed to help biologists un-
derstand gene expression patterns under different conditions. We have implemented
an R package called MODA (Module Differential Analysis) for gene co-expression
network differential analysis. Based on transcriptomic data, MODA can be used
to estimate and construct condition-specific gene co-expression networks, and iden-
tify differentially expressed subnetworks as conserved or condition specific modules
which are potentially associated with relevant biological processes. The usefulness of
the method is also demonstrated by synthetic data as well as Daphnia magna gene
expression data under different environmental stresses.
Availability: Available at https://github.com/fairmiracle/MODA
Contact: s.he@cs.bham.ac.uk
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2 Introduction

Gene co-expression network attracts much attention nowadays. In such a network,
nodes represent genes and each edge connecting two genes stands for how much degree
may this pair of genes are co-expressed across several samples. The presence of these
edges is commonly based on the correlation coefficients between each gene pairs. The
higher of correlation between a pair of genes, the higher probability that there exists
a co-functionality relationship between them. Weighted correlation network analysis
(WGCNA) [1, 2] has been widely used for this case, mostly as a tool for single
network analysis. Traditional gene differential analysis has covered identification
of important individual genes [3] which shows significant changes across multiple
conditions. Even so-called network differential analysis still focus on isolated nodes
(genes) in networks. However, based on the fact that genes interact with each other
to exert some biological function instead of acting alone, it may be more informative
to identify a subnetwork of genes which are conserved across multiple conditions or
just active in certain conditions.

Several previous works went beyond individual gene differential analysis. GSCA
[4] detects a set of differentially co-expressed (DC) genes. DICER [5] uses a prob-
abilistic framework to detect DC gene sets. Both of take genes as individuals and
did not provide a systematic view (at network level) of expression profiles. DINGO
[6] estimates group-specific networks by calculating differential scores between each
pair of two genes, which is focused on individual edges in the networks.

Here we present MODA (Module Differential Analysis), a Bioconductor (ref Hu-
ber) package for co-expression network differential analysis, which can (i) estimate
and construct condition-specific co-expression networks with limited samples for
each biological condition from gene expression profile; (ii) identify conserved and
condition-specific co-expression modules by comparing networks; (iii) perform func-
tional annotation enrichment analysis on the identified modules.

3 Methods

The first step is condition-specific network reconstruction. In a gene co-expression
network, the edge weights are defined by correlation coefficients of gene pairs. How-
ever, it is well known that the accurate correlation coefficient is approximated by
1/sqrt(n) where n is the number of samples, which makes it impossible to get reliable
correlation coefficients with only several replicates under each experimental condi-
tion in practice. We use a sample-saving approach to construct condition-specific
co-expression networks for each single condition, which works as follows. Assume
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network N1 is background, normally containing samples from all conditions, is con-
structed based on the correlation matrix from all samples. Then condition D specific
network N2 is constructed from all samples minus samples belong to certain condition
D [7]. The differences between network N1 and N1 is supposed to reveal the effects
of condition D. The rationale behind this criteria is based on the mechanism of
correlation, i.e. which samples can make impact on the correlation coefficient while
others may not? More details can be found in supplementary file part 1. Finally we
get a set of condition specific networks as such.

The second step is module identification for each network. Similar to WGCNA,
we also employ hierarchical clustering as the basic method [1, 2]. However, in order to
obtain good module identification results, it is crucial to set an optimal cutting height
of hierarchical clustering tree, which is usually tune by the users in WGCNA. In our
MODA, We propose an automatic method to determine the optimal cutting height
based on the quality of modules. Inspired by the concept of partition density of link
communities [8], our method search for the optimal cutting height which maximize
the average density of resulting modules. Here we simply define the module density
as the average edge weights in one module (equation (1) in supplementary file), same
as in [2]. We also provide other criterion such as average modularity for weighted
network [9] of resulting clusters to determine the cutting height.

The third step is network differential analysis. We compare two networks by
comparing two set of modules. The similarity of each pair of modules is measured
by a Jaccard similarity coefficient. With all condition-specific networks compared
with the background network, we get a similarity matrix A, where each entry Aij

means the Jaccard similarity coefficient between the i-th module from the network
N1 and j-th module from the network N2. Then the elements in row sum of A
(vector denoted by s) indicate how much degree that modules in N1 can be affected
by corresponding condition. The higher si means the module i in N1 may just be
responsible for general stress. Especially when some si in N1 keeps relatively high
row sum of A compared with all other N2 (remove one condition each time), showing
these modules have little association with any specific conditions. While lower si
means module i in N1 is very different from the modules in N2, which may indicate
the module has some connection with corresponding condition.

After determining which module may be condition specific or conserved, we can
associate biological process with module by functional annotation enrichment analy-
sis. The input can be gene list from the module, or overlapping just part much with
others. Here we use DAVID [10] to conduct integrative functional annotation enrich-
ment analysis of gene list based on an R Webservice interface [11]. We implemented
a module differential analysis pipeline, from gene expression profile of multiple con-
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ditions to enrichment analysis results. Figure shows the general process of each step
mentioned above.

Condition-specific networks construction and 
modules detection
Rational: Sample-saving method in construction 
and average density maximization in clustering

Modules differential analysis by Jaccard index
Rational: the row sum of similarity matrix indicate 
overlapping degree of modules in network

Frequency analysis of multiple conditions
Rational: the frequency of modules is annotated 
as conserved or condition-specific may tell more

Functional annotation enrichment analysis 
Rational: upload the gene list from targeted  
module to DAVID to get biological intepretations

Figure 1: Overview of MODA.

4 Result

We evaluated the effectiveness of proposed methods on both synthetic data and
real-world data. By comparing two gene expression profiles generated by different
desired correlation matrices of the same set of genes, we can determine the genes
affected by a groups definition, which is consistent with the generator. The details
for simulation as well as the usage of package can be found in supplementary file part
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2. The method is also used on a comprehensive RNA-Seq data set obtained from
two natural genotypes fo D. magna, to detect condition-specific as well as conserved
responsive genes and biological functions. Several biological meaningful results show
the capability of the algorithm, and more details can be found in Characterization of
early stress transcriptional response in the waterflea Daphnia magna (in preparation).

5 Supplementary

5.1 Concept part

Given gene expression profile X ∈ Rn×p, where n is the number of experimental
samples and p is the number of genes. Xij means the expression value of the j-th
gene in i-th sample. The popular tool WGCNA [1] conducts the module detection by
hierarchical clustering, i.e. putting similar gene together. The definition of similarity
ranges from basic correlation to more complex topological overlap measure [2]. While
how to determine the cutting height of hierarchical clustering tree remains an open
problem. Here we give the option to chose the height based on the quality of partition.
Inspired by the concept of partition density of link communities [8, 12], we choose
the cutting height to make the average density of resulting modules to be optimal.
The density of one module A is defined as:

Density(A) =

∑
i∈A

∑
j∈A,j 6=i aij

nA(nA − 1)
(1)

where aij is the similarity between gene i and gene j, and nA is the number of genes
in A. We can also use the modularity Q of weighted network A [9] as the criterion
to pick the height of hierarchical clustering tree:

Q =
1

2m

∑
ij

[aij −
kikj
2m

]σ(ci, cj) (2)

where m is the number of edges and ki is the connectivity (degree) of gene i, defined
as

∑
j aij. And σ(ci, cj) = 1 only when gene i and j are in the same module. The

complete module detection and average density is shown in Figure 2.
After the module detection, the co-expression network is represented as a collec-

tion of modules (see Figure 3), which makes the differential analysis more focused
on the modules other than the nodes or links. By comparing all module pairs from
N1 and N2, we can get a similarity matrix B, where each entry Bij means the sim-
ilarity between the i-th module from the network N1 (denoted by N1(Ai)) and j-th
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Figure 2: Maximal partition density based hierarchical clustering
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module from the network N2 (denoted by N2(Aj)). The similarity is evaluated by
the Jaccard index.

Bij =
N1(Ai) ∩N2(Aj)

N1(Ai) ∪N2(Aj)
(3)

Assume N1 is background, normally containing samples from all conditions, and
the N2 is constructed from all samples except samples belonging to certain condition
D. Let s is the sums of rows in B, i.e. si =

∑
j Bij. The value of si indicates

how much the i-th module from network N1 might be affected by condition D. The
rationale behind this statistics is based on the mechanism of correlation, i.e. which
samples could make an impact on the correlation while others may not? Figure 3
illustrates an extreme example about how the additional two samples may affect the
correlation between X and Y .

Figure 3: Scatter plot of varibale X and Y

As Figure 4 shows, we use two threshold values here: θ1 is the threshold to
define min(s) + θ1, less than which is considered as condition specific module. θ2 is
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the threshold to define max(s) − θ2, greater than which is considered as condition
conserved module.

Figure 4: Overlap degree of modules in N1 with N2

We also calculate the frequency of each module is annotated as conserved or
condition specific and compare all the conditions together. The rationale behind
this statistics is based on the mechanism of correlation, i.e. which samples could
make an impact on the correlation while others may not? The package visualizes
it with a bar plot as Figure 4. A similar plot about the conserved module is also
available. The module id is stored as a plain text file for functional enrichment
analysis. Here we send one module as gene list to DAVID [10, 11] for integrative
analysis.

5.2 Evaluation

We evaluate the effectiveness of proposed methods on both synthetic data and real-
world data. The basic synthetic gene expression data is generated by the following
logic: given desired correlation matrix C ∈ Rn×p with p genes which has a clear
modular structure that all genes are equally divided into 5 groups according to the
similarities. Then we conduct the Cholesky decomposition on C such that C = LLT ,
where L is the lower triangular matrix. Finally we project L on random matrix
A ∈ Rn×p to get desired gene expression matrix X ∈ Rn×p, which has the rough
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Figure 5: Statistics about which module can be condition specific

modular structure defined by correlation C. Let n = 500 and each group has 100
genes in the simulation. In each group, we allocate the gene id from 1-100, 101-200,
201-300, 301-400 and 401-500 respectively. The correlation matrix of genes in X is
shown in Figure 6. In another matrix Y , we merge the last two groups into one by
adding more samples to X, and the correlation matrix is shown in Figure 7. The
we can compare these two networks with proposed method to see which genes were
affected. Gene lists in target fold show that modules that contain gene id from 1-
100, 101-200 and 201-300 have large overlap with network 2, while module gene id
from 301-500 which were merged have least overlap with network 2. The facts are
consistent with experimental settings.

Here is the example code to use MODA given two gene expression profiles. Results
of modules are stored under the newly created folder ResultFolder as gene lists.
The condition-specific and conserved module ids are stored as plain texts in next
directory with the name of indicator which need to be compared. Other materials
such as figure 2 and 4 are also available in the folder.
l ibrary (MODA)
data ( s yn the t i c )
Resu l tFo lder = ’ ForSynthet ic ’ # where midd le f i l e s are s t o r e d
Cutt ingCr i t e r i on = ’ Density ’ # cou ld be Dens i t y or Modu lar i t y
i nd i c a t o r 1 = ’X ’ # in d i c a t o r f o r data p r o f i l e 1
i nd i c a t o r 2 = ’Y ’ # in d i c a t o r f o r data p r o f i l e 2
s p e c i f i cThe t a = 0 .1 #t h r e s h o l d to d e f i n e c ond i t i o n s p e c i f i c modules
conservedTheta = 0 .1 #t h r e s h o l d to d e f i n e conserved modules
##modules d e t e c t i o n f o r network 1
intModules1 ← WeightedModulePartit ionDensity ( datExpr1 , ResultFolder , i nd i ca to r1 , Cut t ingCr i t e r i on )
##modules d e t e c t i o n f o r network 2
intModules2 ← WeightedModulePartit ionDensity ( datExpr2 , ResultFolder , i nd i ca to r2 , Cut t ingCr i t e r i on )
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Figure 6: Correlation matrix of X Figure 7: Correlation matrix of Y

##modules d i f f e r e n t i a l a n a l y s i s
CompareAllNets ( ResultFolder , intModules1 , i nd i ca to r1 , intModules2 , i nd i ca to r2 , spec i f i cThe ta , conservedTheta )
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