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Abstract 

Gene expression can provide biological mechanisms which underlie genetic associations with complex 

traits and diseases, but often the most relevant tissue for the trait is inaccessible and a proxy is the only 

alternative. Here, we investigate shared and tissue specific patterns of variability in expression in 

multiple tissues, to quantify the degree of sharing of causes (genetic or non-genetic) of variability in 

gene expression among tissues. Using gene expression in ~800 female twins from the TwinsUK cohort in 

skin, fat, whole blood and lymphoblastoid cell lines (LCLs), we identified 9166 significant cis-eQTLs in fat, 

9551 in LCLs, 8731 in skin and 5313 in blood (1% FDR). We observed up to 80% of cis-eQTLs are shared 

in pairs of tissues. In addition, the cis genetic correlation between tissues is > 90% for 35% of the genes, 

indicating for these genes a largely tissue-shared component of cis regulation. However, variance 

components show that cis genetic signals explain only a small fraction of the variation in expression, 

with from 67-87% of the variance explained by environmental factors, and 53% of the genetic effects 

occurring in trans. We observe a trans genetic correlation of 0 for all genes except a few which show 

correlation between fat and skin expression. The environmental effects are also observed to be entirely 

tissue specific, despite related tissues largely sharing exposures. These results demonstrate that 

patterns of gene expression are largely tissue specific, strongly supporting the need to study higher 

order regulatory interactions in the appropriate tissue context with large samples sizes and diversity of 

environmental contexts. 

 

Gene expression is an intermediate phenotype between the genome and disease manifestation and it 

can be used to give a biological and mechanistic interpretation of GWAS signals. However, regulatory 

control of gene expression is often tissue-specific [1] . It remains an open question how much about the 

regulatory landscape of one tissue can be inferred given a comprehensive characterization of a different 

tissue [2]. As disease and phenotypic variation is often linked to inaccessible tissues in living individuals, 
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answering this question could have great impact on our ability to use expression QTLs from 

heterologous tissues to interpret GWAS signals. Previous studies have compared the effect of common 

cis-eQTLs across different tissues [1] [3] [4] [5]. However, these common eQTLs represent a small 

fraction of the genetic effects that regulate gene expression [4]. In this study we provide global 

measures of the relative contribution of shared and tissue-specific genetic effects on gene expression. 

We show that genetic regulation of gene expression is largely driven by tissue-specific trans effects. We 

also show that, though genetic variants in cis tend to be active in more than one tissue, in many cases 

these genetic variants are affected by tissue specific modulators, which increase the divergence 

between tissues. These results have implications on the use of eQTLs found in commonly collected 

tissue types as a tool to interpret the biological function of GWAS signals and our understanding of the 

biological processes underlying disease development. 

 

Here we analyzed a sample of around 800 female monozygotic (MZ) and dizygotic (DZ) twins from the 

TwinsUK cohort. For each sample we sequenced the mRNA fraction of the transcriptome in four tissues 

(fat, skin, lymphoblastoid cell lines (LCLs) and whole blood) and analyzed them with genotypes imputed 

into the 1000 Genomes Phase 1 panel [6].  To identify regulatory genetic variants affecting gene 

expression we performed three analyses: expression quantitative trait loci (eQTLs), alternative splicing 

QTLs (asQTL) and allelic specific expression (ASE). Using a linear regression approach with SNPs in a 1Mb 

window each side of the TSS for each gene we identified 9166 significant cis-eQTLs in fat, 9551 in LCLs, 

8731 in skin and 5313 in blood (1% FDR) (Supplementary Figs. 1 and 2). Genetic variation may also affect 

gene expression by modifying mRNA splicing processes. Therefore, we calculated the association 

between cis SNPs and the individual frequencies of exon-exon links and identified between 1566 and 

4104 alternative splicing QTLs (asQTLs) per tissue (Supplementary Fig. 3) using ALTRANS [7] . The 

identification of allele specific expression (ASE) sites has been previously described in Buil et al (2015) 
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and reported that 9.5%, 9.3% and 9.1% of the exonic heterozygous sites had a significant (10% FDR) ASE 

effect in fat, LCLS and skin. In total, we found thousands of cis regulatory genetic variants affecting gene 

expression in the four tissues. 

To investigate the level of shared cis-eQTLs between tissues we estimated the proportion of replication 

of eQTLs between all pairs of tissues using the π1 estimate in the qvalue package [8]. We observed that 

around 80% of the observed eQTLs active in one tissue also show activity in another tissue 

(Supplementary Figs 4 and 5). However, the fact that an eQTLs is active in two tissues does not mean 

that it acts in the same way in both of them. To test if the effect size of eQTLs is the same in two tissues 

we used a bivariate approach that models pairs of tissues together and compares the beta estimates of 

the eQTLs in each tissue [9].  

When comparing pairs of tissues, we observed that between 32% and 51% of the eQTLs found in both 

tissues have the same effect size and direction in both tissues while the remaining 49% to 68% eQTLs 

have tissue specific effects (Figure 1). We also observed that eQTLs active in more than one tissue tend 

to be closer to the transcription start site (TSS) than tissue specific eQTLs (Supplementary Fig. 6). 

However, eQTLs further from the TSS have a weaker effect size; therefore these eQTLs are more likely to 

be misclassified as tissue specific. 

To understand the biology underlying shared eQTLs relative to distance to the TSS, we looked at the 

enrichment of eQTLs for each tissue in proximal (2Kb around the TSS) and distal (farther than 2Kb from 

the TSS) transcription binding sites (TFBS) defined by ENCODE [10]. We found a similar pattern of 

enrichment in the four tissues for eQTLs falling in proximal TFBS whereas distal eQTLs showed different 

patterns of enrichment depending on tissue, reinforcing the idea that the biological mechanisms behind 

the regulation close to the TSS is shared among several tissues while regulatory elements far from the 

TSS are more tissue specific (Figure 2). Finally, we calculated enrichment of eQTLs in enhancers 

discovered in several tissues by the FANTOM5 project [11]. We found that the patterns of enrichment in 
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enhancers are tissue specific. eQTLs discovered in blood and LCLs were more enriched in blood cell 

enhancers whereas eQTLs discovered in skin were more enriched in fibroblast and skin cells enhancers 

(Figure 2). In conclusion, we observed that genetic regulation in proximal TFBS are shared among tissues 

while distal TFBS and enhancers act in a more tissue specific manner. 

 

The regulatory variants identified by cis-eQTLs analysis represent only a fraction of the influence of 

genetic variation on gene expression [4]. To quantify the relative contribution of the different genetic 

and environmental components on gene expression we performed a variance components analysis for 

each gene separately in each of the 4 tissues using the identity by descent (IBD) information among the 

twins. We included identified cis-eQTLs, and undetected cis and trans effects as genetic components, as 

well as shared and individual environmental components in the model. We observed an average 

heritability of gene expression ranging from 13% to 33%.  Of the genetics effects, 53% were trans effects 

and only 14.5% were due to identified cis eQTLs (Supplementary Figs 7 to 10), with 32.5% due to 

undetected cis signals. We conclude that most of the genetic variation responsible for differences in 

expression remains unidentified, meaning that assessing tissue specificity only using identified eQTLs 

may be misleading.  This means that in order to provide an estimate of the shared genetic regulation 

between tissues it is important to take into account genome-wide genetic effects and not only the 

known cis-eQTLs.  

 

In order to compare the genetic contribution to gene expression among tissues, we performed a 

bivariate variance components analysis, considering simultaneously expression of a given gene in a pair 

of tissues [12]. We produced estimates of genetic and environmental correlations, namely the 

proportions of the additive genetic and environmental effects that are shared between pairs of tissues. 
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For genes with heritability larger than 0.2 in both tissues, the mean genetic correlation ranges from 0.04 

between fat and blood to 0.17 between fat and skin (Figure 3 and Supplementary Fig. 11); positive 

correlations indicate shared genetic effects with the same direction. For genes with low heritability, we 

occasionally observed negative values (Figure 3), that we attribute to poor estimates due to weak 

effects and small sample size (Supplementary Fig 12). In summary, genes with high heritability in 

multiple tissues tend to show positive genetic correlation, implying shared genetic effects regulating 

their expression. 

For most genes, expression has an oligogenic genetic architecture with one or several strong genetic 

effects in the proximity of the gene (cis effects) and a polygenic effect caused by multiple variants 

spread along the rest of the genome (trans effects). The genetic correlation measured above is a global 

measure of the shared genetic effects along the genome, but we are also interested in the differences 

between cis and trans behavior regarding the shared genetic effects. Previous literature has reported cis 

effects to have a stronger effect size and are mainly shared across tissues while trans effects tend to be 

weaker and tissue specific [4] [5] [13] [14]. To obtain separate estimates of the genetic correlation 

influenced by cis effects and trans effects, we used a bivariate variance components model with three 

random effects: a cis component, a trans component and a residual component that includes 

environmental and technical influences (See Methods). We observed clear overrepresentation of genes 

where the genetic correlation in cis > 0.9, indicating a high degree of sharing of cis effects between 

tissues (Figure 3). However, for genes with a cis heritability larger than 0.2, the median genetic 

correlation ranges from 0.03 between LCLS and blood to 0.49 between fat and skin. This indicates that 

the majority of genetic effects in cis are tissue-specific. As expected, for most of the tissue pairs we 

found that the distribution of genetic correlations in trans is close to zero (Figure 3). This indicates 

limited sharing of trans effects, in agreement with previous studies reporting no genetic correlation in 

trans between fat and blood [13]. However, when considering fat and skin expression, we see a 
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considerable bias towards positive trans correlation, indicating the presence of shared trans effects. In 

genes with a trans heritability component larger than 20%, the average trans genetic correlation is 0.15, 

increasing to 0.19 for genes with trans heritability components larger than 30% (Figure 3). This suggests 

that it would be possible to detect shared trans eQTLs for fat and skin with larger sample sizes. 

 

We then assessed whether the environmental components are shared among tissues. One could 

hypothesize that all tissues are exposed to the same environment and therefore the non-genetic 

components of variability are largely shared. We find that the correlation due to non-genetic factors is 

zero in most of the tissue pairs. Only in fat and skin we observe 454 genes with environmental 

correlation larger than zero at 5% FDR (Supplementary Figs. 13 to 18). That indicates that non-genetic 

factors (environment plus technical effects) are mainly tissue specific and highlights very complex 

processes by which our cells and tissues perceive environmental exposures. 

 

To assess the importance of shared genetic effects for a given tissue, and to place an upper bound on 

our ability to predict genetic expression in one tissue from another, we can estimate how much of the 

genetic contribution to a gene in tissue 1 is shared with tissue 2 by multiplying the heritability of the 

gene in tissue 1 by the genetic correlation between the two tissues. We calculated this magnitude 

separately for cis and trans heritability. For genes with heritability larger than 0.2, the fraction of the 

heritability in one tissue that is shared with other tissues ranges from 6% to 35% for the cis component 

and from 4% to 19% for the trans component (Figure 4). The largest numbers are for fat with skin, 

sharing 35% of the cis effects and 19% of the trans effects (Figure 4). These numbers are much smaller 

for other pairs of tissues, especially for the trans component, reflecting once more the fact that trans 
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effects tend to be tissue specific (Figure 4).  This result highlights the complexity of regulatory 

mechanisms between tissues and the high degree of tissue specificity. 

 

 

In summary, we have presented a systematic genome-wide evaluation of the relative contribution of 

genetic and non-genetic factors on gene expression across tissues. eQTLs results are frequently used to 

reveal the biological causes of GWAS signals on complex diseases. Since eQTLs are usually obtained from 

accessible cell types such as blood or blood cell cultures, it is of special interest to assess how well this 

information translates to disease relevant tissues [3] [2] [1]. We have demonstrated that common cis 

eQTLs active in one tissue are likely to be active in other tissues (especially when the eQTLs is close the 

TSS of the gene of interest), though the effect can be modulated by other factors to produce differing 

effects. Therefore, the use of functional annotation information in a tissue to interpret the effect of 

regulatory variants in another tissue is only valid for regulatory variants in the proximity of the TSS of 

genes with cis-regulatory effects. We have also shown this shared component caused by known eQTLs 

explains only a minority of the genetic variance, and that genetic variation in the regulation of gene 

expression is, to a large extent, occurring in trans and is highly tissue specific. In addition, the 

environmental components of variants are also highly tissue specific suggesting that each tissue and cell 

type is exposed to different components of the environment and/or it perceives the same environment 

differently. Overall, our results demonstrate that there is an upper bound to the utility of gene 

expression in heterologous accessible tissues (e.g. blood) to infer causes of variation in gene expression 

in inaccessible tissues. This upper bound is less restrictive in biologically interacting tissues such as fat 

and skin, where there was evidence of shared trans effects. Taken together, these results show the 

difficulties inherent in predicting and assessing causes of variability of expression of one tissue from 

another, and highlight the importance and need of studies in many tissues in large samples and 
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environmental contexts to provide a global picture of genetic regulation and its implications on disease 

at the organismal level. 
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Methods: 

Sample collection. The study included 856 Caucasian female individuals recruited from the TwinsUK 

Adult twin registry. Punch biopsies (8mm) were taken from a photo-protected area adjacent and inferior 

to the umbilicus. Subcutaneous fat tissue was dissected from each biopsy, weighed and immediately 

stored in liquid nitrogen. Similarly, the remaining skin tissue was weighed and stored in liquid nitrogen. 

Peripheral blood samples were collected and lymphoblastoid cell lines (LCLs) were generated by Epstein 

Barr Virus transformation of the B-lymphocyte component by the European Collection of Cell Cultures 

agency.  

The St. Thomas' Research Ethics Committee (REC) approved on 20th September 2007 the protocol for 

dissemination of data, including DNA, with the REC reference number RE04/015. On 12th of March of 

2008, the St Thomas' REC confirmed this approval extends to expression data. Volunteers gave informed 

consent and signed an approved consent form prior to the biopsy procedure. Volunteers were supplied 

with an appropriate detailed information sheet regarding the research project and biopsy procedure by 

post prior to attending for the biopsy. 

Genotying and imputation. Samples were genotyped on a combination of the HumanHap300, 

HumanHap610Q, 1M-Duo and 1.2MDuo 1M Illumnia arrays. Samples were imputed into the 1000 

Genomes Phase 1 reference panel (data freeze, 10/11/2010) [15] using IMPUTE2 [16] and filtered 

(MAF<0.01, IMPUTE info value < 0.8). Only autosomal SNPs were used in the analysis. 

RNA processing. Samples were prepared for sequencing with the Illumina TruSeq sample preparation kit 

(Illumina, San Diego, CA) according to manufacturer’s instructions and were sequenced on a HiSeq2000 

machine. Afterwards, the 49-bp sequenced paired-end reads were mapped to the GRCh37 reference 

genome [17] with BWA v0.5.9 [18]. We use genes defined as protein coding in the GENCODE 10 

annotation [19]. We excluded samples that failed in the library prep or sequence process. We also 
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excluded samples with less than 10 million reads sequenced and mapped to the exons. Finally we 

excluded samples in which the sequence data did not correspond with the actual genotype data. We 

ended with 766 samples for fat, 814 for LCLS, 716 for skin and 384 for blood (we had blood samples for 

only half of the individuals). 

eQTLs discovery 

Exon quantifications: All overlapping exons of a gene were merged into meta-exons with identifier of 

the form “geneID_start.pos_end.pos”. We counted a read in a meta-exon if either its start or end 

coordinate overlapped a meta-exon.   

Normalization: All read count quantifications were corrected for variation in sequencing depth between   

samples by normalizing the reads to the median number of well-mapped reads. We used only exons 

quantified in more than 90% of the individuals. We removed the effects of technical covariates 

regressing out the first 50 factors from PEER [20], including BMI and age in the model to preserve 

important biological sources of variation. 

eQTLs association: Since our data samples are twins, they are not independent observations and we 

needed to take that into account in our models. We used the two-steps strategy described in Aulchenko 

et al. [21]. First we kept the residuals of a mixed model that removed the effects of the family structure 

using the implementation in GenAbel R package. We then transformed those residuals using a rank 

normal transformation. Finally, we performed a linear regression of the transformed residuals on the 

SNPs in a 1Mb window around the transcription start site for each gene, using MatrixeQTL R package 

[22]. We did the association at the exon level and we kept the best association per gene. 

Permutations: We permuted the quantifications of each exon 2000 times, keeping the best p-value per 

exon from each round. From these data, we adjusted the empirical FDR to 1% according to the most 

stringent exon of each gene, stratifying the analysis on the number of exons for a given gene. 
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Alternative splicing analysis 

To calculate the relative quantification of splicing events we used the ALTRANS method that utilizes the 

paired-end nature of the RNA-seq experiment [7]. It uses the mate pairs, where one mate maps to one 

exon and the other mate to a different exon, to count “links” between two exons. The first exon in a link 

is referred to as the “primary exon”. Overlapping exons are grouped into “exon groups” and unique 

portions of each exon in an exon group are identified, and subsequently used to assign reads to an exon. 

The raw link counts were normalized with the same method and covariates as described in the “RNA 

sequencing and quantification” section. The normalized link counts ascertained from unique regions of 

exons, which can be derived from parts of the linked exons rather than the whole exons, are divided by 

the probability of observing such a link given the empirically determined insert size distribution for each 

sample and unique portions of the exons in question, which is referred to as “link coverage”. Finally, the 

quantitative metric produced is the fraction of one link’s coverage over the sum of the coverages of all 

the links that the primary exon makes. We calculated this metric in 5’-to-3’ (forward) and 3’-to-5’ 

(reverse) directions to capture splice acceptor and donor effects respectively. In the association 

analyses, we only included links where the primary exon’s exon group made at least 10 links in the 

analyzed direction in at least 80% of the individuals and where the primary exon made at least 5 links in 

the analyzed direction in at least 30% of the individuals. Furthermore, links with more than 95% non-

variable values across were filtered out. The association tests were done as described in the “cis eQTLs 

association” section.  

 

IBD calculations:  

IBD: We calculated the haplotypes in a 1Mb window around the TSS of each gene and counted the 

number of haplotype alleles that are shared between the twin pairs at each locus. 

Variance components models (VCM): 
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All of the variance component analysis were done using gene-based RPKM measures instead of the exon 

quantifications used in eQTLs analyses. Gene quantifications were attained by summing up all the exon 

counts of the gene. We only included exons and genes that were expressed in 90% of the samples. Using 

these counts, reads per kilobase per million reads (RPKM) values were calculated. We removed technical 

effects by correcting the RPKM measures of each gene for four technical covariates (mean GC content, 

insert size, primer index used in the library prep and date of library prep) in a linear model.  

Variance components models (also called linear mixed models) accommodate the non-independence of 

family-related individuals and allow the partition of the variance of a quantitative trait (like gene 

expression of a gene) in several genetic and environmental components. Let’s � � ���, ��� be the 

phenotype for the individuals in a family (twin pair), we assume normality of � and: 

� � � � 	eqtl � � � � � � � � 

where µ is the mean, eqtl is the primary eqtl for the gene, 	 is the regression slope for the eqtl fixed 

effect, q is a random effect capturing the genetic effects in cis (other than the main eqtl), g is a random 

effect capturing the polygenic effects in trans, c is a random effect capturing the environment shared 

between the members of the family and e is the residual random effect that includes individual 

environmental effects. We can express the covariance between relatives as: 

� � ���� � 2���� � ���� � ���� 

where,  

� is the IBD matrix calculated around the TSS of a gene for each pair of twins. 

2� is the matrix of kinship coefficients between pairs of relatives. It is 1 for MZ twin pairs and 1/2 for DZ 

twin pairs and 0 otherwise. 

� is the matrix capturing the shared environment between twin pairs. It is 1 for both MZ and DZ twin 

pairs and 0 otherwise. 
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� is the identity matrix of dimension 2. 

���is the variance due to genetic effects in cis other than the main eqtl (q), genetic effects in trans (g), 

environmental effects shared among the two twins (c) and individual environmental effects (e). 

We estimated the parameters using maximum likelihood methods as implemented in SOLAR [9]. We 

used the likelihood ration test to test the statistical significance of the parameters.  

Bivariate variance components models:  

This model is a straightforward extension of the univariate model described above. Let � � ��� , ���� and 

� � ���, ���� be the twin pair trait vectors for two phenotypes. We assume that � and � are normally 

distributed as in the univariate case: 

� � �� � 	�eqtl � �� � �� � �� � �� 

� � �	 � 		eqtl � �	 � �	 � �	 � �	  

and have covariance matrices: 

�� � ��qX� � 2��gX� � ��eX�  

�	 � ��qY� � 2��gY� � ��eY�  

Note that in the bivariate case we did not include the shared environment component.  

Then, we can express the bivariate phenotype as 

� � ��� , �� , ��, ���� � ���� 

The covariance matrix for Z has the partition structure: 

�� � ��� �XY�XY �	
  

Where ��  and �	  are the univariate covariance matrices described above and the matrix �XY � �YX of 

cross covariances is given by: 
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�XY � ��qXY� � 2��gXY� � ��eXY�  

We can reparametrize the covariances in terms of correlations by writing: 

�XY� � ���	!XY 

Where !XY is the correlation between traits � and �. The complete covariance matrix for �can be 

written: 

�� � �"# � 2�" $ � � " % 

Where "is the Kronecker product operator and n is the size of the pedigree. For 2 traits is a twin pair (2 

individuals), matrices Q, G and E are 2 x 2 matrices, �, � and � are 2 x 2 and ��  is 4 x 4. The matrices Q, 

G, and E of QTL-specific, polygenic, and environmental variance components respectively, each have the 

partition form: 

& ���� �����	!�XY�����	!�XY ��	� ' 

Where !�XY is the correlation between X and Y due to the effect of (, and ( is q, g or e. 

We have then a model with 11 parameters: the averages of the two traits (��and �	), the  3 variance 

components of the two traits ����� , ���� � for ( in q, g or e and the 3 correlations for cis, trans and 

environment components �!qXY , !gXY, !eXY�. 
In the same way that in the univariate case, to estimate the parameters we used maximum likelihood 

methods as implemented in SOLAR [9]. We used likelihood ratio tests to establish the statistical 

significance of the parameters.  

Bivariate model simulation: 

We tested the performance of the bivariate VCM in our sample by simulating bivariate phenotypes 

under several models, always with our actual pedigrees: 
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Case 1: two traits with heritability of 0.2 and genetic correlation equal to 1 

Case 2: two traits with heritability of 0.2 and genetic correlation equal to 0.5 

Case 3: two traits with heritability of 0.2 and genetic correlation equal to 0 

Case 4: two traits with heritability of 0 so that genetic correlation is not well defined. 

We performed 100 simulations of each model using the command simqtl in SOLAR and maximized the 

bivariate model for all the simulations. The results show that we get unbiased estimated of the genetic 

correlations in all the cases (Supplementary Figure 12). For the first case (rhog=1) we got an estimate of 

1 for most of the simulated replicates, with an average of 0.9. For the second case (rhog=0.5) we got an 

average of 0.5 but with considerable variation. Than implies that, with this sample size, it is going to be 

difficult to get statically significant estimates of rhog, but still, we do not have biases results. For the 

third case (rhog = 0) we got a distribution of genetic correlations estimates symmetrical and centered on 

zero. For the fourth case (not heritable traits) we got a distribution with the average close to zero but 

two unwanted peaks in the values 1 and -1. Since the genetic correlation is not defined when the traits 

are not heritable, the likelihood is not affected by the value of rhog and, for some reason, the 

maximization procedure tends to end with values of rhog in the extreme of the parameter space (1 and -

1).  Due to the lack of precision of the estimates, we observe in all cases many genes with negative 

genetic correlation. In theory, a negative genetic correlation means that the two traits have common 

genetic effects that affect both traits in different directions. However in the context of our analysis these 

negative values are mainly a consequence of the variance in the estimates due the limited sample size. 

Although we cannot rule out the possibility that for some genes a negative estimate of the genetic 

correlation could reflect a true biological fact, it is impossible for us to tell these case from the more 

common negative genetic correlations due to lack of precision in the estimates. In summary, average 

estimates of rhog in our data should be close to truth even that the individual estimates per gene can be 
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far from the real values. For some analysis we give results only for genes that have heritability larger 

than 0.2 in both tissues so that we avoid cases where rhog is not defined. 

  

Enrichment Analysis 

Given a genomic functional category (like enhancer or TFBS) we calculate the enrichment of eQTLs in 

this category by comparing the number of eQTLs that fall into this category to the number of 

comparable random SNPs that fall in the same category. We generated the comparable set of random 

SNPs choosing random SNPs that match in allele frequency and distance to the TSS of the gene with the 

real eQTLs. We generated a maximum of 10 matched random SNPs for each eQTLs and calculated odds 

ratio and a p-value using Fisher exact test.  

In our analysis we used two sets of functional annotation information. We used FAMTOM5 annotation 

of enhancers in a tissue and ENCODE annotation of TFBS. We divided the TFBS in two sets, proximal 

TFBS are those located less than 2Kb from the TSS of the gene and distal TBFS are the rest.  
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Figures 

 

Figure 1. Effect size comparison of cis eQTLs in fat and skin. We compare the direction of effect of 

eQTLs between fat and skin association. Each plot compares the beta estimated from the SNP-gene 

associations between two tissues. Red dots identify eQTLs only significant in one tissue.  
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Figure 2. Comparison of the enrichment patterns in fat, skin, LCLS and blood. To understand the 

biological effects of shared eQTLs, we looked at the enrichment of cis eQTLs for each tissue in a set of 

markers. A) transcription binding sites (TFBS) defined by ENCODE as proximal TFBS (in 2Kb around the 

TSS) show similar pattern of enrichment in the four tissues for eQTLs falling in proximal TSS. B) 

transcription binding sites (TFBS) defined by ENCODE as distal TFBS (farther than 2Kb of the TSS) show a 

different pattern of enrichment across tissues for eQTLs falling in distal TSS regions. C) enhancers 

discovered in several tissues by the FANTOM5 project tend to be tissue specific, with cis eQTLs 

discovered in blood and LCLs more enriched in blood cell enhancers and cis eQTLs discovered in skin 

more enriched in fibroblast and skin cells enhancers.  
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Figure 3. Genetic correlations between tissues. Each column shows results for genetic correlation 

calculation between two tissues using genes with a total heritability > 0.20 (20%). The first row shows 

the total gene correlation between tissues, the second row shows the genetic correlation of cis effects 

and the final row shows the genetic correlation of trans effects.  
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Figure 4. Comparative of the proportion of the genetic effect in between pairs of tissues. We estimate 

how much of the genetic effects of a gene in tissue 1 is shared with tissue 2 by multiplying the 

heritability of the gene in tissue 1 by the genetic correlation between the two tissues. We did it 

separately for cis and trans effects and in genes with heritability values larger than 0.2. The largest 

numbers are for fat with skin, sharing 35% of the cis effect and 19% of the trans effects (figure A).  
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