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Abstract

Summary: Gene co-expression network differential analysis is designed to help biologists understand
gene expression patterns under different condition. By comparing different gene co-expression networks
we may find conserved part as well as condition specific set of genes. Taking the network as a collection
as modules, we use a sample-saving method to construct condition-specific gene co-expression network,
and identify differentially expressed subnetworks as conserved or condition specific modules which may
be associated with biological processes. We have implemented the method as an R package which
establishes a pipeline from expression profile to biological explanations. The usefulness of the method
is also demonstrated by synthetic data as well as Daphnia magna gene expression data under different

environmental stresses.

Availability: Available at https://www.cs.bham.ac.uk/ szh/software.xhtml
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene co-expression network attracts much attention nowadays. In such
a network, nodes represent genes and each edge connecting two genes
stands for how much degree may this pair of genes are co-expressed across
several samples. The presence of these edges is commonly based on the
correlation coefficients between each gene pairs. The higher of correlation
between a pair of genes, the higher probability that there exists a co-
functionality relationship between them. With proper choice of minimal
correlation value as a threshold, we can generate an unweighted and
undirected network for given gene expression profile. But the optimal
cut-off threshold is difficult to determine. And throwing away relatively
large proportion of correlation coefficients will lead to information loss.
In contrast, weighted correlation network analysis (WGCNA) overcomes
this drawback by keeping all possible edges but shows how significant is
the co-expression relationship using edge weights [1, 2].

A module in a biological network is defined as a subnetwork which
may involves a common function in biological processes. The module
detection in WGCNA is based on hierarchical clustering, which groups
similar genes into one cluster. The similarity was defined by topological
overlap measure [2]. Following the logic of WGCNA, here we mainly
improve it from the following three aspects: 1) How to determine the
cutting height of hierarchical clustering tree roughly depends on self-
definition in WGCNA. Here we give an option to choose the height based
on the quality of partition. 2) Edge weights in gene co-expression networks
are defined by correlation coefficients of gene pairs. And it is well known
that the accurate correlation coefficient is approximated by 1/sqrt(n)
where n is the number of samples, which makes it impossible to get
reliable correlation coefficients with only several replicates under each
experimental condition in practice. We use a sample-saving way to analyze
condition-specific co-expression network for each single condition. 3)
Taking a network as a collection of modules, we generalize the differential
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analysis from individual genes to modules, which may find condition
specific and conserved subnetworks.

2 Methods

Inspired by the concept of partition density of link communities [3] where
the modules were defined based on the link similarity, we propose a cutting
method to make the average density of resulting modules to be maximal.
Here we simply define the module density as the average edge weights in
one module (equation (1) in supplementary file) which keeps the same in
[2], and then find the cutting height of hierarchical clustering that leads to
maximal average density. We also provide other criterion such as average
modularity for weighted network [4] of resulting clusters to determine the
cutting height.

General gene differential analysis has covered identification of
important individual genes which shows significant changes across
multiple conditions [5]. However, based on the fact that genes interact
with each other to exert some biological function instead of acting alone,
itis more informative to identify a subnetwork (module) of genes which are
conserved across multiple conditions or just active in certain conditions.
DICER [6] also goes beyond individual gene differential analysis, using
a probabilistic framework to detect differentially co-expressed gene sets.
DINA [7] can identify condition-specific modules from a collection of
condition-specific gene expression profiles which differs from our sample-
saving method. Based on a set of condition-specific networks, we use
WGCNA to identify modules for different networks. Then, we use the
Jaccard index, which essentially measures the similarity between two sets
of elements, to measure the similarity between modules from two different
networks.

By comparing all module pairs of two networks, we can get a similarity
matrix A,where each entry A;; means the Jaccard similarity coefficient
between the i-th module from the network N7 and j-th module from the
network No. Assume the IV is background, normally containing samples
from all conditions, and the N2 is constructed from all samples minus
samples belong to certain condition D [8]. Then the elements in row sum
of A (vector denoted by s) indicate how much degree that modules in Ny
can be affected by condition D. The higher s; means the module ¢ in N1
may just be responsible for general stress. Especially when some s; in Nq
keeps relatively high row sum of A compared with all other N (remove
one condition each time), showing these modules have little association
with any specific conditions. While lower s; means module % in N7 is
very different from the modules in N2, which may indicate the module
has some connection with condition D. The rationale behind this simple
criteria is based on the mechanism of correlation, i.e. which samples can
make impact on the correlation coefficient while others may not? More
details can be found in supplementary file part 1.

After determine which module may be condition specific, we
can associate biological process with module by functional annotation
enrichment analysis. The input can be gene list from the module, or
overlapping just part much with others. Here we use DAVID [9] to conduct
integrative functional annotation enrichment analysis of gene list based on
an R Webservice interface [10]. We implemented a module differential
analysis pipeline, from gene expression profile of multiple conditions to
enrichment analysis results. Figure shows the general process of each step
mentioned above.

3 Result

We evaluated the effectiveness of proposed methods on both synthetic data
and real-world data. By comparing two gene expression profiles generated
by different desired correlation matrices of the same set of genes, we can
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Fig. 1. Overview of MODA.

determine the genes affected by a groups definition, which is consistent
with the generator. The details for simulation as well as the usage of
package can be found in supplementary file part 2. The method is also
used on a comprehensive RNA-Seq data set obtained from two natural
genotypes fo D. magna, to detect condition-specific as well as conserved
responsive genes and biological functions. Several biological meaningful
results show the capability of the algorithm, and more details can be found
in [stressflea draft].
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