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ABSTRACT 

Genome assembly depends critically on read length. Two recent technologies, PacBio and 

Oxford Nanopore, produce read lengths above 20 kb, which yield genome assemblies that are 

vastly superior to those based on Sanger or short-reads. However, the very high error rates of 

both technologies (around 15%-20%) makes assembly computationally expensive and 

imprecise at repeats longer than the read length. Here we show that the efficiency and quality of 

the assembly of these noisy reads can be significantly improved at a minimal cost, by leveraging 

on the low error rate and low cost of Illumina short reads. Namely, k-mers from the PacBio raw 

reads that are not present in the Illumina reads (which account for ~95% of the distinct k-mers) 

are deemed as sequencing errors and ignored at the seed alignment step. By focusing on ~5% 

of the k-mers which are error-free, read overlap sensitivity is dramatically increased. Equally 

important, the validation procedure can be extended to exclude repetitive k-mers, which avoids 

read miscorrection at repeats and further improve the resulting assemblies. We tested the k-mer 

validation procedure in one long-read technology (PacBio) and one assembler (MHAP/ Celera 

Assembler), but is likely to yield analogous improvements with alternative long-read 

technologies and overlappers, such as Oxford Nanopore and BLASR/DAligner.  

 
 
"Thm: Perfect assembly possible iff  

a) errors random  
b) sampling is Poisson  
c) reads long enough 2 solve repeats."  

Myers, 2014 
 
"One chromosome, one contig."  
Koren et al., 2012 
 
 
INTRODUCTION 

Genome assembly quality depends on sequencing coverage, read accuracy, and read length 

(Nagarajan and Pop 2013; Myers 2016). Nowadays the cost per sequenced base is small, so in many cases 

coverage is no longer a major limiting factor, 100-fold coverage being routine in many projects. Such 
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high coverages also reduce the importance of read accuracy, since errors can be removed by consensus 

while building contigs from the reads. Read length remains a critical factor. Its importance stems from 

repeated sequences, which in many cases cannot be properly assembled unless they are shorter than the 

read. For example, two identical copies of a 7 kb retrotransposable element would require reads bigger 

than their length for being fully assembled; shorter reads would produce a fragmented assembly. This 

limitation can be circumnavigated, but only partially, by mate-pair reads and other methods (Weber and 

Myers 1997; Nagarajan and Pop 2013; McCoy et al. 2014).  

Sanger sequencing, the first practical technology for large-scale projects, produce reads between 

500 bp to1 kb, which are accurate (error rate ~1 %), but expensive, the price tag for a Drosophila-like 

genome being in the million dollars range (Drosophila_Community_Resources_Committee 2001). 

Second generation sequencing technologies ("SGS") such as Illumina produce reads that are inexpensive, 

accurate (error rate ~1 %), but short (< 500 bp ). Their low cost (Drosophila genome price tag: ~U$ 4000 

) allowed for an explosion of genome projects. However, due to their short read length, they produce very 

fragmented assemblies. Both Sanger and SGS require a huge investment of money and time if a 

"finished" genome is the target.  

Two recently developed or improved technologies, PacBio and Oxford Nanopore, produce read 

lengths above 20 kb, which can yield genome assemblies that are vastly superior in contiguity to those 

based on Sanger or short-reads (Goodwin et al. 2015; Koren and Phillippy 2015; Loman et al. 2015). 

However, reads produced by both technologies have very high error rates (PacBio: ~15%; Oxford 

Nanopore: ~20%), and cannot be directly handled by current genome assemblers (see (Li 2016) for an 

exception). Instead, a "hierarchical assembly process" is used: first the raw reads are error-corrected by 

aligning them either to Illumina reads ("hybrid assembly"; (Koren et al. 2012), or among themselves 

("self-correction"; (Chin et al. 2013)), and implementing some sort of consensus algorithm, which reduces 

the error rate to below 5%. The corrected reads are then assembled by normal OLC assemblers (i.e., 

designed for Sanger reads). Self-correction produces better assemblies (Koren et al. 2013) and is the 

current state-of-art but is computationally intensive, because the all-by-all alignment must be carried with 
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rather high sensibility and specificity in order to detect real overlaps among the noisy reads. In practice 

bacterial genomes are easily assembled, but large genomes such as mammals still have nearly prohibitive 

computational costs (e.g., more than 800,000 CPU hours; (Berlin et al. 2015). It is also unclear how far 

can we go inside highly repeated regions such as heterochromatin (e.g., telomeres and centromeres), 

segmental duplications and tandem gene arrays (e.g., histone and rDNA clusters). 

A very efficient approach to analyze DNA sequences is to decompose them into overlapping 

stretches of a fixed length of k bases, called k-mers. For example, overlapping reads can be detected 

because they share k-mers above a certain cut-off (Berlin et al. 2015). k-mers provide interesting insights 

into the above mentioned relationship between read accuracy and computational cost, as can be seen in 

the following real example (throughout this manuscript we set k=16, which is a typical value). The 

genome of the bacterium E. coli strain K-12 MG1655 has been fully sequenced and finished to high 

quality years ago, using Sanger reads (Blattner et al. 1997). More recently, it has been sequenced using 

Illumina and PacBio technologies at high coverage (77x and 94x respectively; (Kim et al. 2014); 

https://basespace.illumina.com). The genome itself has 4.64 Mbp, and hence contains approximately 4.64 

million distinct k-mers, the vast majority of them occurring only once (bacterial genomes have few 

repetitive regions). The PacBio reads contain a total of 436 million k-mers (4.64 million k-mers times 94-

fold coverage); if there were no sequencing errors, these k-mers would correspond to 4.64 million distinct 

k-mers, each one occurring on average 94 times. However, these reads actually contain 292,687,635 

distinct k-mers (~293 millions); among these, 4,513,248 (1.5%) are correct (i.e., present in the finished E. 

coli genome), and the remaining 288,174,387 are sequencing errors ("error k-mers"; see Methods). As 

expected, the correct k-mers show up repeatedly, and their proportion among the total k-mers is 16.6%. 

On the other hand, most error k-mers are unique, because the chance that random errors create twice the 

same 16-mer sequence (or a pre-existing 16-mer) is small. Fig. 1 shows a graph of the k-mer frequency 

spectrum of the PacBio reads and also, for comparison, of Illumina reads. It is easier to consider first the 

Illumina reads (Fig. 1, left panels): the huge peak on the left contains rare k-mers that mostly resulted 

from sequencing errors; the next peak, located approximately at the sequencing coverage, corresponds to 
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Figure 1. k-mer frequency distributions for Illumina and PacBio E. coli reads. Panel A, Illumina, 
all k-mers (k=16 in all panels); panel B, Illumina, with correct k-mers shown in red and error k-
mers in blue. Note that most error k-mers have very low frequency.  The peak at k-mer frequency 
~ 70 corresponds to genomic  single copy k-mers. Panels C and D, PacBio reads. Note the huge 
number of error k-mers. The reference list of valid k-mers came from the finished genome (see 
Methods). 
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 single-copy sequences in the genome; finally, smaller peaks on the right correspond to repetitive DNA 

(they are much more pronounced in repeat-rich genomes such as Drosophila and mammals). A similar 

pattern occurs with PacBio reads (Fig. 1, right panels), except that the error peak is much higher (note the 

Y-axis scale), and that the single-copy peak is strongly shifted towards the left (because so many k-mers 

were "lost" due to sequencing errors). Roughly similar values were obtained for other genomes; more 

typically, ~5% of the distinct k-mers of the PacBio reads are correct (Supplemental Table S1). 

The relevance of the data shown in Fig. 1 became apparent when one considers that all genome 

assembly algorithms are based on k-mer decomposition and comparison, and that at least at some steps 

they must track all distinct k-mers. As on average only ~5% of the distinct k-mers of the PacBio reads are 

correct (Supplemental Table S1), at some steps 95% of the computational resources such as memory and 

CPU time are wasted with k-mers that cannot indicate real read overlaps because they contain at least one 

wrong basis. The three main aligners for PacBio reads deal with this problem somewhat differently. 

BLASR, the first developed, originally aimed to align PacBio reads to a reference genome, but can also 

do the all-by-all alignment. It uses all k-mers and employs successive refinements of the alignment in 

order to detect true overlaps (Chaisson and Tesler 2012). The main limitation of BLASR is its low speed: 

it works well for bacteria and yeast genomes (4-12 Mbp), but is unpractical for genomes such as 

Drosophila (180 Mbp; it used 610,000 CPU hours in the all-by-all step; (Berlin et al. 2015)). DALIGNER 

employs a highly optimized code to perform similar tasks (Myers 2014). It is computationally intensive, 

and in practice requires large clusters to assemble Drosophila-like genomes. Its code in under active 

development; in a recent study DALIGNER was unstable with large genomes (Berlin et al. 2015). The 

third aligner, MHAP, reduces memory usage and computational time by sampling a random subset of k-

mers ("sketch") to detect candidate overlaps; larger sketch size results in more sensitivity, and in a higher 

computational cost. Typically sketch sizes range from ~500 to 1200 k-mers, with resulting sensitivities in 

the range of 60%-90% (Berlin et al. 2015). MHAP is the default aligner of the PBcR pipeline, which, 

after correcting the reads, feed them into the Celera Assembler. Currently PBcR is the pipeline that 

requires the smaller computational infra-structure: microbial genomes can be assembled in a 8-core 
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desktop in a few hours or less, Drosophila-sized genomes are assembled in small servers (e.g., 24 cores, 

64 Gb of RAM) in a couple of days, and mammalian size genomes require a large cluster.  

Whatever the details of the overlapper algorithm, they all have to cope with a "needle-in-

haystack" problem (i.e., to find true overlaps amidst a lot of sequencing noise), and in principle would 

work much better if the large number of "error k-mers" of the long, noisy reads could be identified at the 

outset, and ignored. We propose a simple solution to achieve this. Note that particularly in the case of 

Illumina reads the large peak on the left contain nearly no correct k-mer (Fig. 1); nearly all of them 

correct k-kmers are located to its right. This suggest an interesting possibility: in the absence of a finished 

genome, an accurate list of "valid k-mers" can be obtained from the Illumina reads by taking those k-mers 

that occur at least, say, 10 times (single-copy k-mers are expected to occur ~70 times on this dataset). In 

the E. coli example, if we use the Illumina-based list to validate the k-mers of the PacBio reads, we would 

miss only 145 correct k-mers (out of 4,513,248), and would incorrectly validate 0.1 % of the error k-mers 

(32,456 k-mers out of 288,174,387). Such Illumina "valid k-mer list" is inexpensive to produce, and may 

improve long-read assemblies by identifying in the long reads the k-mers that should be ignored. We 

tested this idea with PacBio reads, assembled by MHAP / Celera Assembler. Indeed, ignoring the k-mers 

which are outside the valid k-mer list resulted in a much higher sensitivity in overlap detection at a 

smaller computational cost, improved the read error correction and, more importantly, yield more 

contiguous assemblies of repeat-rich genomes and regions. Given that it addresses a general problem of 

the noisy long reads, this procedure is likely to improve assemblies produced by other technologies 

(Oxford Nanopore) and aligners (such as BLASR and DALIGNER). 

 

RESULTS 

We implemented the k-mer validation in the MHAP overlapper as detailed in Methods, and tested 

its performance first in overlap detection, then in read error correction and finally on genome assembly. 

We used five model organisms; in four of them PacBio and Illumina reads from the same strain are 

available: a bacteria (E. coli strain K-12 MG1655; genome size of 4.64 Mbp), yeast (Saccharomyces 
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cerevisae strain W303; 12.1 Mbp), worm (Caenorhabditis elegans strain Bristol N2; 103 Mbp) and flies 

(Drosophila melanogaster strain ISO1; ~180 Mbp). We also included the plant Arabidopsis thaliana 

(strain Ler-0; 135 Mbp), although in this case most of the Illumina reads came from different strains 

(mostly Ler-1), and were shallower (Supplemental Table S2; Supplemental Table S8). Finally, as a proof 

of principle, we applied the k-mer validation to a difficult region of the human genome. We operationally 

defined as valid k-mers all those with a frequency bigger than one seventh of the single-copy peak from 

Illumina reads (Supplemental Fig. S1 and Supplemental Table S2). This cut-off was chosen after a limited 

exploration (Supplemental Results).  

 

k-mer validation increases the sensitivity and the specificity of overlap detection.  

The MHAP program compares pairs of uncorrected PacBio reads, aiming to detect real overlaps 

while keeping false positives at a minimum. We compared the performance of the modified MHAP 

against the standard version (1.5b1) following the procedures of the original publication (Berlin et al. 

2015). Namely, artificial PacBio reads were generated by applying the typical PacBio error rates 

(insertion: 10%; deletion: 2%; substitutions; 1%) to 10 kb segments of known genomes (we tested E. coli, 

yeast, C. elegans, and Drosophila, and also random DNA sequences). These segments were arranged as 

pairs with a 2 kb overlap; members of different pairs do not have any real overlap, but may contain 

similar sequences due to repetitive DNA. We measured sensitivity as the proportion of true overlaps that 

were detected (i.e., among members of the same pair). Overlaps between members of different pairs 

estimate the false positive rate (i.e., the specificity); this is more reliably done with random DNA 

sequences, because biological sequences almost always contain repeats that will inflate the false positive 

rate. We varied sketch size (the "num-hashes" parameter; (Berlin et al. 2015)) between 64 and 2048; this 

parameter is very important because it controls the trade-off of computational cost (CPU time plus 

memory usage) vs. sensitivity. All other parameters were kept fixed at their default values (k-mer 

size=16; num-min-matches=3; threshold =0.04). As shown in Fig. 2, k-mer validation caused a huge  
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Figure 2. Sensitivity of read overlap detection with and without k-mer validation. Simulated 
PacBio reads from E. coli (250 pairs of 10 kb sequences with 2kb overlaps) were subjected to 
standard MHAP (blue) or MHAP with masking of low-frequency k-mers (red) for overlap 
detection. The reference list of valid k-mers came from Illumina reads.  
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increase in sensitivity with E. coli data: at a sketch size of 512 (a typical value; (Berlin et al. 2015)), the 

standard MHAP detected 24% of the true overlaps (61 out 250), whereas with k-mer validation we got 

95% (238 out 250). Other genomes and also random DNA sequences produce similar results 

(Supplemental Fig. S2). Finally, the improvement using the Illumina-derived list of valid k-mers is very 

similar to the one using the true k-mer list derived from the finished genome (Supplemental Fig. S3), 

which suggests that the former is an excellent proxy for the later. 

It is interesting also to look at the false-positive rate, which estimates the specificity. The 

observation that false-positives are absent in random DNA sequences and seem to be more frequent in 

repeat-rich genomes (Supplemental Fig. S4) strongly suggests that repetitive DNA is the culprit, and 

indeed we found transposable elements and other repeats when we checked some of them. These spurious 

alignments are undesirable, and k-mer validation offers a simple and effective way to nearly eliminate 

them: we just have to remove from the valid k-mer list all k-mers that seem to occur more than once in the 

genome (see Supplemental Results: we used as a cut-off 1.5-fold of the Illumina single-copy peak; 105 in 

the E. coli case). As shown in Fig. 3, this procedure causes minimal losses in sensitivity, while 

suppressing most of the "false-positives". In the next sections we will always compare the performance of 

standard MHAP ("M") with the two types of k-mer validation: masking only low-frequency k-mers ("L") 

or masking both low-frequency and high frequency k-mers ("LH"). Illumina reads allow a quite precise k-

mer classification; given enough coverage, two-copy k-mers (e.g. from a segmental duplication) can be 

fairly well separated from single-copy ones (Supplemental Fig. S5). For the purpose of read correction 

and assembly, ideally only k-mers that are single-copy in the genome should be used as seeds in overlap 

detection; as we will see below, using Illumina reads and the modified MHAP one gets close to this. 
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Figure 3. Sensitivity and specificity of read overlap detection with masking of repetitive k-mers. 
Simulated PacBio reads from D. melanogaster (1000 pairs of 10 kb sequences with 2kb 
overlaps) were subjected to standard MHAP (blue), MHAP with masking of low-frequency k-
mers  (red), or MHAP with masking of low-frequency and high-frequency k-mers  (black). Note 
that masking of low and high-frequency k-mers cause a huge improvement in specificity (right 
panel) with minimal losses in sensibility (left  panel). The reference list of valid k-mers came 
from Illumina reads. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 14, 2016. ; https://doi.org/10.1101/053256doi: bioRxiv preprint 

https://doi.org/10.1101/053256


12 
 

 

k-mer validation improves the correction of long-reads 

We assessed the performance of read error correction by counting for each read the number of 

correct k-mers among the total k-mers (Supplemental Methods). Uncorrected PacBio reads from different 

organisms contain between 15% to 38% correct k-mers (Supplemental Table S1). Repeat-rich genomes 

have a higher proportion of correct k-mers possibly because errors in repetitive sequences have a rather 

high chance of generating a valid k-mer that occurs in a variant copy of the repeat (located elsewhere in 

the genome). During read correction in all assembly pipelines, the raw reads were aligned, regions with 

poor alignment were trimmed , and discrepant bases were deemed as sequencing errors and were 

corrected by a consensus algorithm (Chin et al. 2013; Berlin et al. 2015). Looking first at the sequencing 

errors (Table 1; columns 4, 7 and 10), the standard MHAP overlapper (coupled with the default 

falconsense correction algorithm) brings the reads from 15% -38% to 93.9% correct k-mers (range across 

different organisms: 92%-97%), and k-mer validation further improves this to 94.7% (L masking) and 

94.8% (LH masking). Second, there are also gains in the total amount of sequence recovered (Table 1, 

columns 2, 5 and 8), presumably due to improved alignment and reduction of unnecessary trimming. The 

combined effect of these two factors is that reads corrected with LH masking have on average 221 

additional correct k-mers (i.e., 15,613 minus 15,392) , when compared to the standard MHAP. So k-mer 

validation indeed improves the correction of long-reads, in both trimming and error correction. The effect 

differs between organisms, which is expected, since it will depend on the quality of PacBio and Illumina 

sequencing, and on the specificities of each genome (e.g., amount and composition of repetitive DNA). In 

particular, the smallest improvement occurred in Arabidopsis, possibly because it has the worst Illumina 

dataset (Supplemental Table S2; Supplemental Fig. S1). It is interesting to also note that most of the 

improvement in error correction seems to be due to masking of low-frequency k-mers (L-masking); LH-

masking (i.e., simultaneous masking of low-frequency and high-frequency k-mers ) adds little in most 

genomes. We will return to this point later.  
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Table 1. Read error correction with different methods.  All values are 95% trimmed means (to remove 
outliers).  

 
 
 
 
 
 

Organism Number  
of reads* 

Standard MHAP L masking LH masking 

  Total 
 k-mers 

Correct  
k-mers 

% correct Total 
k-mers 

Correct
 k-mers 

% correct Total  
k-mers 

Correct 
k-mers 

% correct 

E. coli 7,410 15,045 14,242 94.7 15,118 14,467 95.7 15,119 14,469 95.7 

S. cerevisae 23,455 11,968 11,016 92.0 12,122 11,348 93.6 12,132 11,377 93.8 

C. elegans 128,647 18,701 17,393 93.0 18,807 17,566 93.4 18,806 17,578 93.5 

Arabidopsis 185,270 17,429 16,864 96.8 17,470 16,973 97.2 17,468 16,950 97.0 

Drosophila 227,987 18,735 17,461 93.2 18,826 17,639 93.7 18,855 17,705 93.9 

           

Grand mean - 16,373 15,392 93.9 16,466 15,596 94.7 16,473 15,613 94.8 

 

* Exactly the same reads were compared across the three methods. 
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During read correction (and assembly) we always used Illumina-derived list of valid k-mers, but in E. coli 

and C. elegans (which have completely finished genomes) we also tested the genome-derived list of valid 

k-mers to guide the read alignment. The effect in read correction is negligible (Supplemental Table S3) 

indicating, as seen in the previous section (Supplemental Fig. S3), that Illumina-derived lists are excellent 

proxies for the real k-mer lists. 

Finally, the effect of k-mer validation looks small (e.g., 221 additional k-mers in 15,392, or 

1.4%), but we should note that these are average values. Most assembly breaks occur at repetitive regions, 

and as we will see below (section Assembly of a "model genome") at these difficult regions k-mer 

validation has a strong effect on read correction. 

 

k-mer validation results in more contiguous assemblies 

We assembled the five genomes with the three assembly methods (standard MHAP, L-masking, 

and LH-masking), and used the Quast package (Gurevich et al. 2013) to compare them for metrics such as 

contiguity (NG50) and misassembly frequency (Supplemental Methods). When tested with the simple 

genomes of E. coli (4.64 Mbp) and yeast (12.1 Mbp), all three assembly methods yield similar results 

(Supplemental Table S4). In E. coli, all three approaches yield one contig spanning the complete genome, 

with high identity to it. In yeast, the NG50 from MHAP and LH assemblies are the same (818 kb), 

whereas L-masking yield a bit smaller value (751 kb). The yeast PacBio data came from W303 strain, for 

which there is no available finished sequence for comparison; however, the NG50 of the three assemblies 

approached the NG50 of the finished reference yeast strain (924 kb), so it seems that they are close to 

completeness. Hence both E. coli and yeast provide a nice demonstration of the power of long-reads 

which, however, leaves little room for comparison among assembly methods. However, the difference 

between the three assembly methods become visible in these simple genomes when we use more 

challenging conditions such as low coverage data or small sketch size: in both cases k-mer validation 

leads to huge improvements in assembly contiguity (Fig. 4A). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 14, 2016. ; https://doi.org/10.1101/053256doi: bioRxiv preprint 

https://doi.org/10.1101/053256


 
 
Fig. 4  
 

A B 

 
 
 

 

 
Figure 4. Contiguity of assemblies produced with different methods. "M", standard MHAP; "L", 
MHAP with low-frequency k-mer masking; "LH", MHAP with low and high frequency k-mer 
masking. Panel A: assembly of simple genomes under the challenging conditions of low 
coverage (E. coli; coverage reduced from 94x to 30x), or small sketch size (yeast; MHAP sketch 
size reduced from 512 to 128). Panel B: assembly of three complex genomes (C. elegans, A. 
thaliana, and D. melanogaster). 
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When we tested the k-mer validation procedure with three complex genomes (C. elegans, A. thaliana, and 

D. melanogaster), we found that in all three cases it produced significantly more contiguous assemblies: 

in C. elegans the NG50 rose from 2,221 kb to 2,764 kb , in Arabidopsis from 9,588 kb to 13,994 kb, and 

in Drosophila from 7,156 kb to 13,655 (all values MHAP vs. LH-masking, Fig. 4B; Table 2). The 

improvement in contiguity is also seen in the largest contig size (Table 2). Statistics such as NG50 focus 

only on the largest contigs (e.g., in Drosophila only the 4 or 5 largest, all euchromatic), but the NGx plots 

indicate contiguity improvements across all size ranges (Supplemental Fig. S6). Aggressive assembly 

algorithms can spuriously increase statistics such as NG50 at the expense of increasing misassemblies; 

this was not the case of k-mer-validation, which actually in most cases yield smaller numbers of 

misassemblies, mismatches, and indels, when compared to the standard MHAP (Table 2). Although we 

have not tested even more complex genomes such as mammals and large plant genomes, it is very likely 

that k-mer validation will lead to improved assemblies in these cases as well. 

It is worth mentioning here two final points. First, improvements in assembly caused by k-mer 

validation are the same when we use the Illumina or the genome derived list of valid k-mers 

(Supplemental Table S5). This shows that in terms of assembly Illumina-derived lists are excellent 

proxies for the real k-mer lists, as seen before for overlap detection (Supplemental Fig. S3) and read 

correction (Supplemental Table S3). Second, overlap detection (Fig 3A; Supplemental Fig. S4) and read 

error correction (Table 1) are essentially the same with L- and LH-masking, but most or all the assembly 

contiguity gains in complex genomes occur with LH-masking (Fig. 4B). Hence it seems that there are 

additional benefits of LH-masking not fully covered by our metrics of overlap detection and read error 

correction. We will address this point in the next section. 
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Table 2. Assembly quality assessment.  Note that  k-mer validation (L and specially LH) increases the contiguity 
statistics  (NG50, largest contig), while slightly decreasing the assembly errors (last three columns). 

 
Assembly* Contig number Largest contig Total length NG50 Total misassemblies† Mismatches/100kb Indels/100kb 
cel_M 160 5285028 104520657 2220851 1753 15.66 46.91 
cel_L 174 5302340 104800227 2031103 1691 14.45 46.75 
cel_LH 103 7245260 102852825 2763640 1645 14.52 46.17 
ara_M 587 16139753 132463944 9587914 NA NA NA 
ara_L 666 24570841 133909824 9184596 NA NA NA 
ara_LH 662 18780930 133939965 13994073 NA NA NA 
dros_M 1059 21678608 169313924 7157908 11065 14.50 92.93 
dros_L 1010 18648690 168884438 7492706 10486 14.76 83.16 
dros_LH 1035 25756350 169969331 13654691 10974 14.23 110.68 

 

*  "M", standard MHAP; "L", MHAP with low-frequency k-mer masking; "LH", MHAP with low and high frequency k-mer masking.  
† We could not estimate misassemblies in  Arabidopsis because the reference genome came from a different strain (all SNPs would be counted as 
misassemblies). 
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Assembly of a "model genome" 

The causal events that lead to the improvements in read correction (Table 1) and in assembly 

(Fig. 4) are scattered in too many regions of the genome, and may too complex to allow a detailed study 

(e.g., how exactly does LH-masking improve contiguity?) In order to better understand them, we isolated 

a small and difficult region and used it as a model: a 44 kb segmental duplication (98% identity between 

the two copies), which is part of a much larger segmental duplication located in the 10q11 region of the 

human genome. The finished sequence of both copies was obtained by painstaking BAC cloning and 

sequencing (Chaisson et al. 2015). As detailed in Supplemental Methods, we used the finished sequence 

to simulate PacBio reads from both copies of the 44 kb segmental duplication, along with ~300 kb of 

flanking sequence; we used simulated reads because we want to know which segmental duplication copy 

they came from. We then assembled the reads with the three methods (standard MHAP, L-masking and 

LH-masking). In the case of L and LH-masking, we obtained the valid k-mer lists from the finished 

sequence. The perfect assembly of this "model genome" should yield two contigs ("left" and "right"), 

each representing one copy of the segmental duplication and the correct flanking sequences. Standard 

MHAP ("M") assembly resulted in 11 contigs, L-masking in three contigs, and LH-masking yield the 

expected two contigs (Supplemental Table S6). The majority of the assembly breaks in the M and L 

assemblies were within or close to the segmental duplication region (not shown), and particularly in the 

M assembly there is a large amount of sequence duplication (19%), caused by partially overlapping 

contigs in this region (Supplemental Table S6).  

Since the three assemblies differ only in the initial alignment of the uncorrected reads, all 

assembly differences must ultimately trace to it. When we investigated the read alignment, we found that 

both the standard MHAP and MHAP with L-masking fail to sort the two copies of the segmental 

duplication in most cases, (i.e., in most reads ~ 50% of the detected overlaps are between reads from 

different copies; Supplemental Fig. S7), whereas with LH-masking 92% of the detected overlaps are 

correct.  
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The next step in the assembly pipeline is the read correction by a consensus algorithm, using the 

overlaps obtained as above. Since we know the origin of reads, we can score for each site of each 

corrected read if it has the right base, a wrong base, or a gap. We should distinguish three types of sites 

here: (i) outside the segmental duplication (NSD sites); (ii) within the segmental duplication at positions 

that are variable between the two copies (SFV sites, for "sequence family variant"; (Dennis et al. 2012; 

Hughes and Rozen 2012); and (iii) within the segmental duplication at positions that are conserved 

between the two copies (SDC sites). Note that at SFV sites there will be conflicting sequence information 

in the overlaps produced by standard MHAP and by L-masking (but not by LH-masking), because as seen 

above these two methods mix almost indistinctly reads from the two copies of the segmental duplication. 

At the NSD and SDC sites, on the other hand, there is no such conflicting information, because at these 

sites either the two contigs do not align at all (NSD), or have the same sequence (SDC). As shown in Fig. 

5, the three methods work equally well for NSD and SDC sites: in the corrected reads 98% of the bases at 

these sites are right. However, at SFV sites there is a huge difference: whereas with LH-masking read 

correction still works very well (97% right bases), with the standard MHAP and L methods only ~80% of 

the bases are right; in most cases the SFV site is deleted (substituted by a gap). This 80% value is the 

average for the whole segmental duplication; sites closer to the border actually have almost perfect 

correction, whereas those in the middle of segmental duplication can get below 50% correct bases 

(Supplemental Fig. S8). This heterogeneity in error correction makes sense: close to the border of the 

segmental duplication, the flanking sequence ensures the correct read overlap (and proper read 

correction). In the same vein, the SFV sites around a 1.5 kb indel in the middle of the segmental 

duplication were "protected" from miscorrection (Supplemental Fig. S8). The above results employed 

falconsense as the consensus algorithm; the more precise (and slower) pbdagcon yield essentially the 

same result (Supplemental Fig. S9), the main difference being the type of miscorrection at SFV sites: 

whereas falconsense almost always introduces a gap, pbdagcon do either this or introduces a wrong base. 

The bottom line is that in both cases the SFV information is destroyed.  
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Figure 5. Read correction within a segmental duplication (human 10q11 region). Corrected reads 
were aligned with the original sequence, and each base of each read was scored as "correct" 
(blue),  "wrong" (red), or "deleted" (yellow).  "SFV sites" (for "sequence family variant") are 
located within the segmental duplication, at positions where two copies are different. "Non-SFV 
sites" are outside the segmental duplication, or within the segmental duplication and identical 
between the two copies (they produce identical results and were lumped in the figure). Note that 
standard MHAP and MHAP with L-masking frequently fail at SFV sites, whereas LH-masking 
correctly handle them. Data from 450 sites of each type; reads were corrected with the default 
falcon-sense algorithm (see Fig. S9 for the pbdagcon correction). 
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So it seems that the "model genome" provided a quite complete answer for the question "how 

exactly does LH-masking improve contiguity? " The increase in overlap detection efficiency due to 

masking of error k-mers helps. But even more important is the stringent masking of repetitive k-mers 

(defined as all k-mers that are not single-copy in the genome): the different copies of a repeat can be very 

similar (in our example, 98% identical), and without this stringent masking the signal from SFV sites is 

swamped by the signal from conserved sites at the aligner step, leading first to indiscriminate overlaps 

(Supplemental Fig. S7), then to rampant read miscorrection at the SFV sites (Fig. 5; Supplemental Fig. 

S8), and finally to assembly breaks (Supplemental Table S6).  

The assembly breaks are a direct consequence of the destruction of the SFV information: when a 

repeat is longer that the vast majority of the reads, it can only be correctly traversed by a tiling path of 

SFV. Ultimately, failure to correctly handle repeats during overlap detection and read correction lead to 

fragmentation and other assembly errors. The problems posed by repeats in genome assembly have been 

recognized a long time ago (Myers 1995; Phillippy et al. 2008; Nagarajan and Pop 2009; Koren et al. 

2012), and long reads have a dual relationship with them: when they fully span the repeat they solve the 

problem, but when the repeat is longer than the reads the problem become harder because the overlap 

detection in principle could not be stringent. In a sense, LH-masking implements stringent overlap 

detection in noisy reads. 

 

Sampling bias in the Drosophila PacBio data 

Given previous work that showed that PacBio sequencing solved two difficult repetitive regions 

of the Drosophila Y-chromosome (Carvalho et al. 2015; Krsticevic et al. 2015), we were surprised to find 

that some Y-linked single-copy genes were missing large parts (e.g., only 24% of the coding sequence of 

the kl-5 gene was present in the original MHAP assembly; Fig. 6A; Supplemental Table S7).  
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Fig 6   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Sampling bias in the Drosophila PacBio data.  Panel A: BlastN search using the Y-
linked kl-3 gene CDS as the query against a database of the MHAP-assembled Drosophila 
genome (Berlin et al. 2015). Panel B: Coverage of the same gene by raw PacBio reads. Note that 
most of assembly gaps in the kl-3 gene actually were caused by low or absent coverage by 
PacBio reads. The expected read coverage is 45x. The Illumina coverage of the same region is 
fairly homogeneous (Fig. S10). 
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We initially thought that this was due to a combination of the lower coverage of the Y (~ 45x; the 

Drosophila reads came from male DNA , and hence coverage of the sex-chromosomes should be half of 

the autosomes), and assembly parameters optimized for the ~95x coverage of the autosomes. Two 

findings of the present work strongly suggest that this was not the correct explanation: (i) k-mer 

validation, and tweaking of assembly parameters, caused only marginal improvements (we tried around 

40 different combinations of the parameters ovlMinLen, merThreshold, and assembleCoverage; data not 

shown); (ii) the coding regions of all 20 X-linked genes we looked are complete (Supplemental Table S7). 

When we looked at the raw PacBio reads, we found that sequencing depth was very irregular in several 

Y-linked genes, reaching nearly zero in large parts of kl-3, kl-5 and another genes, whereas the 

sequencing depth of X-linked genes is fairly constant and centered around 45x, as expected 

(Supplemental Fig. S10).  

This finding is important and may have general significance because it violates one of the 

conditions of Gene Myers "140 char theorem" ("sampling is Poisson "); such violations of random 

sampling may be an obstacle to perfect assemblies using PacBio technology.  

The strong sequencing bias described above is surprising, given the success of PacBio data in 

assembling  AT-rich or GC-rich genomes (Shin et al. 2013; Paredes et al. 2015) and previous reports of 

fairly uniform coverage across genomes (Ross et al. 2013). We believe that this bias is related to the 

peculiar organization of some Drosophila Y-linked genes, which have Mbp-sized introns composed of 

simple satellite DNA (e.g.. (AT)n ; the location of these satellite blocks is not precisely known; 

(Bonaccorsi and Lohe 1991; Kurek et al. 2000; Reugels et al. 2000)). This will not cause problems in the 

assembly of exons with Sanger or short-read technologies, because the DNA is sheared in short pieces 

before sequencing. Indeed, the Illumina coverage is fairly constant across all Y-linked genes (except for 

occasional exon duplications; Supplemental Fig. S10). However, DNA used for PacBio sequencing has 

high molecular weight, in the ~100 kb range when extracted and then sheared to ~20kb-40 kb; this means 

that some Y-linked exons will always be surrounded by a large chunk of simple repeats. Indeed, when we 

looked at the exon with the lowest coverage in the kl-5 gene, we found that it is surrounded by at least 
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~10 kb of nearly pure (AT)n sequence on one side, and a very AT-rich sequence on the other side 

(Supplemental Fig. S11). 

How might had these repeats adversely affected PacBio sequencing? A benign hypothesis would 

be at the sample preparation step: (Kim et al. 2014) reported the use of cesium chloride centrifugation for 

the Drosophila sample, which may had selected against AT-rich regions such as exons flanked by 

massive AT-rich satellite blocks (they will have a smaller buoyant density). A more worrisome possibility 

is that PacBio sequencing has some intrinsic, strong bias (e.g., against regions with very strong AT-bias). 

One way to solve the question would be to sequence again D. melanogaster, without the use of cesium 

chloride centrifugation for sample preparation. It is ironic that we failed to improve the assembly of 

single-copy Y-linked genes from Drosophila, since this was the original motivation of the present work. 

  

DISCUSSION 

Single molecule sequencing is revolutionizing genome assembly: the long reads can yield Mbp-

sized contigs that span complete chromosomes (or nearly so) of prokaryotes and simple eukaryotes, and 

the  euchromatic parts of more complex genomes such as Drosophila (Berlin et al. 2015; Koren and 

Phillippy 2015). Their major limitation is the low accuracy. Specifically, the high error rate generates a 

huge number of k-mers that are not present in the original genome, and the aligners (e.g., MHAP) must 

sift through them in order to find shared, real k-mers that indicate true read overlaps. These problems 

currently are addressed by sequencing at high depth (ideally 100x), aligning the reads with improved, fast 

software (Myers 2014; Berlin et al. 2015), and implementing a consensus algorithm to correct the reads 

prior to normal assembly (Chin et al. 2013). Whereas these procedures in principle are straightforward, 

the computational cost is high, and can be nearly prohibitive for large genomes (e.g., mammals). A less 

appreciated problem is the risk of miscorrection of the reads from repetitive regions: as the initial 

alignment must be loose in order to detect real overlaps among the noisy reads, reads from paralogous 

regions (e.g., different copies of tandem rDNA genes, long transposons, or segmental duplications) will 

easily be lumped together (Supplemental Fig. S7); once this happens, the error correction algorithm 
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miscorrect the reads at the "sequence family variant" sites (Fig. 5), which in later assembly steps tend to 

cause assembly breaks. 

In this paper we propose a simple and inexpensive procedure that addresses both problems: to 

enforce that only correct, single-copy k-mers are used as seeds for the read alignment. The enforcing of 

"correct k-mers" solves the "needle in a haystack problem", by making the aligner ignore the error k-mers, 

which are the vast majority. This by itself dramatically increase the sensibility in overlap detection of the 

MHAP aligner (Fig. 2). The enforcing of k-mers that are single-copy in the genome increases the 

specificity in read overlapping (Fig 3B; Supplemental Fig. S7) and essentially abolish read miscorrection 

at "sequence family variant" sites (Fig. 5). This procedure requires a list of all k-mers from the genome. 

Whereas a perfect list can only be obtained from a completely finished genome (i.e., when a new 

assembly is nonsensical), we showed that k-mers from Illumina reads provide an excellent approximation 

to it. In contrast to the direct correction of PacBio reads with Illumina reads ("hybrid assemblies"), we 

used Illumina reads only as a source of the list of correct single-copy k-mers. This list is used to inform 

the aligner which k-mers should be ignored, thus guiding the alignment of PacBio reads for their self-

correction; all sequence information came from the PacBio reads themselves. Its use significantly 

improves overlap detection (Fig. 2), the accuracy of read correction (Table 1; Fig. 5; Supplemental Fig. 

S8), and the contiguity and accuracy of genome assembly (Fig. 4; Table 2). Gains in contiguity as 

measured by NG50 ranged from 24% (in C. elegans) to 91% (i.e., almost doubled, in D. melanogaster). 

We believe that these gains justify by themselves the use k-mer validation, but larger gains may be 

possible, as suggested below. Finaly, note that the additional cost of Illumina sequencing is negligible, or 

even absent, since in nearly all cases in which a PacBio dataset is available, there is a also Illumina 

dataset from the same strain. In cases where one needs to do the Illumina sequencing, Supplemental Fig. 

S1 and Supplemental Table S2 suggest that a ~70x coverage is enough for a good separation between 

single-copy and repetitive k-mers. 

 

Possible improvements 
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There are several avenues that may lead to further improvements in assembly contiguity. First, 

nearly all current long read assemblers employ two rounds of read alignment and correction (the first 

deals with the raw reads, and the second with the correct reads), and we modified only the aligner of the 

first round (the MHAP program). It is likely that the second round of read alignment and correction, 

which uses a different program and is aimed to deal with Sanger-like error rates, would also benefit from 

the stringent use of single-copy k-mers as seeds for overlap detection. 

Second, it will be interesting to test the k-mer validation procedure in the other long-read aligners 

(DALIGNER and BLASR) because MHAP is a "probabilistic" aligner that randomly samples a subset of 

k-mers, whereas both DALINGER and BLASR deal with all k-mers. It is likely that k-mer validation will 

increase the speed (and possibly the stability) of these aligners.  

Third, the read correction algorithms (e.g., falconsense and pbdagcon), may be modified to avoid 

the introduction of non-valid k-mers while correcting the reads. 

Fourth, there is the issue of the Illumina-derived k-mer list. As detailed in the Supplemental 

Results, we did a limited exploration of the low frequency cut-off  (which should remove error k-mers) 

and  high frequency cut-off  (which should spare only single-copy k-mers), and hence a more throughout 

trial-and-error  may be beneficial.  

Fifth, nearly uniform coverage is considered a major advantage of PacBio sequencing, and hence 

the strong bias we found in the Drosophila data warrants further investigations. It will also be interesting 

to look at Oxford Nanopore datasets for complex genomes, which as far as we know have not yet been 

produced. 

Finally, very recently the PBcR/Celera Assembler pipeline has been upgraded to a new pipeline 

called Canu (http://canu.readthedocs.org/). It will be very interesting to implement the k-mer validation 

procedure on it. 

These developments are beyond the scope of the present paper; we are pursuing some of them 

now. 
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How far can we go? 

Assembly quality is a function of coverage, error rate, and read length (Phillippy et al. 2008; 

Nagarajan and Pop 2009; Myers 2016). Second generation technology (e.g. Illumina) provided a good 

solution for this equation when fragmentation (and correct repeat reconstruction) is not a concern, e.g., for 

sequencing genes or to identify SNP variants by comparison to a reference genome (The 1000 Genomes 

Project Consortium 2010). Long read sequencing provided a different solution: it yields unfragmented, 

nearly finished assemblies of regions with moderate repeat content, such as prokaryotic genomes and (to a 

large extent) the euchromatic portion of complex eukaryotic genomes, at a higher cost. However, 

sequencing costs of new technologies tend to drop quickly, and the maturation of other long read 

technologies (e.g., Oxford Nanopore) brings the promise of further cost reductions. Hence, the major 

challenge that remains is how to correctly assemble repetitive DNA, which currently cause large 

assembly gaps (e.g., the histone and rDNA clusters of Drosophila, nearly all centromeres ), massive 

fragmentation in the heterochromatin, and scattered breaks in the euchromatin (e.g., humans segmental 

duplications). As (Myers 2016) stressed, this is an open question: "… work on the assembly problem has 

failed to really address the issue of how to resolve repetitive sequences except in fairly superficial ways." 

In a sense , technology development is pushing forward what a is repeat in assembly terms ("reads long 

enough 2 solve repeats "): retrotransposons (~7kb long) are a major obstacle for contig building with 

Sanger and Illumina sequencing, and are almost harmless to PacBio. So brute force, in the form of very 

long reads (say, average length in the 100 kb range), would solve the majority of the currently intractable 

regions mentioned above: once the "golden threshold" of reads-longer-than-repeats is crossed, genome 

assembly became much simpler (see Fig. 1 in (Koren and Phillippy 2015)). 

But "perfect assembly" is possible even when reads are not long enough to cross a repeat, as 

SFVs may provide a unique tiling path across it. For example, no read used in the assembly of our "model 

genome" spans the 44 kb segmental duplication, and yet we could assemble it in a essentially perfect 

form. As the results from our "model genome" show, the key is first to preserve the SFV sites by not 

miscorrecting them, and second, to effectively use their information, by not swamping the overlap 
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detection with the flood of repetitive (i.e., non single-copy) k-mers. The k-mer validation procedure we 

presented here seems to be an effective implementation of these two features. Ultimately the ability to 

cross a repeat longer than the read length will depend on the number of SFVs per read. A tiling path 

requires an absolute minimum of two SFVs per read, and our model genome data had roughly 141 SFVs 

per read (450 SFV sites in a 44kb segmental duplication; average length of corrected reads: 13767 bp). It 

remains to be seen which read length will provide enough SFVs to cross large regions such as the histone 

or rDNA clusters in Drosophila (500 kb and 2 Mbp, respectively) which currently are inaccessible (both 

are severely fragmented even in our best Drosophila assembly). In the same vein, two gaps in (Chaisson 

et al. 2015) could not be closed with BAC-based assembly, which amount to reads in the ~100 kb range, 

with very low error rate. Another limit, admittedly secondary, is the assembly of simple repeats such as 

the intronic (AT)n blocks of Drosophila Y-inked genes, because the repeat periodicity (2-10 bp) overlaps 

with the error frequency of the uncorrected long reads. Finally, k-mer validation (with LH-masking) is 

useful even when repeats are smaller than the read length, for it protects the reads from miscorrection at 

repeats and hence reduce assembly errors in these regions. 

As sequencing technology and assembly software move forward, the question posed by the title 

of this section keeps returning (Weber and Myers 1997; Carvalho et al. 2003; Koren and Phillippy 2015; 

Myers 2016) . But as clearly stated by Myers (https://dazzlerblog.wordpress.com/2014/05/15/on-perfect-

assembly/)  and (Koren and Phillippy 2015), perfect assemblies are on the verge of becoming reality, and 

we may now be close to the final answer. 

 

METHODS 

Sequence reads 

 The sources of PacBio and Illumina reads for all five organisms are shown in Supplemental 

Table S8. All PacBio reads came from (Kim et al. 2014) and PacBio DevNet (http://www.pacb.com/); we 

downloaded them from Amazon S3 repositories (listed in the Supplementary Information of (Kim et al. 

2014), or from the Amazon Elastic Block Storage (EBS) snapshot described in (Berlin et al. 2015). These 
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data have also been deposited at NCBI Short Read Archive (except for C. elegans), but the reads there are 

unfiltered (Kim et al. 2014). The sources of Illumina reads follows: E. coli, Illumina BaseSpace 

(https://basespace.illumina.com); S. cerevisae,  Saccharomyces Genome Database 

(http://www.yeastgenome.org/); A. thaliana, (Cao et al. 2011; Gan et al. 2011); C. elegans, (van Schendel 

et al. 2015); D. melanogaster, (Gutzwiller et al. 2015).  

 

Implementation of k-mer validation  

We implemented the k-mer validation in the MHAP overlapper as follows. The standard MHAP 

algorithm converts each k-mer to a number (using a hash function), and saves from each read only the 

lowest value (called "min-mer"). The process is repeated, say, 500 times with different hash functions to 

generate a "sketch" of size 500, which is stored in the memory; overlapping reads were detected because 

their sketches share min-mers above a user-specified cut-off (see (Berlin et al. 2015) for details). We 

implemented the k-mer validation by adding a simple step in the MHAP code: if the read k-mer is present 

in the valid k-mer list, it is converted to a number as described above. If it is not there (and hence 

probably is a an error k-mer), it is converted to a very large number (technically, to 

Long.MAX_VALUE), effectively forcing the program to ignore it. The list of valid k-mers was 

previously obtained from Illumina reads with the jellyfish program (Marçais and Kingsford 2011) , saved 

as a text file, and read by the modified MHAP code, before reading the PacBio reads (see the 

README.txt file in http://tinyurl.com/modified-MHAP). Note that these procedures implement a 

"positive selection list", whereas most aligners and overlappers allow for a list of undesirable k-mers 

(either supplied by the user or produced by the program itself) which is used to remove highly repetitive 

k-mers, in order to reduce the computational load (e.g., the "filter-threshold " parameter in MHAP). 

Furthermore, their identification of repetitive k-mers is much less precise because k-mer counts are 

obtained from the raw PacBio reads. Illumina reads allow a much finer k-mer classification; given enough 

coverage, even two-copy k-mers (e.g. from a segmental duplication) can be fairly well separated from 

single-copy ones (Supplemental Fig. S5). The frequency cut-off values used to build the valid k-mer lists 
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is presented in Supplemental Table S2 and Supplemental Fig. S1, and further discussed in the 

Supplemental Results. 

The modified MHAP (source and compiled jar file) and PBcR script are available at 

http://tinyurl.com/modified-MHAP . The same link provides a README.txt file, with instructions on 

how to install and run the modified files. When run without a valid k-mer list the modified MHAP 

produces an output that is identical to the original MHAP code. 

The same list of valid k-mers mentioned above was used to sort "correct" and "error" k-mers in 

reads. For example, in Fig.1 we used a custom script that loaded the list in the memory (as an associative 

array) and used it to classify each read k-mer as correct (match) or error (not match). 

 

Genome assemblies 

All assemblies were performed in two Linux servers with 24 cores and 64 Gb or 144 Gb of RAM, 

with the Celera Assembler version 8.3 (PBcR pipeline). Unless otherwise noted, default PBcR parameters 

were used for all assemblies, including the falconsense read correction algorithm. Our main purpose was 

to compare the Standard MHAP overlapper with the modified version (i.e., with k-mer validation) and to 

save time we opted to not polish the assemblies with Quiver (Chin et al. 2013). 
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