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Abstract  

Figure-ground organization and border-ownership assignment are essential for understanding 
natural scenes. It has been shown that many neurons in the macaque visual cortex signal 
border-ownership in displays of simple geometric shapes such as squares, but how well these 
neurons resolve border-ownership in natural scenes is not known. We studied area V2 neurons 
in behaving macaques with static images of complex natural scenes. We found that about half 
of the neurons were border-ownership selective for contours in natural scenes and this 
selectivity originated from the image context. The border-ownership signals emerged within 70 
ms after stimulus onset, only ~30 ms after response onset. A substantial fraction of neurons 
were highly consistent across scenes. Thus, the cortical mechanisms of figure-ground 
organization are fast and efficient even in images of complex natural scenes. Understanding 
how the brain performs this task so fast remains a challenge.  

Significance Statement 

Here we show, for the first time, that neurons in primate visual area V2 signal border-
ownership for objects in complex natural scenes. Surprisingly, these signals appear as early as 
the border-ownership signals for simple figure displays. In fact, they emerge well before object 
selective activity appears in infero-temporal cortex, which rules out feedback from that region 
as an explanation. Thus, “objectness” is detected by extremely fast mechanisms that do not 
depend on feedback from the known object-recognition centers.  

Introduction  

Many visual tasks depend fundamentally on our visual system being able to organize low-level 
image features together as objects. This is a challenging problem for images of natural scenes in 
which object contours are buried in luminance and color variations produced by surface 
structure, illumination and shadows, and features from different objects are cluttered because 
of interposition in space. How the visual system is able to accomplish this is a major unresolved 
question of visual neuroscience. Border-ownership coding, discovered by Zhou et al. (2000), is 
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an early neural correlate of this perceptual organization (see Williford and von der Heydt, 2013 
for a review). Zhou et al. found that when an edge of a figure, such as a square, is aligned to the 
classical receptive field (CRF) of neurons in macaque visual cortex, some neurons will fire at a 
higher rate when the figure appears on one side of the CRF compared to the opposing side, 
even when the stimulus is locally ambiguous about the side of the figure. The underlying figure 
definition mechanisms may provide the structure for object-based attention (Qiu et al., 2007). 
However, border-ownership coding has not yet been demonstrated for natural scenes. The 
same is true for other neural correlates of figure-ground organization such as the enhancement 
of activity over figure regions (Lamme, 1995; Zipser et al., 1996; Lee et al., 1998; Marcus and 
Van Essen, 2002). 

The goal of the present study was to close this gap of knowledge. We did not know what result 
to expect. On the one hand, images of natural scenes are rich in information that might be used 
for figure-ground definition. On the other hand, these images are infinitely more complex than 
displays of simple geometrical figures. Models of border-ownership coding were mostly 
designed for geometrical figures (Zhaoping, 2005; Sakai and Nishimura, 2006; Craft et al., 2007) 
and when such models were tested on complex natural scenes their performance was modest 
(Sakai et al., 2012; Russell et al., 2014). 

Since primate visual systems have no difficulty in segregating figure and ground in complex 
scenes it is commonly assumed that this is based on object knowledge. Thus, it is often 
assumed that border-ownership signals for complex natural scenes would depend on prior 
shape processing. Since shape selective neurons in inferotemporal cortex start to respond only 
about 80ms after stimulus onset and become shape selective even later (Brincat and Connor, 
2004), this hypothesis predicts that border-ownership signals for natural scenes should be 
delayed compared to those for simple geometrical figures, which appear around 60-70ms 
(Sugihara et al., 2011).  

We report here that a subset of neurons in visual area V2 are selective for border-ownership in 
images of natural scenes. When the CRF of such a neuron aligns with an occluding contour, the 
neuron will fire at a higher rate on average when the occluding object is located on the 
neuron’s preferred border-ownership side. Some neurons signal border-ownership consistently 
across different objects and scenes. The border-ownership signals are mainly driven by the 
image context, while an image patch covering the CRF produces only a small transient signal. 
Surprisingly, border-ownership signals for natural scenes emerge as early as 70ms after 
stimulus onset, which contradicts the traditional view which attributes image understanding to 
shape processing at levels much higher in the hierarchy.  

Results 

We studied neurons in the visual cortices from 5 hemispheres of 3 male rhesus macaques 
which we will refer to as FR, BE and GR. Once spikes of a cell were isolated, its orientation and 
color selectivity was determined and its CRF was mapped with bars or contrast edges. Next, 
border-ownership selectivity was measured by placing an edge of a square across the CRF 
center with the square located either on one side or the other of the edge. Responses to both 
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sides were recorded with either contrast polarity (flipping the colors of square and 
background), and this was done for two sizes of squares (3 and 8° visual angle on a side). 
Flipping side of square and contrast polarity produced pairs of configurations in which the 
figure was on opposite sides while the edge in the CRF was identical. The border-ownership 
signal was defined as the response difference associated with the location of the figure. The 
difference averaged over the two sizes of squares we call the border-ownership signal for the 
“standard square test”. Since it compares pairs of conditions in which the stimuli are identical 
within the entire region defined by the two locations of the square (see Figure 2), the standard 
square test measures the influence of image context outside that region.  

Our goal in this study was to test neurons in early visual cortex with occluding contours in 
natural scenes and see if they can signal which is the object side. How can we measure border-
ownership signals elicited by natural scenes? In principle, we used the same strategy as in the 
standard square test. We took a sample of digitized photographs of natural scenes from a 
standard database (The Berkeley Segmentation Dataset, Martin et al., 2001). As humans, we 
understand the images and can thus identify objects and their contours. We placed an 
occluding contour across the CRF center of a neuron, rotated the image so that the contour 
matched the neuron’s preferred orientation and recorded the response for this orientation, and 
again after rotating the image 180°, keeping the contour in the center of the CRF. The rotation 
brings the object to the other side, thus reversing the direction of border-ownership in the 
receptive field. However, with natural contours the situation is more complicated than with the 
edge of a square, because these contours are generally not straight, and the regions on both 
sides of the contour are not uniform. Therefore, it is impossible to compare two situations that 
are locally identical, as we do in the standard square test. If the contour in the CRF is curved 
one way in the first presentation, it will curve the other way after the rotation. Even for a 
straight contour, we cannot make the two tests locally identical, because the regions adjacent 
to the contour are not uniform. A region may have texture or contain a luminance/color 
gradient. Curvature, texture and gradients are effective in determining perceived border-
ownership in human vision (e.g., the concave side of a curvature is more likely to be the object 
side (Kanizsa, 1979), image structures that terminate at the contour are likely to be background 
(von der Heydt et al., 1984; Heitger et al., 1992; Heitger et al., 1998), and if one side shows a 
gradient perpendicular to the contour it is likely to be the object side (“extremal edge”, Palmer 
and Ghose, 2008). Because we cannot control these factors completely, we can only estimate 
border-ownership selectivity by testing each neuron with many different images. To get a 
better handle on the influence of local features, we expanded the factorial design by adding 
two dimensions of stimulus variation, “patch” and “edge-contrast-polarity”.  

First, in addition to presenting the entire image we also presented a patch covering the CRF in 
isolation so that we could separate the effects of local and global factors. The stimulus 
presented within the CRF was identical in both the entire image and patch. Outside of the CRF, 
the patch blended into a uniform colored surround.  The surround color was set to the mean of 
the color values within the patch. By rotating the patch 180° we determined the influence of 
the local border-ownership cues in isolation.  
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Second, to control for the effect of edge contrast polarity we devised a color inversion scheme 
analogous to that of the standard square test. This is important because contrast polarity is 
sensed by the CRF, which drives the neuron, and can strongly affect the strength of responses; 
in V2 and the supragranular layers of V1 about 50% of neurons are contrast polarity selective 
(Friedman et al., 2003). To control for this factor, we created color inverted images that 
essentially reversed the local edge contrast within the CRF. The test contour divides the patch 
into two roughly equal regions, and we calculated a transformation in 3D color space that 
flipped the mean colors of the two halves of the patch. The color values across the entire image 
were transformed this way. This transformation is analogous to flipping figure and ground 
colors in the standard square test, except that it is based on the mean colors in the vicinity of 
the CRF. One could of course perform the border-ownership test with only the original color 
images and determine the main effect of border-ownership. The contrast polarity would then 
be a random factor. Using color-inverted images allowed us to include contrast polarity as a 
covariate which greatly improved the power of the analysis.   

Each neuron was tested with many different natural scenes (10–177, mean 43) and with the 2 
sizes of squares in the standard square test. In early experiments we selected pieces of 
contours that matched the preferred orientation of the neuron under study approximately (±5°) 
and rotated the image by a small angle to match preferred orientation exactly. Thus, we kept 
the images upright except for a small rotation. With this method we had to use a large number 
of images, each with multiple test points. At later stages, we rather used a smaller subset of 
images/scene-points which enabled us to test the same set of scene points in every neuron. 
This implied larger rotations (±90°) to match the neurons’ preferred orientations. This selection 
of test points also excluded high local curvature and contour junctions, while the earlier set of 
images included such complex situations. Analysis of the data showed no difference between 
these two experimental schemes. Specifically, there was no significant difference between the 
firing rates in response to upright image and inverted images (p=0.87, two-sided Wilcoxon 
signed-rank test). We therefore pooled the results obtained with the two schemes.  

We obtained complete sets of data from 140 V2 neurons of three monkeys, which we will refer 
to as FR (53 neurons), BE (50 neurons), and GR (37 neurons). Of these, 88 cells (63%) had a 
significant (p = 0.01) effect of border-ownership in the standard square test, and 65 (46%) had a 
significant effect of border-ownership for objects in the full images of natural scenes. The 
border-ownership effect from the global context, as measured by the interaction of Patch with 
Border-ownership, was significant in 38 cells (28%). Because testing natural images was 
sometimes skipped if border-ownership selectivity was not obvious in the standard test, these 
percentages may overestimate the true frequency of border-ownership selectivity. E.g. our 
sample has 63% of the cells selective with the standard square test, whereas previous studies 
found about 50% (in V2).  

As mentioned above, the 180° image rotation did not affect the mean strength of responses 
across the population. Thus, the border-ownership effects in natural scenes are not the result 
of a response difference between upright and inverted scenes.  
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Contours in natural scenes versus edges of squares  
How do the border-ownership signals for complex natural scenes compare with those for the 
much simpler standard square test displays where the object is a figure surrounded by uniform 
color? Because the standard square test measures the influence of context, it was of interest to 
compare its results with the context effect in natural scenes. In 33 cells, both the standard 
square test and the context of natural scenes produced significant border-ownership 
modulation (p=0.01). Of these, only 2 cells had opposite preferences. That is, 94% of the cells 
were found to signal side-of-object consistently in the two tests. 

The post-stimulus time histograms of the responses from two example cells are illustrated in 
Figure 2, along with an example scene for each (in total, cell 1 was presented 44 scenes, cell 2, 
177 scenes; the histograms for natural scenes are means across scenes). The conditions in 
which the square or natural object was on the cell’s preferred side are demarked with red and 
the conditions in which they were presented on the cell’s non-preferred side are demarked 
with blue. The preferred side is defined consistently for each cell (using the square test as the 
standard). Cell 1 (Figure 2A) produced a significant (p=0.01) mean border-ownership signal with 
the full-image displays, which can be seen in the higher mean firing rate when the objects 
appeared on the preferred side (red) compared to the non-preferred side (blue), but not with 
the patches. Cell 2 (Figure 2B) produced a significant mean border-ownership signal in both full-
image and patch conditions. The significant signal for patch indicates that the cell was sensitive 
to local figure-ground cues (e.g., curvature, edge luminance profile, texture differences etc.). As 
we shall see, the behavior of Cell 1 is more representative of the population results; while there 
were 35 cells with significant border-ownership signals in the patch condition (p=0.01), only 20 
of these cells (57%) were consistent between the patch condition and the standard square test 
(not significantly greater than chance, p=0.05, one-tailed binomial test).  

To show how the border-ownership signals for natural scenes and square relate across the 
population of cells, we plotted their mean signal across natural scenes versus their signal for 
the standard square test (Figure 3). For each neuron, the border-ownership effects in both tests 
were determined by linear models and divided by the square-root of the residual variance   
from the model of the square test (see Methods). Because the model of the square test 
includes all variables and interactions, its residual variance reflects only random response 
variation. Thus, the figure represents the border-ownership signals of each neuron in multiples 
of the standard deviation of the random variation of its responses. Note that all signals of each 
neuron were scaled by the same factor to allow comparison between conditions.  

To compare the strength of signals for contours in natural scenes with that for edges of 
squares, we calculated the regression lines through the origin minimizing the orthogonal 
squared deviations (see Methods). Minimizing absolute deviations instead of squared 
deviations produced similar results, as did fitting the direct effects rather than normalized 
effects. The positive slopes of the regression lines indicate that there was overall agreement 
between the results for the full images of natural scenes and the standard square test, and 
between the context effects of natural scenes and the standard square test. The values of the 
slopes also indicate that the border-ownership signals for natural scenes tended to be weaker 
than those for the squares. For the full natural scenes, the relative strength was 44% and for 
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the context influence alone it was 35%. The slope for the patches was not significantly different 
from zero, indicating that the effects of local border-ownership cues in isolation were not 
consistent with the border-ownership signals evoked by the squares. Note also that the context 
signals were less scattered than the full-image signals. Apparently, separating the influences of 
local cues from the context effects reduced the variance, presumably because the effects of 
local cues did not correlate with the border-ownership signals for edges of squares.  

Computing the slopes for the sub-population of cells that were border-ownership selective 
(P<0.01) for both, natural scenes and squares, the strength of the border-ownership signal for 
natural scenes was 72% of that for squares (95% CI: 36 to 148%), the influence of the context 
was 59% (CI: 33 to 89%), while the local cues still had no effect (2%, CI: -12 to 27%).  

The scatter in the plots of Figure 3 shows that the relative strength of the border ownership 
effects for natural scenes and square figures varied greatly between neurons. This is the reason 
for the wide confidence intervals of the fitted slopes. The scatter in these plots is not simply the 
result of random response variation. In fact, the confidence intervals of the effects in the 
individual neurons were quite small: error bars in the Figure indicate 6 times the mean standard 
errors (~99% CI). Rather, the scatter indicates genuine differences between neurons in 
processing the two kinds of stimuli. Zhou et al. (2000) noted this variation when comparing 
border ownership selectivity between different configurations of geometrical shapes and 
attributed it to differences between neurons in the way they evaluate the available cues. Our 
results discussed in the next section confirm this conjecture.  

Variation of border-ownership signals across scenes 
Above we examined the strength of border-ownership signals looking at means across scenes. 
Perhaps the most intriguing question is how consistent the signals are across the different 
scenes. In Figure 4 we have plotted, for the two example cells, the border-ownership effects of 
the individual scenes, sorted by size, for the full-image and patch conditions and for the context 
influence (black curves). The intersections of the curves with the abscissa are shifted to the 
right of the center because the majority of scenes produced positive effects, except for the 
patch condition in cell 1 (Figure 4A) which produced no consistent effects.   

These plots indicate considerable variation of the effects across scenes, with strong positive 
effects (consistent with the standard square test) for some scenes and weak or even negative 
effects for others. Of course, some of this variation is caused by the random variation of 
responses. Determining the effects for the individual images includes substantial amounts of 
random variance because the number of responses to each scene was small. We determined 
the effect of random variation by generating for each recorded neuron a large number of 
surrogate neurons with the same random variance, but no border-ownership selectivity, and 
sorting the predicted ‘border-ownership effects’ of each surrogate neuron (see Methods). The 
mean across the surrogate neurons represents the null hypothesis that border-ownership has 
no influence (gray trace in Figure 4, shading represents 95% confidence limits). The null 
hypothesis curve of course intersects the zero line near the center as about half the values 
must be positive and half negative. The slope of this curve is entirely the result of sorting 
random variations.  
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Comparison with the null-hypothesis curve suggests that some of the negative values of the 
data are the result of random response variation. Particularly in the case of the patch condition 
in cell 1 (Figure 4A), the null hypothesis might explain nearly all the variation of border-
ownership effects between scenes, indicating that the pictorial cues within the CRF had little, if 
any influence. Thus, in this neuron, the border-ownership signals in the full-image condition 
were driven mainly by the image context.  

The random variation of responses affects the apparent consistency of the border-ownership 
effects across scenes.  Because these variations are not correlated with the border-ownership 
effects, they do not systematically affect the estimate of its mean, but they tend to lower the 
proportion of consistent values: in the limit, when the random variance is large compared to 
the mean, the proportion of positive values approaches 0.5 (chance). More specifically, the 
measured distribution of border-ownership effects is the convolution of the true distribution of 
border-ownership effects with the noise distribution. The latter equals the distribution of 
simulated border-ownership effects under the null hypothesis. Thus, in principle, we can 
recover the true distribution by deconvolution (see Methods). Validation on simulated neurons 
with known border-ownership consistencies showed that the deconvolution provided a better 
estimate of consistency than using the raw border-ownership effects while still tending to 
underestimate the true consistency. 

Figure 5 shows the distribution across neurons of the proportion-consistent for the full-image 
condition as derived from the raw data (top) and as corrected by deconvolution (bottom).  The 
corrected results show that 13 cells were over 80% consistent across scenes, and 3 were over 
90% consistent. Example cell 1 (Figure 2) was 83% consistent (p=6·10-4, testing proportion 
against 0.5, Bonferroni corrected for testing the 65 proportions) and cell 2 was 79% consistent 
(p=6·10-14, ditto). When an occluding contour is placed in the receptive field of such a neuron it 
signals the object side correctly with fairly high probability.  

Time course 
How can neurons at this low level in the visual cortex signal consistent figure-ground 
interpretations for natural scenes? Solving the figure-ground problem in complex images clearly 
requires some understanding of the image. Such understanding might be based on object 
recognition. Is it possible that the border-ownership signals for natural scenes are the result of 
feedback from shape selective neurons in IT cortex? Because IT neurons only start responding 
about 80ms after stimulus onset and become shape selective even later (around 150ms, Brincat 
and Connor, 2004), border-ownership modulation for contours in natural scenes would then 
emerge with a corresponding delay, and much later than the border-ownership signals for 
edges of squares which appear around 68ms after stimulus onset (Zhou et al., 2000; Sugihara et 
al., 2011). Surprisingly, this was not the case.  

We computed the average post-stimulus time histograms for the different stimulus conditions 
using the data of the 31 cells that showed significant (p<0.01) effects of border-ownership for 
both squares and natural scenes, excluding the 2 cells in which the effects were opposite 
(because the BO signal is the difference between preferred and non-preferred side responses, 
cells with opposite preferences cannot be included because choosing one or the other side 
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would bias the result towards either natural scenes or squares). A comparison of the 
histograms (Figure 6A) shows that the border-ownership signals emerged virtually at the same 
time for natural scenes (red line) as for squares (black dashed line).  

We also plotted the border-ownership modulation produced by the image patches (blue) and 
the context effect, i.e., the difference between full-image and patch effects (green). The image 
patches produced only a small transient positive signal between about 40-90 ms which then 
disappeared, whereas the image context effect rose about linearly, peaking at 140 ms. The 
image context effect should be compared with the border-ownership signal produced by the 
square (here shown for the 8° size) which also depends entirely on the image context (the 
displays produced by flipping the square about the test edge and reversing the contrast are 
identical within a 16°×8° region centered on the CRF).  Although both emerge at the same time, 
one can see that the curve for natural scenes (red) rises slightly more slowly than the curve for 
the square (black dashed). All border-ownership signals except those for the patch lasted until 
the end of the observation period (300 ms), decaying slightly after the peak.  

In Figure 6B we compare the border-ownership signal for natural scenes (red, replotted from A) 
with the mean of the responses to preferred and non-preferred sides (black, right-hand scale). 
Note the short delay between response onset and border-ownership signal.  

The results of Figure 6 are consistent with the scatter plots of Figure 4 in showing that the 
border-ownership signals, averaged over the analysis period, did not correlate between the 
patch and square conditions, and that the context effects of natural scenes correlate more 
tightly with the square signals than the full-image signals did. Apparently, the CRF produces 
consistent border-ownership signals only briefly after stimulus onset, but does not have a 
consistent effect later.  

Table 1 summarizes the latencies for responses and border-ownership signals in the different 
conditions as determined by two-phase regression on the cumulative spike count histograms 
(Figure 7, see Methods). These latencies correspond approximately to the time point at half-
maximal strength of the signal. The table shows a latency of 60 ms for the full image border-
ownership signal and 73 ms for the context influence, compared to 44 ms for the response 
onset. The estimate for the response onset agrees with previous estimates for edge responses 
in V2 (Zhang and von der Heydt, 2010). Thus, assuming that the cortex computes the border-
ownership signal from the V2 responses, this leaves only about 16 ms for computing the 
border-ownership signal for the full image, and 29 ms for evaluating the image context.  

The short latency of the mean border-ownership signal for natural scenes is surprising 
considering the high consistency of the border-ownership effects across scenes in some 
neurons (Figure 5). Could the early part of the signal be contributed by less consistent neurons 
that produce strong signals, but only for a few scenes, whereas the later part of the signal 
comes from highly consistent neurons with longer latency (which would be compatible with 
feedback from IT)?  Our data contradict this explanation: Cell 1 in Figure 2 was highly consistent 
(83%, 44 scenes tested) and produced border-ownership modulation with short latency (85ms). 
Across the population, there was no evidence of latencies being longer for highly consistent 
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neurons (Figure 5B). There was no correlation between Fisher-transformed consistency index 
and latency (Pearson r=-0.04, p=0.85).  

Taken together, our analysis revealed no indication of a gradual emergence of border-
ownership signals for natural scenes that would correlate with the progression of shape 
selective responses in the ventral stream. The border-ownership signals pop up extremely fast, 
within less than 30ms after the onset of responses in visual cortex.  

Discussion 

This is the first neurophysiological study of border-ownership selectivity of cortical neurons in 
natural scenes. Our main findings are that a subset of V2 cells consistently signal border-
ownership in natural scenes, that the border-ownership coding for natural scenes is consistent 
with that for simple figure displays like a square in a uniform field, and that the border-
ownership signals for natural scenes emerge at the same time as the border-ownership signals 
for simple figures, reaching their maximal strength only slightly later.  We believe our results 
portray a picture of the neural activity that corresponds closely to how real scenes are 
represented in the visual cortex under natural viewing: Recording from neurons in awake 
monkeys during periods of fixation, we studied the responses of orientation selective neurons 
(which constitute over 75% of the neurons in V2, Friedman et al., 2003) by aligning their 
receptive fields with occluding contours in images of natural scenes. As a consequence, the 
neurons generally responded strongly to at least some of the images. Thus, we are looking at 
the pattern of activity across the population of neurons that would be strongly activated by 
objects in natural scenes. These neurons presumably provide the information that subsequent 
object processing centers rely on.  

Robust mechanisms 
The border-ownership signals showed a remarkable degree of consistency both across the 
population of neurons and across scenes within the individual neuron. Among the neurons that 
were significantly modulated by border-ownership for both, natural scene contours and 
borders of squares (about ¼ of our sample), the mean border-ownership signals in the two 
conditions were consistent in 94% of the neurons. Comparing the responses of individual 
neurons across large samples of different natural scenes, we found that some neurons were 
90% consistent across scenes. These V2 neurons perform much better than the simulated 
neurons in a somewhat simplistic model (Sakai et al., 2012) which reached only 67% 
consistency on images of the Berkeley Segmentation Dataset. We are not aware of other neural 
models that have been evaluated on images of natural scenes. The consistency across scenes 
rules out the possibility that the mean effects of border-ownership were the result of 
occasional conspicuous features or configurations. Finding such a high degree of consistency in 
neurons of a low-level visual area like V2 is surprising.  

Our results of course apply to our specific selection of scenes and test points which is 
somewhat arbitrary. However, as the example set in Figure 1 shows, our test contours included 
a large variety of situations: borders between regions of different contrasts, colors and 
textures, and borders with luminance/color gradients. Also the shapes and sizes of the objects 
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varied greatly. Thus, the observed consistency of border-ownership coding shows that border-
ownership coding reflects mechanisms for detection of “objectness” that are highly 
sophisticated and robust.  

There are many local cues that can influence our perception of border-ownership (Peterson and 
Salvagio, 2010).  Our results from the image patches show that the CRFs did not contribute 
much to the border-ownership signals, except for the brief period from about 50 to 90 ms after 
stimulus onset (Figure 6). The weakness of border-ownership signals from patches is consistent 
with perceptual and computational studies (Fowlkes et al., 2007) showing that human 
performance strongly depends on the size of the image patch and would be poor or at chance 
level for the small patch sizes we used, especially since we excluded regions of high curvature 
and contour junctions. It is important to note that finding weak effects in the patch condition 
does not mean that local cues have little influence on the border-ownership computation. The 
patch generates a brief signal which is later discarded as there is no confirmation from the 
context. Most likely, the border-ownership mechanisms integrate local cues all along the 
contours as proposed in the grouping cell model discussed below.  

Fast processing  
Perhaps the most surprising result is the early onset of border-ownership signals in the natural 
scenes test. Using two-phase regression on the cumulative differential spike count histograms 
we estimated signal latencies (corresponding approximately to the time point when the border-
ownership signal reaches half-maximal strength) of 60 ms for contours in natural scenes as a 
whole, and 73 ms for the component contributed by the image context (Table 1). These 
latencies are essentially the same as the latencies of the border-ownership signals for edges of 
squares (62 and 71 ms for sizes of 3° and 8°, respectively). Because neurons in area V2 only 
start responding around 45 ms (in all conditions) this leaves only 16 ms processing time in the 
case of full images and 29 ms for the context influence.  

Searching for an explanation 
Explaining the robust and fast figure-ground signals is a challenge for the theory and modeling 
of visual cortical function. The spread of feed-forward connections, which account for the CRF, 
is too small to account for the context integration (Angelucci et al., 2002; Zhou et al., 2000). 
Also lateral propagation of signals within the cortex (V1 or V2) is unlikely to explain these 
results, because the conduction velocity of intracortical (“horizontal”) fibers is too slow to 
transmit the necessary context information across these large retinotopic representations, an 
argument that is based on an analysis of border-ownership signals for edges of squares, where 
the cortical distances can be determined exactly (Craft et al., 2007; Sugihara et al., 2011). By 
extension, given the similarity of the time course between the border-ownership responses to 
natural scenes and squares (Figure 6), it seems unlikely that lateral propagation would underlie 
the natural scene data. This seems to rule out models based on intracortical propagation of 
signals (Zhaoping, 2005).  

The short latency of the border-ownership signals for natural scenes also seems to rule out 
mechanisms tuned to specific object shapes in inferotemporal cortex as an explanation, 
because neurons there only start responding around 80ms after stimulus onset and become 
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shape selective only around 150ms (Brincat and Connor, 2004). Also applying a classifier-based 
readout technique to the responses of many IT neurons yields valid object categorization only 
after ~100ms (Hung et al., 2005). Thus, any top-down influence from specific object recognition 
mechanisms would arrive much later than the observed border-ownership signals.  

By elimination, we conclude that border-ownership coding must involve back-projections to V1 
and V2 from hypothetical higher-level mechanisms that are fast enough to generate consistent 
signals within a few tens of milliseconds. Large context integration occurs in a number of 
cortical areas that are only a few centimeters away, and, because the forward- and back-
projection loops consist of white matter fibers which have high conduction velocity, this 
hypothesis can explain the critical observation of wide context integration with short latency.  

This is the basic idea of the “grouping cell model” proposed earlier (Craft et al., 2007; Qiu et al., 
2007). This model explains border-ownership coding for the relatively simple displays of 
geometrical figures, such as a geometrical figure surrounded by a uniform region (Zhou et al., 
2000), pairs of overlapping figures (Zhou et al., 2000; Qiu et al., 2007), and the concave part of 
C-shaped figures (Zhou et al., 2000). In this model, neural responses from edge selective 
neurons (simple or complex cells in areas V1 and V2) feed into grouping cells (“G-cells”) at a 
higher level, which, by feedback, set the gain of the same edge neurons, thus modulating their 
visual responses. The feedback modulation makes these edge neurons border-ownership 
selective (“B-cells”). The G-cells receive additional bottom-up input from end-stopped cells 
responding to T-junctions which suggest occlusion and indicate the direction of occlusion 
(Heitger et al., 1992). Thus, G-cells accumulate evidence from local cues distributed along the 
contour. However, an isolated patch containing such a cue would not be sufficient to keep a G-
cell active, which explains the brief duration of the neural signal in the patch condition (Figure 
6). Analyzing spike correlations between simultaneously recorded neurons Martin & von der 
Heydt (2015) found increased synchrony precisely between those neurons that, according to 
the model, receive common input from grouping cells, in strong support of this model.  

In this model (Craft et al., 2007) the grouping is based on very simple fixed summation 
templates. G-cells sum “co-circular” edge signals. Per design, they respond best to objects of 
compact shape, and bias the border-ownership responses even when only a few roughly co-
circular edges are present, in agreement with the neurophysiology (Zhang and von der Heydt, 
2010). Whether this simple model would also explain the present results on natural scenes 
needs to be seen.  

Border-ownership and saccadic eye movements 
Understanding the object structure of scenes from images is a fundamental task of vision. Our 
results show that this task is performed to some extent by extremely fast mechanisms that do 
not depend on feedback from object-recognition centers. The same mechanisms might underlie 
the ultra-rapid object detection found by Thorpe et al. (Kirchner and Thorpe, 2006; Crouzet et 
al., 2010). When two scenes are simultaneously flashed in the left and right hemifields, human 
observers can reliably make saccades to the side containing an animal in as little as 120 ms. 
Saccades to faces are even faster. As suggested by Martin and von der Heydt (2015) the 
activation of grouping circuits corresponds to the formation of “object files” or “proto-objects” 
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postulated in perceptual theories (Kahneman et al., 1992; Rensink, 2000). The grouping circuits 
are thought to provide the structure for object-based attention (Qiu et al., 2007; Craft et al., 
2007; Mihalas et al., 2011) which is closely related to saccade planning.  Thus, the fast border 
ownership signals for natural scenes demonstrated in the present study might reflect the 
formation of proto-objects which also enable the system to make fast saccades to objects. 

Materials and Methods 

We studied neurons in the visual cortices of three male rhesus macaques (Macaca mulatta). All 
procedures conformed to National Institutes of Health and United States Department of 
Agriculture guidelines as verified by the Animal Care and Use Committee of Johns Hopkins 
University. 

Preparation 
Three small head posts for head fixation were implanted in the skull and a recording chamber 
was placed over the visual cortex of each hemisphere under general anesthesia.  

Recording procedures 
Isolated neuronal activity was recorded extracellularly with glass-coated platinum-iridium 
microelectrodes (PtIr 0.1 mm diameter, etched taper ~0.1, impedance 3-9MΩ at 1kHz) that 
were inserted through the dura mater. A spike time detection system (Alpha Omega MSD 3.22) 
was used. 

Most of the V2 neurons were located in the lunate sulcus after passing through V1, the 
remaining neurons were located in the lip of the post-lunate gyrus. The eccentricities of the 
receptive fields ranged from 0.53 to 4.9 degrees of visual angle (median of 2.5). 

Stimuli and Experimental Design 

Stimulus display 
The stimuli were presented to the monkeys with either a 21-inch EIZO FlexScan T965 or a 
ViewSonic G220fb color monitor. Both had the refresh rate set to 100 Hz and resolution to 1600 
× 1200. The monitors were viewed at a distance of 1 meter and subtended 21 × 16 degrees of 
the visual field. The luminous outputs of the monitors were linearized. The images of the 

natural scenes were gamma corrected with the equation 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
2.2 for the linearized displays. 

Recording of gaze direction 
The direction of gaze was recorded for one eye by corneal reflection or pupil tracking using an 
infrared video system (Iscan ETL-200) that was aligned with the axis of the eye via an infrared-
reflecting mirror. The system recorded direction of gaze with a resolution of 0.08 × 0.16 
degrees of visual angle, although the accuracy was lowered by noise and drifts in the signal. 

Behavioral design 
All data were collected using a fixation paradigm. Monkeys were given a juice reward for 
keeping the eye position signal within 1 visual degree of the center of a fixation point for 3-4 
seconds.  
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Mapping procedures  
After isolating a cell, its CRF was manually mapped with bars, drifting gratings, and/or 
rectangles, depending on the CRF properties of the neuron. Color and orientation were varied 
to determine the optimal stimulus. The manual mapping was typically confirmed by a position 
test that systematically moved a luminance step-edge or bar in randomized order. 

The orientation preference was first tested in steps of 30 degrees (from 0 to 330 degrees). 
Often the orientation was fine-tuned using smaller steps over a more focused range. Only cells 
that were orientation selective were included in the results. This was determined by using the 
orientation modulation index when orientation tests were presented or by manual mapping 
when the orientation preference was obvious. The orientation modulation index was calculated 
by: 
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
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
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where R
  and R

  are mean responses to the preferred and orthogonal orientations. Only cells 

that had an orientation modulation index of at least 0.20 were included in the analysis. 

Standard square border-ownership test 
The border-ownership signal was first assessed using the standard square border-ownership 
test as described previously (Qiu and von der Heydt, 2005). This test presents a square with one 
of the edges centered over the CRF of the cell and the square rotated such that the orientation 
of the border matches the cell's preferred orientation. The square and the background are 
defined by two colors: gray (28 cd/m²) and the preferred color of the cell (or a color which 
elicited a strong response). The assignment of each of these colors to the square and the 
background were counterbalanced, in order to separate out the effect of local contrast from 
the border-ownership coding. Two sizes of squares were used: three and eight degrees. A 
uniform background with the mean of these two colors was displayed between stimulus 
presentations. 

For the standard square border-ownership test and the natural scene border-ownership test 
(described later) multiple stimuli were presented within a behavioral fixation period. Each 
stimulus was presented for 300 ms and a uniform screen was shown for 200 ms between the 
stimulus presentations whose color was set to the mean stimulus color within the CRF. 

Natural scene border-ownership test 
We used images from the Berkeley Segmentation Dataset 300 (Martin et al., 2001) and one 
additional image1 . Before data collection, we labeled many points in the images that lay on the 
occluding contours of objects, recording position, orientation of contour and side of the 
occluding object. Each neuron was tested with a number of images aligning one of these points 
in the center of the CRF. Custom software was used to assist in accurately positioning the 

                                                      
1 Paolo Neo, http://www.public-domain-image.com/free-images/flora-plants/fruits/apple-pictures/red-apple-
from-top 
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points. We call each test point in an image a “scene”. Not all of the recorded neurons were 
presented with the same scenes. Figure 1 shows 51 points denoted in the 32 images that were 
used most frequently in the experiments. The exact subset varied between monkeys, because 
some scenes seemed to distract a given monkey more than others from the fixation task 
leading to frequent abortion of trials. Typically only one point per image was tested, although 
sometimes there were more. In early experiments, we selected, for each neuron, points where 
the contour orientation was within 5 degrees of the neuron’s preferred orientation and rotated 
the images so as to match the preferred orientation exactly. In later experiments, we selected a 
subset of scenes (shown in Figure 1) and applied arbitrary rotation. This enabled us to test the 
same scenes across multiple cells.  

In the initial experiments, when we selected points based on how closely their contours 
matched the recorded neuron’s preferred orientation, we included more complex images. 
However, when we later concentrated on a smaller subset of points (shown in Figure 1), we 
avoided points with high curvature, contour junctions, and thin objects, where both sides of the 
objects could fall within the receptive field. 

For each scene, we manipulated the side-of-object, the contrast polarity, and the image context 
(Figure 2): 

Side-of-object – In order to manipulate the position of the occluding object (relative to the CRF, 
either preferred or non-preferred side) for a given scene, the image was rotated 180 degrees 
about the center of the CRF.  

Contrast polarity – Rotation of the images by 180 degrees changes the local contrast polarity 
within the CRF, since the local contrast rotates with the image. In order to control for this, we 
performed a transformation of the RGB color-space that inverted the mean colors within the 
CRF on either side of the border. The color inversion transformation we used for a given scene 
(scene point), 𝑠,  is: 

𝑇(𝑥𝑖, 𝑠) = (𝑥1
𝑠̅̅ ̅ + 𝑥2

𝑠̅̅ ̅) − 𝑥𝑖, 

where 𝑥1
𝑠̅̅ ̅ and 𝑥2

𝑠̅̅ ̅ are the average colors on each side of the border within the CRF  and 𝑥𝑖  is the 
color of the pixel that is being transformed. This is similar to the common color inversion 
transformation, however, the color-space is inverted around the mean colors within the CRF 
instead of the mid-point of the color-space.  

Context – In order to separate the effect of the local stimulus within the CRF (which is driving 
the response) from the modulation by the context, we showed both the full images and local 
patches that covered the CRF. The stimulus within the approximate receptive field radius, 𝑟, 
was exactly the same, while outside this radius, the stimulus faded into the background using 
the complementary error function: 

𝛼 = {
1, 𝑑 < 𝑟

erfc(𝑘(𝑑 − 𝑟)), 𝑑 ≥ 𝑟,
 

where 𝑑 is the distance from the center of the receptive field in pixels and k was set to 1.8. 
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Each of these factors (side-of-object, contrast polarity, context) is binary such that there are a 
total of 8 variations of each scene. All of the stimuli were presented in pseudorandom order. 

The background color surrounding the full images and patches, and the display color during the 
interstimulus intervals for a given scene, was the average color within the area of the CRF:  

𝐵𝐺(𝑠) =
(𝑥1

𝑠̅̅ ̅ + 𝑥2
𝑠̅̅ ̅)

2
. 

This definition of background color for each scene is analogous to the definition of the 
interstimulus color used in the standard square test. 

Data analysis 

Analysis of spike counts    
We used linear models to analyze each cell separately. The spike counts between 40 and 300 

ms of stimulus onset were transformed by the Anscombe transform (𝑓(𝑥) = √𝑥 + 3/8). This 

transform approximately converts Poisson data to Gaussian distributions. Repeated measures 
ANOVA was used to measure the effect of border-ownership and its significance. A three-way 
fixed effects model was used for the standard square test data (border-ownership × edge-
contrast-polarity × size), and a four-way model for the natural scenes data (border-ownership × 
edge-contrast-polarity × patch × scene-id).  All of the factors were binomial except for scene-id 
which had multiple levels and could also vary between cells. Both analyses were based on 
factorial design and included all interactions. The context influence on the border-ownership 
signal in natural image was defined as the interaction between the border-ownership and 
patch.  

To determine consistency of border-ownership signals and compare their relative strengths 
across different stimulus conditions we plotted the border-ownership effects of the full images, 
the patches, and the context alone, as a function of the border-ownership effects of the 
standard square test, and in each case fitted a line through the origin using orthogonal least-
squares regression. The border-ownership effects were calculated using the linear models 
described above. Because firing rates and reliability of responses vary between cells, we plotted 
the effects in each cell were divided by the square-root of its error variance as obtained from 
the model fit to the standard square test data. Because this model contains all experimental 
variables and their interactions the error variance from it reflects the variation of responses 
between repeated presentations of the same visual conditions. This normalization is equivalent 
to weighting cells by their reliability. Orthogonal regression was used to treat both variables 
symmetrically. The fit was forced through the origin because the sign of the border-ownership 
signal for each neuron is arbitrary.2 This ambiguity means that the fit must be invariant against 
reflecting any data points about the origin. Thus, the fitted line must pass through the origin. 

                                                      
2 Two neurons responding to the same edge can have opposite directions of border ownership 
preference, and which direction we assign a positive value is arbitrary. Of course, the same 
assignment was used for all data from a given neuron. 
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(For the figures we reflected the data points at the origin so as to make the effects from 
standard square test positive, thus plotting all results in two quadrants.) The 95% confidence 
intervals for the slope of the line were calculated by bootstrap, resampling cells with 
replacement, using the R boot package (Davison, 1997; Canty and Ripley, 2015). 

Variation of border-ownership signals across scenes 
To illustrate the variation of border-ownership signals in a neuron across scenes we sorted the 
scenes by the strength the border-ownership effect, separately for full images, patches, and 
context. We then generated the distribution of border-ownership effects that would result if 
border-ownership had no influence (null hypothesis). We generated the null hypothesis 
distribution from the neuron’s linear model (see above) by setting the coefficients of side-of-
object and its interactions to 0, and then simulating the neuron’s responses by adding random 
Gaussian noise with the variance equal to the residual variance of the model fit. The 95% 
confidence intervals of the null-hypothesis line were calculated by bootstrap, resampling scenes 
with replacement. 

To calculate a consistency index we compiled the distribution of the neuron’s distribution of 
border ownership effects across scenes and deconvolved this distribution with the null-
hypothesis distribution, using the DeconPdf function of the R decon library (Wang and Wang, 
2011). The original distribution was first approximated with a Gaussian to eliminate aliasing 
artifacts.  

Time course 
The spike rate histograms were calculated for the population of cells that were border-
ownership selective in both the standard square test and the natural scenes test. The border-
ownership signal is the difference between the spike rate histograms for preferred and non-
preferred side. The histograms were smoothed (Lowess, tension 0.12).  

Latencies were determined by two-phase regression on the cumulative spike count histograms 
with 1 ms resolution of the population (Sugihara et al., 2011). For the overall responses, the 
spike counts were cumulated in the interval from 0 to 80 ms (𝑆𝑝𝑖𝑘𝑒𝑠𝑝𝑟𝑒𝑓 + 𝑆𝑝𝑖𝑘𝑒𝑠𝑛𝑜𝑛𝑝𝑟𝑒𝑓). For 

the border-ownership signals, the difference between the spike counts for preferred and non-
preferred conditions were cumulated in the interval from 30 to 150 ms (𝑆𝑝𝑖𝑘𝑒𝑠𝑝𝑟𝑒𝑓 −

𝑆𝑝𝑖𝑘𝑒𝑠𝑛𝑜𝑛𝑝𝑟𝑒𝑓). The onset of the context effect was calculated  using the cumulative 

differential spike counts in the full image conditions minus the cumulative differential spike 
counts in the patch conditions: 

(𝑆𝑝𝑖𝑘𝑒𝑠𝑝𝑟𝑒𝑓
𝑓𝑢𝑙𝑙

− 𝑆𝑝𝑖𝑘𝑒𝑠𝑛𝑜𝑛𝑝𝑟𝑒𝑓
𝑓𝑢𝑙𝑙

) − (𝑆𝑝𝑖𝑘𝑒𝑠𝑝𝑟𝑒𝑓
𝑝𝑎𝑡𝑐ℎ − 𝑆𝑝𝑖𝑘𝑒𝑠𝑛𝑜𝑛𝑝𝑟𝑒𝑓

𝑝𝑎𝑡𝑐ℎ ). 

For the border-ownership signals the first leg of the regression fit was forced to zero, since the 
activity from the preferred and non-preferred conditions should cancel out before the onset of 
responses. In each case, the intersection of the regression lines defined the latency.   

The standard deviations of the latencies were calculated by the bootstrap method (Efron and 
Tibshirani, 1993). The bootstrap was performed by resampling the stimulus presentations with 
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replacement, within cell and condition. The number of presentations within cell and condition 
were kept the same as in the original data. For each resampled dataset, the latency estimates 
were calculated by two-phase regression as described above. 
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Legends 

 

Figure 1. Example scenes used for testing border-ownership selectivity of neurons. Selected points on 
occluding contours (marked here by red dots for illustration) were centered in the receptive field of the 
neuron to be studied. The examples show the most frequently used scenes, with the number of neurons 
tested per scene ranging from 90 (top left) to 10 (bottom right). All of the images used were from the 
Berkeley Segmentation Dataset, except for the image of the apple on the lower right.  
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Figure 2. Responses from 2 example cells to square, full natural scene and patch of natural scene. Four 
frames are shown for each stimulus type with the two sides of border-ownership shown side by side, 
and the two contrast polarities at top and bottom. Red circles indicate location and approximate size of 
the CRF. The patch stimuli have been magnified for illustration purpose. Red frames indicate stimuli with 
objects on the preferred side and blue frames indicates stimuli on the opposite side. Only one of the 
presented scenes is shown in each case. Cell 1 was presented 44 scenes and cell 2 was presented 177 
scenes. The mean temporal responses after the onset of the stimulus are plotted below with the 
corresponding colors, shading indicates 95% confidence intervals.  
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Figure 3. Comparison of the border-ownership signals produced by natural scenes and squares. For each 
of the 140 V2 cells studied, the border-ownership effects of full image and patch, and the context 
influence, are plotted against the border-ownership effect of squares. The effects were measured by 
linear regression performed on square-root transformed spike counts (see Methods). Error bars bracket 
the range of 6 times the mean standard errors of estimates. The slopes of the lines, determined by 
minimizing the orthogonal squared deviations, indicate the relative strengths of border-ownership 
signals for the natural scene stimuli relative to squares across the population. Shaded areas and dashed 
lines indicate 95% confidence intervals. Colors mark the example neurons of Figure 2 (red, Cell 1, blue, 
Cell 2).  
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Figure 4. Variation of border-ownership signals across scenes. Data from the same cells as in 
Figure 2. Scenes were sorted, in decreasing order, by strength of border-ownership signal. Black 
lines represent signals for full image, patch, and context. Gray bands show the 95% confidence 
intervals of the sorted effects obtained under the null hypothesis (no border ownership 
selectivity). Horizontal blue line indicates the border-ownership signal for squares.   
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Figure 5. Consistency and latency of neurons in signaling border-ownership for natural scenes. A, ‘Raw’ 
shows the distribution of the proportion of scenes for which a cell gave the same sign of border-
ownership signals. ‘Corrected’ shows the distribution of the proportion after correction for random 
variation (see Results for details). Cells are selected for significant (p<0.01) effect of border-ownership in 
full natural scenes (N=65). B, Estimates of the latencies of the border-ownership signals for natural 
scenes in the individual cells plotted as a function of their consistency. The latency of the border-
ownership signals did not increase with consistency.   
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Figure 6. The time course of border-ownership signals for squares and objects in natural scenes. A, The 
curves show smoothed post-stimulus time histograms of the mean border-ownership signals, averaged 
over cells, for full natural scene (red), natural scene patch (blue), natural scene context (green) and 
square (black dashed). The border-ownership signal for natural scenes and its context component 
emerge at the same time as the signal for square figures, but rise slightly more slowly. The patches of 
natural scenes produce only a small transient signal. B, Comparison of the time course of border-
ownership signal (red) and mean response (black) for contours of natural scenes. Note the short interval 
between response onset and rise of the border-ownership signal.   
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Figure 7. Determination of the latencies of the population border ownership signals. Red curves show 
the cumulative spike difference counts for small and large squares, the full natural scenes and the 
context component. The latencies were determined by 2-phase regression fits (blue lines, see Methods).   
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Table 1. Summary of the latencies of responses and border ownership signals 

Stimulus Onset response (ms) Border-ownership signal (ms) 

Square (3°) 46 ± 0.3 62 ± 3 

Square (8°) 46 ± 0.3 71 ± 6 

Natural scenes, Full 44 ± 0.1 60 ± 2 

Natural scenes, Patch 47 ± 0.1  

Natural scenes, Context  73 ± 4 

Latencies for onset response and border-ownership signal and their standard deviations for 33 border-
ownership selective cells. 
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