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Abstract

The autoregulatory motif of Nanog, a heterogeneously expressed core pluripotency factor in
mouse embryonic stem cells, remains debated. Although recent time-lapse microscopy data
provide the unparalleled ability to monitor Nanog expression at the single-cell level, the extrac-
tion of mechanistic knowledge is precluded by the lack of inference techniques suitable for

noisy, incomplete and heterogeneous data obtained from proliferating cell populations.

This work identifies Nanog’s autoregulatory motif from quantified time-lapse fluorescence line-
age trees with STILT (Stochastic Inference on Lineage Trees), a novel particle-filter based algo-
rithm for exact Bayesian parameter inference and model selection of stochastic models. We first
verify STILT’s ability to accurately infer parameters and select the correct autoregulatory motif
from simulated data. We then apply STILT to time-lapse microscopy movies of a fluorescent
Nanog fusion protein reporter and reject the possibility of positive autoregulation. Finally, we use
STILT for experimental design, perform in silico overexpression simulations, and experimentally
validate model predictions via exogenous Nanog overexpression. We finally conclude that the
protein expression dynamics and overexpression experiments strongly suggest a weak negative

feedback from the protein on the DNA activation rate.
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34

35 We find that a simple autoregulatory mechanism can explain the observed heterogeneous
36  Nanog dynamics. This finding has implications on the understanding of the core pluripotency
37  network, such as supporting the ability of mESC populations to diversify their proteomic profile
38 to respond to a spectrum of differentiation cues. Beyond this application STILT constitutes a
39 generally applicable fully Bayesian approach for model selection of gene regulatory models on
40 the basis of time-lapse imaging data of proliferating cell populations. STILT is freely available at:

http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html

43 Introduction

44  Nanog is a key regulator of pluripotency, whose expression is fundamentally stochastic, involv-
45 ing the chance synthesis, degradation and interaction of biochemical species . It is heteroge-
46  neously expressed >, exhibiting strong fluctuations in expression *® which may serve to prime
47 mESCs for differentiation ®’. Nanog binds its own enhancer as a homodimer ¢, and Nanog-
48  dependent feedback loops are thought to be critical to mESC regulation °. However, Nanog’s

49 mode of autoregulation has been debated. While Nanog has long been thought to exhibit posi-

10,11 Kk 1213

50 tive autoregulation
51  and no direct feedback .
52

53 Nanog’s intriguing heterogeneity and its associated biological implications have motivated sev-

, recent studies have provided evidence for both negative feedbac

54  eral deterministic and stochastic models of Nanog regulation ">~*°. While reported deterministic

55 models provide a population level description ">"’

20,21

, they are unable to capture pluripotency fac-
56 tor heterogeneity and the existence of subpopulations *?***. Previous stochastic models
57  describe single-cell dynamics but neglect heterogeneity arising from intrinsic noise generated by
58  bursty production of mMRNA ?° or slow promoter-switching dynamics 2 which may vary between
59 cells. Based on the available data, a variety of mechanisms have been proposed to recapitulate
60 Nanog’s bimodal expression distribution * including bistable switches, stochastic oscillations *°,
61 and excitatory systems '®. To ultimately discriminate between such mechanisms, quantitative
62 model selection based on single-cell data is required.

63

64 Time-lapse fluorescence microscopy provides a means to unambiguously label, track and quan-

65 tify individual cells, thus providing critical insight into dynamics of gene expression %% Cells
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may be monitored as they proliferate, thereby establishing a cellular lineage tree, capturing
long-term regulatory programs such as the onset of expression of lineage-determining markers
in progenitor cells ?° or heterogeneous response to external perturbation * at the transcript and
protein level. Time-lapse fluorescence microscopy is thus well suited for investigating causative

relationships between genes 3"

, and has recently been applied to Nanog dynamics in mESCs
451433 However, to our knowledge, no attempt has been made to directly fit time-lapse Nanog
data with stochastic dynamical models, infer parameters, and perform model selection such as

of competing autoregulatory motifs.

Statistical inference based on single-cell time-lapse data presents several challenges. Stochas-

34,35 or

tic models typically elude analytical solution except for simple models in the steady-state
transient dynamics under simplifying assumptions **-*8. Simplifications of fully stochastic mod-
els, such as the linear noise approximation, are often not appropriate in the context of low copy
numbers where moments are poorly estimated *°. Particle filter based methods for inferring the
unknown copy number of chemical species and associated model parameters have been suc-
cessfully applied to single-cell time series data “°. However, proliferating cell populations require
special models capturing cellular relatedness, and observations are typically noisy and incom-
plete. Thus, extracting mechanistic knowledge from single-cell time-lapse fluorescence micros-
copy data requires methods suited to noisy, partially- and discretely-observed, heterogeneous

data with small molecule numbers, small, proliferating cell populations, and intrinsic stochastici-

ty.

To address these challenges and infer Nanog’s autoregulatory mechanism, we introduce Sto-
chastic Inference on Lineage Trees (STILT), for fitting stochastic gene regulation models to
time-lapse data of proliferating cells with known genealogy (lineage tree). STILT originally ex-
tends exact Bayesian parameter estimation and model selection for stochastic models to tree-
structured data, thus enabling the investigation Nanog autoregulation using time-lapse fluores-
cence microscopy movies and providing a valuable, general tool for the analysis of single-cell
time-lapse data. We demonstrate STILT’s capability to infer parameters and select among three
models of transcriptional autoregulation: positive, negative and no transcriptional feedback. We
then investigate the autoregulatory motif governing Nanog dynamics in a recently published
Nanog single-cell time-lapse dataset *. We compute the evidence for each model, enabling us to
reject positive feedback as a likely mode of Nanog autoregulation. To resolve between no feed-

back and negative feedback, we design an informative perturbation experiment, predict and
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100 subsequently verify its response, finally identifying weak negative feedback as Nanog’s most

101 probable autoregulatory motif.

102 Results

103  STILT: A stochastic inference algorithm using tree-structured

104 time-lapse fluorescence microscopy data

105 We introduce STILT for performing parameter inference and model comparison for stochastic
106 chemical reaction networks from fluorescence microscopy movies of proliferating cells; details
107  are contained in the Online Methods. STILT requires as input quantitative single-cell time series
108 data derived from time-lapse fluorescence microscopy along with the corresponding cellular lin-
109 eage trees (Fig. 1A). STILT iteratively proposes new samples (particles) for both the unknown
110 latent history of the system (including potentially unobserved species) and the distribution of pa-
111 rameters given the observed data. It novelly couples the bootstrap particle filter *' to a model of
112  cell division to facilitate inference of stochastic gene regulation models, compute evidences,
113  perform model comparison, and infer parameters. By comparing proposed trajectories with the
114  data, incompatible particles are removed, enriching the population for informative particles. Pa-
115  rameter posterior distributions are approximated by the particle mixture distribution after itera-
116 tively including all observations.

117

118  STILT requires the specification of one or more candidate models in the form of chemical reac-
119 tion networks (Fig. 1B), which relate chemical species via their reactions’ stoichiometry and ki-
120 netic constants. Since the true values of parameters are generally not known, a prior distribution
121 (i.e. from literature) is required for each parameter (Fig. 1B). STILT (Fig. 1C) then combines the
122  experimental data, prior distributions and model structures to estimate parameters and latent
123  histories, and approximate model evidence (Fig. 1D). Using the evidence, one can compute
124  Bayes factors to assess the relative probability of each model and potentially reject models that

125  cannot explain the data.
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126 Autoregulatory motifs

127  We considered three motifs for Nanog autoregulation: No Feedback (Fig. 2A), Negative Feed-
128 back (Fig. 2B), and Positive Feedback (Fig. 2C); protein affects the DNA activation/inactivation
129 rate in case of feedback. Each model comprises a single gene in either an inactive conformation
130 (D) with no transcription, or an active conformation (D*) with stochastic transcription, and mRNA
131 (M) and protein (P) (see Online Methods for details). These molecular species are governed by
132 six reactions for activation/inactivation of DNA, and production and degradation of
133  mRNA/protein (Table 1). In the following we first validated model selection with STILT using
134  synthetic data, and subsequently applied STILT to real Nanog time-lapse data.

135 In silico validation

136 We evaluated STILT on synthetic datasets generated from the above-described autoregulatory
137  motifs (Fig. 2A-C). We simulated each model to yield lineage trees with 3 generations and 7
138 cells (Fig. 2D-F, solid lines). Parameters were chosen such that cells have similar protein levels
139  (10°-10* molecules) in each model (Supplementary Table 1). We assume that only protein
140 abundance was measured. Gaussian noise ( =200 proteins) was added to simulate measure-
141 ment error.

142

143  We applied STILT to each lineage tree using suitable priors (Supplementary Fig. 1, Supple-
144  mentary Table 2), with three runs per dataset to assess robustness. Importantly, we find that
145  STILT proposes trajectories which completely contain the observed time series for each simu-
146 lated dataset (Fig. 2D-F, shaded areas); if sampled trajectories would not contain the data it
147  would strongly indicate against that model and/or priors. The unobserved mRNA trajectories are

148 also well inferred by the particle filter (Supplementary Fig. 2). Using fractional errors of each pa-

true
i

;-6 , . , :
149  rameter, ‘GW, where 6,""¢ is the true value of parameter i, we find general improvement
i

150 compared to priors (Fig. 2G-l). While many parameters are estimated accurately and well con-
151 tained in the posterior, some parameters are poorly identifiable, probably due to insufficient in-
152  formation content of the simulated data. Parameters are robustly estimated when the model is
153  correct (Supplementary Fig. 3); inference with an incorrect model may result in local optima
154  when the observed transitions are very unlikely to occur.

155
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156  We evaluated the ability to select among different models by computing the model evidence
157 (defined as the marginal log likelihood of the model), of each model/dataset combination. We
158 then compute the (log) Bayes factors, i.e. differences in the evidence (Fig. 2J), and find that the
159 true model is preferred in each case. Typically a log Bayes factor larger than 3 is considered
160  strong evidence *?. For example, the difference in evidence of the (correct) No Feedback and
161 (incorrect) Negative Feedback model (Fig. 2J, top row) is -43.48 + 1.54 (mean % s.d., n=3 runs),
162 indicating strong preference for the No Feedback model. Moreover, the log Bayes factor be-
163  tween the correct model and the incorrect models is strong (>3) and robust for the true model in
164  each scenario. We compared STILT to a conventional particle filter-based algorithm which ig-
165 nores cellular genealogy, inferring parameters for each cell independently. In several instances
166  the correct model was not identified, and the Bayes factors were generally smaller when ne-
167  glecting genealogy (Supplementary Fig. 4, Supplementary Table 3). Thus, STILT presents a
168  substantial improvement over this simpler approach.

169

170  Although Bayes factors facilitate model selection, it is not in general possible to determine
171 whether a model is “compatible” with a particular dataset, i.e., if the data could have realistically
172  been generated by that model with the inferred parameters. Thus, we developed a simple test to
173  assess the correctness of the inferred model and parameters by comparing the likelihood of the
174  data with the likelihood of synthetic datasets using the assumed model and inferred parameters.
175 We categorized each model as either reject (test statistic outside 98% confidence interval),
176  marginal (outside 95% confidence interval), or accept (within 95% confidence interval). Our
177  goodness-of-fit test accepts the true model for each dataset (green diagonal in Fig. 2K). By con-
178 trast, the goodness-of-fit test rejects the Negative Feedback model fit to the Positive Feedback
179 and No Feedback datasets, and the Positive Feedback model fit to the Negative Feedback and
180 No Feedback datasets (red), from which we can deduce that the model is unlikely to be correct
181 for that dataset. However, the No Feedback model shows agreement with simulated datasets
182  from both the Negative and Positive Feedback models. This level of agreement is likely due to
183 the less constrained expression dynamics of the No Feedback model compared to the other
184  models.


https://doi.org/10.1101/053231

bioRxiv preprint doi: https://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

185 Inference of Nanog autoregulatory motifs using time-lapse fluo-

186 rescence genealogies rejects positive autoregulation

187  We next applied STILT to study the debated autoregulation mechanism of Nanog, using time-
188 lapse data from a recent single-cell study *. In these experiments, the fluorescence intensity of
189 NanogVENUS, a reporter for the protein expression of the pluripotency factor Nanog, was quan-
190 tified for single cells over several generations (Fig 3A). We converted fluorescence intensities in
191 15 subtrees (7 cells per subtree) to absolute protein numbers (see Online Methods) and per-
192 formed minimal data cleaning to remove incorrectly segmented or quantified measurements
193  (Supplementary Fig. 5). Finally we used STILT to perform inference with the three autoregulato-
194  ry motifs introduced above. Prior distributions for each model parameter were estimated from
195 available knowledge (Supplementary Table 4).

196

197  First, we evaluated the inference results on the Nanog time-lapse data. STILT produced sam-
198 pled trajectories that agree well with the measured time series (Fig. 3A-B shows one subtree fit
199  with the No Feedback model; see Supplementary Fig. 7 for all models and subtrees), indicating
200 that all models are capable of reproducing the observations with the assumed parameter distri-
201 butions, albeit with varying likelihoods. The estimated latent mMRNA abundances (Fig. 3B) agree
202  well with recent estimates of approximately 100-300 copies per cell ***. We find that the sub-
203 trees are informative in the sense that they cause shifts in the parameter posterior distributions
204  relative to the priors (Fig. 3C, Supplementary Fig. 8, Supplementary Table 5). Moreover, pa-
205 rameters are robustly estimated over three technical replicates (Supplementary Fig. 8). Next, we
206 estimated the evidence of each model for each subtree (Supplementary Table 6). We find that
207  the No Feedback model is preferred in most cases (11/15), and is significantly greater than the
208 next best model in 10 of these instances (Fig. 3D). For four subtrees the Negative Feedback
209 model is preferred, and is significantly greater in two of these. By contrast, the evidence was
210  consistently much lower for the Positive Feedback model.

211

212  Finally, we used the goodness-of-fit test to assess the ability of each model to explain the data.
213  We found that both the No Feedback and Negative Feedback models agree well with the ob-
214  served datasets when using the median of the estimated posteriors (Fig. 3E; Supplementary
215  Fig. 9, Supplementary Table 7). The Negative Feedback model is compatible with the most sub-
216  trees (13/15 accepted); in contrast only 8/15 subtrees were compatible with the No Feedback

217  model (5 subtrees were marginally accepted). However, the Positive Feedback model is ac-
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218  cepted for only 5/15 subtrees, and marginally for one additional subtree. For two subtrees no

219  model could be rejected, and for subtree 14 all models are rejected (Supplementary Table 7).

220 Model-based experimental design for selection of Nanog autoreg-

221 ulation motif

222 Based on the goodness-of-fit test and Bayes factors analysis, we can reject positive feedback
223  as a putative motif for Nanog autoregulation for the analyzed datasets. To discriminate between
224  the remaining two alternatives, we used STILT to devise an experiment whose outcome would
225  differ significantly for the No/Negative feedback models. We consider exogenous transgenic
226  Nanog, which would increase the effective rate of DNA inactivation in the Negative Feedback
227 model (Fig. 4A). We simulated negative feedback using the previously inferred parameters,
228  while introducing varying levels of exogenous Nanog (Pex). We found a strong shift in endoge-
229 nous Nanog dynamics at only a few hundred thousand molecules of exogenous Nanog, and
230 complete down-regulation for P, > 10° (Fig. 4B). By introducing exogenous Nanog we expect
231 rapid decrease in endogenous Nanog levels for the Negative Feedback model, in contrast to
232  constant levels for the No Feedback model (evaluated at 46h, Fig. 4C).

233

234  We tested our model prediction using an mESC line with fluorescent reporters for both endoge-
235 nous and exogenous Nanog (Supplementary Fig. 10A). We quantified exogenous Nanog and
236  defined 5 compartments of expression: No Exogenous, 1x, 2x, and 3x overexpression (OE), and
237  “very high”, relative to endogenous expression in untransfected cells (Supplementary Fig.

238  10B,C). In agreement with recent reports %"

, expression of transgenic exogenous Nanog was
239 found to induce a dose-dependent down-regulation of endogenous Nanog production (Fig. 4D).
240 We then replicated the experimental perturbation using STILT. Using the estimated parameters,
241  we simulated exogenous Nanog corresponding to the quantity of exogenous Nanog of each
242  overexpression compartment. We found excellent agreement between the predicted and meas-
243  ured decrease in endogenous Nanog expression levels upon perturbation (Fig. 4E). Note that
244  the prediction uses only parameters inferred from the time-lapse data and the estimated quanti-
245  ties of exogenous Nanog. The agreement suggests that the data are well explained by negative
246  feedback with the assumed mechanistic model, and not by the No Feedback model.

247
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248 Comparative validation of estimated parameters for the Negative

249 Feedback model

250  STILT yields estimates of parameters including the rate of switching between active and inactive
251 DNA conformations, transcription and translation rates, and degradation rates of mRNA and
252  protein. These estimates agree well with previous estimates. The inferred median mRNA deg-
253 radation rate for each subtree ranges from 0.1145-0.4255 (mean 0.2262, n=15) per molecule
254  per hour, which agrees well with the previous estimate of 0.147 * (see Online Methods). Protein
255  degradation rates range from 0.0310-0.4410 (mean 0.2197) per molecule per hour, consistent
256  with the previous estimates of 0.14-0.35 ***. Thus, both Nanog protein and mRNA have a com-
257  parable half-life of ~3 hours. Transcription rates range from 67.2-181.8 (mean 110.3) per hour,
258  consistent with the estimate of 126.6 per hour '*. Translation rates range from 215.9-1142.0 per
259  mRNA per hour. This quantity is not well characterized in literature, but agrees roughly with the
260 estimate of up to 1000 estimated for mouse fibroblasts **“°. The mean value of these estimates
261 across subtrees is similar between the No Feedback and Negative Feedback models: 115.0 vs
262 110.3 for translation; 0.258 vs 0.226 for mMRNA degradation; 637.8 vs 619.5 for translation; and
263  0.241 vs 0.220 for protein degradation, for the No Feedback and Negative models, respectively.
264

265 DNA activation and inactivation rates cannot be easily assessed since they represent an ab-
266  straction of a more complicated biochemical process. For example, activation might correspond
267 to changes in the DNA and histone modification state of the promoter which permit greater tran-
268  scriptional activity °. Nonetheless, the estimated rate of activation ranges from 0.2737-1.737
269 (mean 0.6854) per hour, which is consistent with the estimate of 1.692 per hour in the simple
270  unregulated telegraph model of Ochiai et al. ™. The inactivation rate ranges from 0.1338x107"'-
271 1.123x10™"° (mean 5.6910x10"") per hour. In the Negative Feedback model this rate scales
272  quadratically with the number of proteins to give a total rate of approximately 2.5-5.0 per hour
273  (assuming 2-4x10° Nanog protein molecules per cell). This estimate is substantially smaller than
274  the estimate of 36.54 per hour in the telegraph model . However, there the model assumes
275 DNA to be inactive whenever active transcription is not detected. In contrast, the stochastic na-
276  ture of our model allows DNA to remain in the active state even between transcription events,
277  which may contribute to a reduced overall rate of DNA inactivation. We also note that the esti-
278 mated number of mMRNAs inferred by STILT, which ranges from approximately 0-300, agrees
279  well with previous estimates of approximately approximately 100 + 100 *>***’ see Supplemen-

280 tary Fig. 7. In summary, STILT achieves comprehensive rate constant estimates of the different
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281 processes governing Nanog dynamics solely from a time-lapse study. These are in good
282  agreement with the results from various dedicated studies, each independently focusing on se-

283 lected aspects such as DNA (in-) activation or mRNA/protein synthesis and degradation.

284 DisScussion

285 A variety of hypothetical mechanisms for Nanog regulation have previously been proposed, in-
286 cluding bistability or oscillations '®, and excitatory excursions from a stable state '®. Such mech-
287 anisms can produce heterogeneous steady state distributions similar to those observed in
288  snapshot experiments **%. On the other hand, Nanog transcriptional dynamics have been de-
289  scribed statistically using a simple unregulated telegraph model, fit to the timing of periods of
290 gene activity '*. However, until now extracting mechanistic knowledge from fluorescent fusion
291 protein trajectories has been hampered by the lack of suitable inference techniques. In particu-
292 lar, the intrinsic stochasticity of Nanog expression at the single-cell level and the proliferating
293 nature of mMESC populations necessitate an approach that is fully stochastic, Bayesian, and
294  suited to tree-structured data. Using STILT, we overcome these challenges to make use of the
295 full information content of time-lapse fluorescence movies, and quantitatively fit and select
296 among putative models of autoregulation.

297

298 Interestingly, STILT indicates greater evidence for the No Feedback model for many subtrees,
299 and Negative Feedback for fewer subtrees; Positive Feedback consistently has the lowest evi-
300 dence. However, the goodness-of-fit test indicates superior agreement with data for the Nega-
301 tive Feedback model. The stronger evidence for No Feedback arises because the fitted parame-
302 ter values are a priori more likely with the assumed priors compared to those of the Negative
303 Feedback model; the Negative Feedback model agrees with the data for a more limited set of
304 parameters, which were assumed to be less likely. However, as for all Bayesian inference
305 methods, this result is influenced by the choice of priors and thus should be considered in con-
306 text of the goodness-of-fit test results.

307

308 To discriminate between No Feedback and Negative Feedback, we used STILT as an experi-
309 mental design tool, and quantitatively predicted the strength of down-regulation upon overex-
310 pression. Further investigation using novel experiments revealed the expected strong down-
311 regulation upon high expression of transgenic Nanog, in very good agreement with model pre-

312  dictions. Taken together, we conclude that Nanog negative autoregulation is indeed likely, but
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313  has a prominent effect only at relatively high levels of protein expression, which renders model
314  discrimination based on Bayes factors alone difficult . The lack of strong autoregulation sug-
315 gests stable oscillations ' to be unlikely, in accordance with previous analysis ¢, and supports
316  the notion that Nanog undergoes broad fluctuations which serve to diversify the mESC popula-
317  tion’s ability to respond to differentiation cues ®’.

318

319  The inferred motif naturally represents a simplification of Nanog’s true regulatory mechanism.
320 For example, although Nanog autoinhibition is thought to be mediated by Zfp281 and the NuRD
321 complex ', these factors are omitted for simplicity; this is equivalent to assuming Zfp281 abun-
322  dance to be approximately constant. We further neglect the possibility of monoallelic expression
323  of Nanog. However, it has been previously shown that Nanog that both Nanog mRNA and pro-

324 tein are highly correlated between alleles *"*®

, motivating this assumption. Despite these simpli-
325 fications, the Negative Feedback model i) produces sample trajectories which reproduce the
326  observed data, ii) agrees quantitatively with observed fluorescence lineage trees using the
327  goodness-of-fit test, and iii) accurately predicts the magnitude of downregulation in overexpres-
328  sion experiments. Thus we conclude that the autoinhibitory motif provides a simple but accurate
329  description of Nanog protein dynamics, superior to the considered alternatives.

330

331 Fitting mechanistic models to time-lapse data facilitates the analysis of latent variables and en-
332  ables the design of informative experiments. The sampled trajectories provide valuable insight
333 into the dynamics of latent variables, including DNA activity and mRNA copy number. The in-
334  ferred trajectories can also be analyzed to provide information about gene activity, such as infer-
335 ring continuous versus bursty transcription, possible oscillations, refractory periods, etc. *° For
336 example, examining the mRNA trajectories (Supplementary Fig. 7) we observe both burst-like
337  and sustained transcriptional modes.

338

339 Lastly, while we have focused on Nanog autoregulation, STILT may be used for inference and
340 model selection for arbitrary stochastic gene regulation models applied to fluorescence lineage

341  trees (e.g. in B. subtilis or E. coli *"*°)

, thus enabling quantitative and exact analysis of lineage-
342  tracked time-lapse fluorescence data. The generic MATLAB implementation is provided as open

343  source with SBML compatibility for easy import of user-specified models.
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Figure captions

Figure 1: Exact Bayesian inference of stochastic gene regulation models using
single-cell time-lapse fluorescence lineage trees. (A) Quantified fluorescence lineage trees
are extracted from time-lapse fluorescence microscopy movies. The trees are combined with
(B) candidate models and their respective parameter prior distributions and serve as input to
the (C) particle filter-based inference algorithm STILT. (D) STILT generates estimates for the
posterior distribution of each model parameter, latent histories, and evidence of each model.
The latter is used for model comparison using Bayes Factors, which is the ratio of the marginal
likelihoods of two models.

Figure 2: STILT correctly identifies autoregulatory models in synthetic data.

We consider three simple models of transcriptional control: (A) No Feedback, (B) Negative
Feedback and (C) Positive Feedback. Models differ in the propensity of DNA (D/D*) activation
and inactivation. Further components of the system comprise mRNA (M) and protein (P) (see
Table 1 for details on system reactions). (D-F) We simulate each model to generate quantified
lineage trees of measured protein numbers, and subsequently perform inference using STILT.
The median (dashed line) and 50%, 95% confidence intervals of the trajectories sampled by the
particle filter (band plots) show excellent agreement with the simulated data (dots). (G-I) STILT
estimates posterior distributions of model parameters (red, 99% confidence interval). For many
parameters the posterior shows improved estimates compared to the prior distribution (gray) in
terms of the fractional error, defined as the error of each parameter sample divided by the true
value of that parameter. A fractional error of zero indicates a perfect inference result. (J) Log
Bayes Factors (mean, s.d., n=3 inference runs), i.e. the difference in the marginal log likelihood
P of each model from that of the true model for each dataset, indicate that the correct model is
always strongly preferred (white diagonal). (K) The goodness-of-fit test (see Methods)
approximates the distribution of simulated average log likelihood per transition for simulations
generated using the inferred parameters for each model (solid). If the average log likelihood of
the actual dataset (dashed) falls within this distribution, it indicates good agreement of the
dataset with the chosen simulated model.

Figure 3: Model comparison suggests that NanogVENUS expression dynamics in ESCs
are best explained by the No Feedback or Negative Feedback model. (A) STILT yields
samples for the latent trajectories of proteins that reproduce and contain the observed data
(shown for the No Feedback model). Colony images are shown at the first time point of each
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generation. (B) The latent history of mMRNA is inferred and agrees with previous estimates of the
mRNA copy number of Nanog in ESCs (shown for the No Feedback model). (C) We compare
the estimated posterior distributions of model parameters for the same subtree fit with each of
the models. We find that estimates for mRNA and protein parameters are robust between
technical replicates and across models. (D) We compute the evidence of each model, shown
relative to the average over all models for that subtree (mean, s.e.m., n=3), scaled by evidence
range for that subtree (see Table S6 for absolute values). We find that the No Feedback model
provides the largest evidence in most cases (*, significant with p<0.01), while the Negative
Feedback model is preferred for four subtrees. The evidence for the Positive Feedback model is
generally lower than the other models. The frequency for which each model is significantly more
likely than remaining models is shown with a pie chart. (E) The goodness-of-fit test indicates
that the Negative Feedback model is accepted for most subtrees (13/15) compared to 8/15 for
No Feedback and 5/15 for Positive Feedback. Each model is rated as accept, marginal or reject
based on the result of the goodness-of-fit test.

Figure 4: We experimentally verify the predicted response of the Negative Feedback
model to Nanog overexpression. (A) We modify the Negative Feedback model to incorporate
exogenous Nanog (P,,) which acts with endogenous Nanog (P,,) to increase the propensity of
DNA inactivation. (B) Using the previously inferred model parameters we generate synthetic
trees for various levels of exogenous Nanog, illustrated for 0 molecules, 2x10° molecules (100%
increase) and 10° molecules (500% increase). (C) We predict strong downregulation
(fold-change relative to median expression of unperturbed cells) of endogenous Nanog (mean, +
2 s.e.m., n=30 simulations) for the Negative Feedback model; the No Feedback model is
unperturbed by exogenous Nanog. (D) Endogenous Nanog levels decrease as the amount of
exogenous Nanog increases. Detection threshold shown as dashed line (see Figure S10A). (E)
Using the Negative Feedback model with exogenous Nanog, we compare the predicted
fold-change (box-and-whiskers) in endogenous Nanog in response to exogenous Nanog
overexpression with the experimentally determined median fold-change (mean, s.e.m. of 3
replicates) (line). Fold-change is relative to median expression level of endogenous Nanog in
the unperturbed (No Exogenous) compartment.

Table captions

Table 1: Propensity functions for the three autoregulation models (Negative, Positive,
and No Feedback). Each model is characterized by different DNA activation and inactivation
reaction propensities. The remaining propensities for transcription, translation, and degradation
of mRNA and protein are identical for the three models.



https://doi.org/10.1101/053231

Density

No Feedback

0.4

e PriOF
—TrUe

0.2

0 |

on

0.2

0.1

0.4
O.ZR
0

0.02

0.01

kOff
x 107

0
050100150

m

0

]

0.5
0 0
0 10 20 30 0
Im

1

2
k
p

3
x103

Positive Feedback

5

0o 2 4

Negative Feedback

x 10° 1

e PriQr
—TrUE 2

0.02

0.01

100

Density

0 0
0102030 0 1
Im

b
- 2x104_
e Prior 0.02
—TrUE
0.1 1 0.01
> 0 ( 0 K
% . 520 0 1 ) , 0 50100150
5 g
- x 10 1
1
0.1 0.5 o0
| 0 0
0 o2 0123, 0123
gm b X 10 gp
Figure S1


Figure S1

https://doi.org/10.1101/053231

a No Feedback

10000

Protein 5000--*_._-,,—'—”"_‘_‘\-—-._~\

Sampled simulation
trajectories

J95%Cl
O
True Value L | = = = Median
o
wn

Figure S2

10000
5000+

10000
5000

1
0.5

l10 11 12 13 14 15 16 17 18 19 20 21

-- - B
Jm=~o- -~ N N
\\-/

10 11 12 13 14 15 16 17 18 19 20 21

10000
5000+

10000
5000

10000
5000+

30r

20

10}

0.5

10000
5000t

30r

20

10}

0.5

- -

18 20 22 24 26 28 30 32

ok
18 20 22 24 26 28 30 32

ok
18 20 22 24 26 28 30 32

A
N N Y AN

-
1
~

1
WA . NERA)
.
NTSRY I RN

ok
18 20 22 24 26 28 30 32


Figure S2

https://doi.org/10.1101/053231

b Negative Feedback

15000,
Protein10000 /—\_\__‘-
5000
0
10,
mRNA gl |
oL— NS — et
DNA Tf /\
o5l /\
) A -

0 1 2 3 4 5 6 7 8
(

Sampled simulation
trajectories

1 95%Cl
O
True Value L | = = = Median
. 8

Figure S2 T

15000
10000t
5000

ot= =253 = =

0.5

0 e g
10 11 12 13 14 15 16 17 18 19

15000
10000t
5000

o= = ==

1t
0.5 /\
0

10 11 12 13 14 15 16 17 18 19

15000
10000t
5000

1k
05 /\
O - --

20 21 22 23 24 25 26 27 28 29 30

15000
10000t
5000

1] S N—— N e G

0.5

0 e e e g
20 21 22 23 24 25 26 27 28 29 30

150001
10000F
5000
ol
10y
5

Qb= O s
1
0.5

0 N
20 21 22 23 24 25 26 27 28 29 30

15000
10000t

B000F~—
0

0.5

0 e e ey
20 21 22 23 24 25 26 27 28 29 30


Figure  S2

https://doi.org/10.1101/053231

10000

¢  Positive Feedback BO00} e e

0
19 20 21 22 23 24 25 26 27 28 29 30

10000

0.5} \/
0

1b 11 12 13 14 15 16 17 18 19 20

Prote 10000 0.5
rotein 0
otein 5000} 19 20 21 22 23 24 25 26 27 28 29 30
0
30¢
mRNA 20 —_
10}
? 10000,
DNA 05/ v 5000}
0 0
0 1 2 3 4 5 6 7 8 9 30r
. —— 20
Time (h) 10}
0
10000 1t
SOOOW 0.5
OL
19 20 21 22 23 24 25 26 27 28 29 30
Sampled simulation I —_
trajectories
1 95% Cl [ S I 10000,
0504 5000} e
0 0
S . 10 11 12 13 14 15 16 17 18 19 20 30.
True Value L | = = = Median — 20
— B 2 10}
0
1t e - -
. T 05 / \
Figure S2 0

19 20 21 22 23 24 25 26 27 28 29 30


Figure S2

https://doi.org/10.1101/053231

Model used for simulation

Figure S3

Negative Feedback No Feedback

Positive Feedback

Fractional error Fractional error

Fractional error

No Feedback

Model used for fitting

Negative Feedback

Positive Feedback

5r 5r
_ A ilI A
L 3. 3.
L 2. 2.
s 1t 1t I_
d
— O_ —_——— — —_— — O_ —_— . — } — —_— -
- Kon Koff km 9m " kon koff km 9m kp 9p kon Koff km 9Im kp 9p
5r 5r
& Prior
@ Posterior 4r 4r
3t 3t
2r 2r II
1t 1t
Kon Koff km Im I‘on koff |<m 9m Kon Koff Kkm gm k
- 5. 5.
] at at
L 3. 3.
L 2. 2.
- 1t 1t
L o— — — — — E JRE— — o— il _
4 1 ———- 1 1 1 “ 4 1 1 1 1 1 1
kon koff km Qm p ' Kon koff km 9m kp 9p ' Kon koff km 9m kp 9p


Figure S3

https://doi.org/10.1101/053231

Q

Fractional error
L oA w s o

o
o o =

Fractional error o
S
P

1
—

Fractional error o
o — N
- o™ »

S5
(6)] (6)]

Figure S4

il i

123 45 6 7

kon

1T

0.4
0.2
0
-0.2
-0.4
-0.6
-0.8

1 23 456 7

-1
1234567

123 45 6 7

1.5

0.5

0.4
0.2

-0.2
-0.4
-0.6
-0.8

2.5

1.5

0.5

L 0o 2N ow oA

Lo=aNnMwAOO

iy

Lo a4 wh O

123 45 6 7

N T CEN SIS

123 45 6 7

k

p

il

Lo a4 who

123 45 6 7

-1
1234656 7

12 3 45 6 7

i


Figure S4

https://doi.org/10.1101/053231

a

Figure S5

— Segmentation channel-

w2if Otsu global - Outline

wi2.tif Otsu giobal -

OQutline

Wt v mt3.400

wtif -/ mntasso

5

Brightfieid ch

w2.if Oisu global - Outline

— Segmentation ch

W2t Otsu global -

Outline

wtit ~|  mt2580

wi it v Intaras

100


Figure S5

https://doi.org/10.1101/053231

Figure S6

- Data point not used |

Experiment 1

5><105 1 8><105 2 8><105 3 x10° 4 x10° 5
, 4 4
24 e 26 et )] 2
4] 0] 4] (O] 0]
s° M s* ”@% 84 Sof ¥/ Saop
o2 a2 o2 o o -
W !
1 0 0 0 0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Time (h) Time (h) Time (h) Time (h) Time (h)
Experiment 2
5 5 5 5
8><10 6 3><10 7 4><10 8 4><.|05 9 %10 10
4
ge 2 2 : » 2 :
4] 0] o] T y s 0]
5’ oWy ° | - S S - 7
a2 W\f A w . Ll . | o : o /
0 oL— 0 0 0
0 50 100 0 50 100 0 50 100 0 20 40 60 0 50 100
Time (h) Time (h) Time (h) Time (h) Time (h)
Experiment 3
x10° 11 g x10° 12 g x10® 13 g x10° 14 g x10° 15
2 2, A 2 o 2
T . I3 A T2 / I , T2
s2t . / 5, g ~ 5 AT 5 I
o p s _JJ o ' o JATY o ’
/ 0 0 WVM i A,",’-’
0 0 0 L
0 50 100 0 50 100 0 50 100 0 20 40 60 0 50 100
Time (h) Time (h) Time (h) Time (h) Time (h)



Figure S6

https://doi.org/10.1101/053231

Q

Protein copies

MRNA copies

Protein copies

mMRNA copies

Protein copies

mMRNA copies

Sampled Trajectories 5 5 5
x10° 5% x10 x10 x10
6 cﬁ Median 8 8 3 6 4
®\Measurement
6 ;
4 4 15 11. J
bioR j{%htftp%/édm ofbif: )1/ Y Mon ‘I)IOStﬁdﬂw ' ek cogyri th horl1der for thlE t h \y'-‘!’\‘
rtifie ypeer ewew is¢he aut J“o;.A rights rgserved. N j without pe sioh. f L
2 N %—-u 2 ‘3:@“"&:' & KIV
0 0 0 0
0 20 40 0 20 40 0 20 40 0 20 40
100 600 400 600
4
200 :\ 400 00
A\ N ) 200 » 200 ! A {
LA 2001, o RINNESL S
"
‘If\l \,N\, 0
200 0 -200
0 20 40 0 20 40 40 0 20 40
5 6 7 8
5 5
6 x10 8 x10 3
6 2
4 )
3 s 1¢F
2 mf AP
0 0
40 0 20 40
600 600
400 400 400
200 200 Han\ /¥ fa akd S 200
,I\‘,, ‘A\f\Aj /I‘\\\," —,&Z\J\/‘}fwﬁ
0 0 h 0
-200 -200 -200 -200
0 20 40 0 20 40 0 20 40 0 20 40
9 10 11 12
5 5 5 5
4><10 6><10 6><10 6><10
4 4 \/I
2 . i v
2f et T G5
# P
0 0 0 0
0 10 20 30 0 20 40 0 10 20 30 0 20 40
600 400 600 800
600
400 400
' 200 400
4 /X ;W" r'/,\
A AN 1’ V\ g
s u/ 4 &
0 20 40
Time (h) Time (h)

Figure S7



Figure S7

https://doi.org/10.1101/053231

%10° 13

er for this preprint (which was not

#5il https://doi.org/10.11
ut permission.

Certified by peer reéie

Protein copies
o N
L

) -2 i
0 20 40 0 10 20 30 0 20 40
1000 600 600
] 400 400
'S 500
S N/ 200 ! 200 #
Sl ALY S ¥ 5 ) o \,fﬁ"‘-‘@\"*f’
x 0 =S A -~ b 0 - -~ =
e
-500 -200 -200
0 20 40 0 10 20 30 0 20 40
Time (h) Time (h) Time (h)

Figure S7


Figure S7

https://doi.org/10.1101/053231

Sampled Trajectories
¥95%

cl

5 1 5 5 5
x 107 T - x10 ) _ x10 ) - x10" _
6 [ bioRxiv preprint déi%‘ﬁdm.orgﬂl D.1101/053231; this version posted My 13, 2016. The copyright holder for thig preprint (which was not
$ xr‘u BEPREEr rgview) is the author/funder. All rights regerved. No reuse allowed without permigsion.
- ‘ 4 4 8 il
'% 2 N ol 2 W oT )bg,
2 VWil 2 2 v
“ 0 0 0 0
0 20 40 0 20 40 0 20 40 0 20 40
" 300 400
.“_QJ_BOO 400
S 200
Z 400 |l W 200 100 ,,'"}‘ ";& |
E ]“\ ?/'\: \\{ \\\N?r‘}' '1l "\ i {!\l ‘»..'Mbj’\\\a“‘,‘\f ‘r/‘\t'
B W \"“.[a . 'i»“\\!..’hl AN ‘I { /\\!\:jv‘
0 - — 0 0 0
0 20 40 0 20 40 40 0 20 40
5 5 . 6 . 8
6 x10 8 x10 3 4 x10
0
e 6
§ J,ﬂ 2
4 2
c
T ‘ A0 11
S 2 e AR
o
0 0 0
40 0 20 40 0 20 40 0 20 40
400
4, 300 300
1 Al ;
o 200 /V | 200 1, J
%: 200 I \‘\ : \\ ¢ 3 I,“\ il i ‘\ I
= 100 Ay W 100 {1 %4 iwhed 'W'
Ry y AN L.
‘ A {
0 0b—— 0
40 0 20 40 0 20 40 0 20 40
5 9 5 10 5 11 5 12
4 x10 6 x10 6 x10 6 x10
8 3
a 2 4 4 4 ,/'[
S 2 W P / )
oY ; , ; pr = /
§ o 2/"(“[;},,{}'[« 2f-»/5~/"J o 2 f 47
e L
a0 0 0 0
0 10 20 30 0 20 40 0 10 20 30 0 20 40
600 300 400 600
8 A
& Z 400
; /\\} ’\ 200 r 0 \ /‘A/{\
=z ' fﬁ A 1 A Q )YI / -~ !
& \ \ /s RN 200 /) g B
E S ) “\yM\“. IR :y' N\ \/‘\ I“\I \./r %
‘;"/\‘3—2-[ NI 0 ! =~ ’//* ~— . s ) V/\',‘, 7
20 40 0 10 20 30 0 20 40
Time (h) Time (h) Time (h)



Figure S7

https://doi.org/10.1101/053231

Protein copies

mMRNA copies

bioRéiv prepri|'|t310i: https://doi.org/10.1101/0532341,; this yersion posted May 13, 2016. Th holder for this preprint (which was not
4 x10 certified by peer reviewzlis thor/funder. All rights reservedBNe(rbﬂ without permission.
ik
0
-2 -2
0 20 40 0
600 300 600
400 200 B A\ b 400
! N N
s o \ 1 \\ '1‘. i
P ::\II :‘f Ol IR P
200 [/ [win\n i 100 {24/ WY AN 200 oy 'Y
i 1}"\' i v WAL \,\ | Shy A 1‘,’\\¥:/
BTN W Ml g TN Gl faal
0 0 ——== —— 0
0 20 40 0 10 20 30 0 20 40
Time (h) Time (h) Time (h)

Figure S7


Figure S7

https://doi.org/10.1101/053231

(2]

Sampled Trajectories

x10° - x10° 2 «105 3 «0s 4
$ 6 bioRxiv preprln;I&rPﬁlYFt &Y/doi. o% [10.1101/053231; this version posted I\ﬁa 13, 2016. The copyright holder for th@ preprint (which was not
ey e ﬁ% By ﬁeer eview) is the author/funder. All rights reserved. No reuse allowed without permisgion.
o) 6 6 Jl[‘
O 4 4
o P : A
2, M«\-J * } ‘myjn- * M ARar 4 o
< O il 2 i 2 ~
0 0 0 0
0 20 40 0 20 40 0 20 40 0 20 40
o 600 400 800
‘2400
S 400 600
%200 - A 200 o I 100
1 i
E 200197 FU ’:»xﬂ/\ e RN T 200 [N =Y
£ W\ A 1 4 RN A 1
‘ ! V\\JQ\JV " Y 9’*‘\@ : l/“fl\\firs:’;. , WA ‘)V"‘ fjﬂgﬁﬁ», /,
0 \ N 0 = 0 g N, - 0
0 20 40 0 20 40 0 20 40 0
5 5 5 6 5 8
6 x10 8 x10 3 4 x10
(%]
v 6
[ 4 2 A w3, i P ’ ,r‘.’
¢ maf A1 o H k'
£ N
0 0 0
40 0 20 40 0 20 40 0 20 40
400 400
$400 400
o
; o
- I //'
<200 |1, ¥ 200 200 f N 200118 k. ad
= o] i \Z*."T / |:‘ yu Yy ,/:J\" AN
= “M”“\ a4 R A L
A “' /K\éfw W's "\ 7
0 = - 0 : 0 — 0
0 20 40 0 20 40 0 20 40 0 20 40
9 10 11 12
5 5 5 5
" 4><10 6><10 6><10 6><10
g
5 4
S 4 y 4 ‘
% 2 I' 4 i p
IS 2 o ¥l 2
a s N
0 0 0 0
0 10 20 30 0 20 40 0 10 20 30 0 20 40
400
_@600 400 600
o
8400 400
< 200 | JJ 7 _
é 'lll /[fh:' 200 /l N ’\0/\/ I/'".P‘J’
£200 A vV 200 |/1” >
\Pr\:j ) & 4 t /‘\VJ
0 0 — 0 0
0 20 40 0 10 20 30 0 20 40
Time (h) Time (h) Time (h)

Figure S7



Figure S7

https://doi.org/10.1101/053231

Protein copies

mMRNA copies

x10° 13 x10°
2 bh
0
2 2
0 20 40 0
600 300
400 200
I‘ ,\
1 Al
200, i os ,’ﬁ\? } 100
I Il /\E%Q&;"i
0 == ' 0
0 20 40
Time (h)

Figure S7

x10° 15

4 1 bioRxiv preprint doi: https://doi.org/lo‘h [01/053231; this version posted May 18,12016. The copyright holder for this preprint (which was not
cerfified by peer reviep) is the author/funde Al;jlghts reservefl. No reuse allowed without permission.

40

400 i

40



Figure S7

https://doi.org/10.1101/053231

k

(h" MRNA")

p

No Feedback

bioRxiv preprint doi: https://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed withoyt permission.
on

ot

17- m
oL I I 4

Prior1 2 3 4 5 6 7 8 9 10

Subtree

300

250

200 [

150

100 H

il

50

0 P

Prior1i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree

1800
1600
1400 [
1200
1000

800 -

600

400

200 [

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtree

Prior 1

Figure S8

Kot (h)

9n (h" mRNA™)

15

10

0.7

0.6

0.5

0.4

0.3

0.2

0.1

off

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtree

Prior 1

ATRRERNA

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree

Prior 1

phi

Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtree


Figure S8

https://doi.org/10.1101/053231

Kon (h)

Ko (h)

(h"mRNA")

k
p

Negative Feedback

k 9 k
on x 10 off
12 hioRxiv preprint doi: https://doi.org/10.1101/053231; this version posted May'13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reseryed. No reuse allowed without permission.
09
10r ~08F
£
[
= 071
o 2
c06f
6 505
0.4
4 03F
0.2
2 -
0.1f I
. [ 11 10 I 0 1 11 ] gl i i
Pior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree Subtree
km Im
350 0.8
300 0.7
o6t
250 <Z(
o
Eosf
£

| lu lll {11 :} °’E ”h {ﬂll

50 0.1 {

7 8 9 10 11 12 13 14 15

0 P S T S R P S
Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Prior1 2 3 4 5

T S T S S SR S 0 PR

k g
p
1800 - P 18+
1600 16F
1400 F 14+
1200 F 12t
O
)
1000 F ] 5 4}
- £
800 F o2 0.8 1
600 F II - 0.6F
400 ! . 04 T l
200 - 02f I-I M In
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 0 1 Iﬁ 1 1 1 1 1
Pior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Priori 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree Subtree

Figure S8


Figure S8

https://doi.org/10.1101/053231

Cc

(h' protein-?)

k
on

Kn (h)

K, (h"mRNA")

Positive Feedback

4.5

3.5

25

250

200

150

100

50

2500

2000

1500

1000

50

o

Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtree

Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree

- I]] g

Priori 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree

Figure S8

Kot (h)

9, (h"protein)

0.1

—_
[eo)

-
[}

-
N

—_
N

-

o
®

o
=2}

°
~

0.2

ved. No reuse allowed without B

)piﬁ)Ry(iv preprint doi: https://ddi,0rg/10.1101/053231,; this version posted May 13, 2016. The copyright holderqu‘g this preprint (which was not

certified by p&er review) is the author/funder. All rights resey rmission.

Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree
gm
Priori 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree
— gp
| Iﬁ - I- -III
Prior1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subtree


Figure S8

https://doi.org/10.1101/053231

Simulation s——
Data - - -

Figure S9

bioRxiv preprint doi: https://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not

1 certified by peer review) is the auglor/funder. All rights reserved. No reuse allowed without permission. 4
4 4 1 n
1 1
3 3 111
2 (BT
2 | 1 n
< 2 2
[
a [ | 1 1
[ | 1 1
1 [ | 1 1 1
" 1 \
0
-11 -13 -12 -11
5 6 8
4 5 6
L 1]
3 4 ]
> [ ]] 4
G 3 n
S 2
8 5 [ ]
nl 2
1 1 [ 1]
[ 1]
0 - 0
-13 -11 125 -12 -11.5 -11 12 -11.5 -11 12 -11
9 10 11 12
6 5 m 6 6 1
1
4 I
> 4 4 4
= 3
c
[
(a) 2
2 2 2
1
m
0 - 0 u 0 i 0 i
-12.5 -12 -11.5 -11 12 -11.5 -11 -11.8 -116 -114 -11.Z2 -125 -12 -11.5 -11
13 14 15
5 5 11 5
4 4
2 3 3
(%]
C
& 2 2
1 1
0 0
-11 -13 -11 125 -12 -11.5 -11

Average log likelihood per transition


Figure S9

https://doi.org/10.1101/053231

Density

Density

Density

Density

Figure S9

Simulation ==
Data biORXiv prepr

nt doi: https://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 2 3 4
4 3 4 " 5
m
3 3 m 4
2 ||
3
2 2
2
]
1 1 \ ]
0 0 0 m 0
125 41 14 13 12 11 -13 12 41 -13 11
5 8
5 6 6 u
1
4 1
I 4 4
3 1
1
2
1 2 2
1 1
1
0 -l 0 0
13 41 12 115 A1 12 41 -12 115 11
9 10 11
5 5 8 6
[1]
4 4 " 6 n
' T 4
3 3 [ | ]|
[ | 4 ]
2 2 . )
’ ] ' \ 2
[ |
0 0 5 0
13 12 41 125 12 115 11 -11.8 -116 -11.4 -112 -12 115 11
13 14
[ | [ I |
4 41 1
111 4
3 3 111
111
2 [ 21 )
1 [ | 1 111
[ | 111
0 0 -
44 13 12 11 -13 12 A1 125 -12
>

Average log likelihood per transition


Figure S9

https://doi.org/10.1101/053231

Density

Density

Density

Density

Figure S9

SIMYBRRRY Breprmt gloi: hitps://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not
Data = = =] certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
1 2 3 4
8 [ 1 6rmi 8 8
1 1 1 ni 1 1 1
6 I (I ni 61 1 6 n
1 I 1 4111 1 1 I n
1 1 1 ni 1 1 I n
4 1 1 1 ni 4 1 1 4 I n
1 1 1 21Nl 1 1 I n
2 1 I 1 ni 2711 1 2 I n
1 1 1 ni 1 1 I n
0 1 L 0
-14 -13 -12 -1 12 -11.5 -11 -13 -12 -11 -125 -12 -11.5 -11
8 > 8 6 8 8
[} 1]
6 il 6 n 6
1l ] |
1l ] |
4 1l 4 ] | 4
1l
2 il 2 2
1l
0 Ll 0 0
-13 -12 -11 -12.5 -12 -11.5 -11 125 -12 -11.5 -1 -13 -12
9 11 12
8 6 6 I 6 n
n
6 |
4 4 4 n
n
4 n
2 2 2 n
2 n
n
0 0 0 0
-12.5 -12 -11.5 -11 -12 -11.5 -11 -20 -15 -10 12 -11.5 -11
8 13 8 14 6
mnmi
6F 11
mni 4
mni
4 mni
ni 2
2 mni
mni
0 11 0

14 13 12 A1 125 12 15 -1

Average log likelihood per transition


Figure S9

https://doi.org/10.1101/053231

Figure S10

Exogenous Nanog protein

Exogenous Nanog protein

a b
iORXi ttps|//doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not
E}\é? e P p y pyrig preprint (
titfed b F&\{éw) |s the author/funder. All rights Eeserved. No reuse allowed without permissil?\lr\}.
~2r neg 0
R1 NanogVENUS (endogenous) | I
genomic — __-_ 2L | I Negative control
Nanog || . | | NanogVENUS
gr\fa”r?o";k —_ - VENUS I | I |
21
R1 NanogKATUSHKA (endogenous) + NanogVENUS (exogenous) g I I
genomic I ] 1¢F | I
Nanog = ] o N,
genomic ] ]
e {HOEE - o
) — I
t t
o Nt A
= Nanog coding sequence 05 1 1.5 2 2.5 3 3.5 4
log,, NanogVENUS [a.u.]
c d
2x OE 3x OE
25 l I 2 T T T
No Exogenous | 1x0OE | || Negative control IrI;IggI Negative control
| | | | NanogVENUS 1.81 I —— NKunperturbed 1
2 | ! 16}
I N I Lal |
I | || very high I I
SI5F 212
) @
2 T | | |
S ]
011t I I I I I e 0.8l I
|11 | 06l
05 |11 I 0al
[ I 0.2
0 7. S 0 | . .
0 1 2 3 4 5 6 1 1.5 2 2.5 3 3.5 4 45 5
log,,NanogVENUS [a.u.] log10 NanogKATUSHKA
e
Replicate 1 Replicate 2 Replicate 3
5 5 z z . ' + . " I . .
l !‘ [ Simulation I I h * ¥ l l I 1 i
-E 4 I I [ Experiment | | T i i I * i
S | ¥ | 3 s
a3t | | I | : ! I | - |
g I
ol s L | ! .
Z I i | n 1
>
g I
sofly 1 ‘%‘ sH{ Fl ¢! & & 1 & T +
w
1
gL Lo b . s
No 1x OE 2x OE 3x OE very No 1x OE 2x OE 3x OE very No 1xOE 2xOE 3x OE very
Exo. high Exo. high Exo. high

Exogenous Nanog protein


Figure S10

https://doi.org/10.1101/053231

Table S1

Parameter |Units No Feedback Negative Feedback |Positive Feedback
Kon h 1 10 5x107 protein
Kot h 1 10 protein? 1

Ko h 40 100 40

O h” mRNA" 3 3 3

k, h" mRNA" 300 2000 200

9p n* protein™ 0.4 0.4 0.4
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Table S2

Positive Feedback

Negative Feedback

No Feedback

parameter a ¢] mean |variance a B mean |variance a ¢] mean | variance
Kon 5 2 25 1.25 5 0.8 4 3.2 10 1.2x107 |8.33x107[6.94x10™
Kos 5 2 2.5 1.25 7 10° 7x10° | 7x107° 14 20 0.7 0.035
Km 12 0.2 60 300 12 0.2 60 300 12 0.2 60 300
Om 7 1 7 7 7 1 7 7 7 1 7 7

K, 4.3 0.005 860 | 1.72x10°| 4.3 0.005 860 | 1.72x10°| 4.3 0.005 860 | 1.72x10°
9 5 5 1 0.2 5 5 1 0.2 5 5 1 0.2
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Table S3

True Model

No Feedback

(o8

Negative Feedback

Positive Feedback
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Fitted Model

Cell No Feedback |Negative Feedback | Positive Feedback
1|0 (0.2105) -9.3054 (0.2582) -10.7013 (0.1581)
2|0 (0.1205) -13.5696 (3.3602) -5.935 (0.0862)
3(0(0.0281) -12.2594 (1.1507) -7.3764 (0.1044)
410 (0.0909) -15.0681 (1.3747) -9.8305 (0.0782)
51-1.1334 (0.121) -33.2052 (6.1942) 0(0.1186)
6|0 (0.0621) -22.3497 (2.7166) -6.9995 (0.141)
710 (0.0532) -15.0969 (0.4353) -5.1588 (0.1668)

Cell No Feedback |Negative Feedback | Positive Feedback
1(-4.131(0.3035) [0 (0.1548) -26.3066 (0.8125)
2(-2.502 (0.014) 0(0.0777) -14.6629 (0.1774)
3|-1.3918 (0.0288) |0 (0.0425) -11.957 (0.1156)
410 (0.0426) -4.1386 (0.5486) -1.0796 (0.0182)
5]0(0.0477) -1.0327 (0.0177) -8.6714 (0.1402)
60 (0.0782) -5.2632 (2.1421) -5.0105 (0.0225)
7|-0.2432(0.031) |0 (0.0186) -8.7574(0.1)

Cell No Feedback [Negative Feedback | Positive Feedback
1]-2.9141 (0.079) -12.5306 (0.4929) 0(0.0382)
2|-2.901 (0.243) -14.1889 (1.3588) 0 (0.0643)
3|-0.9532 (0.0783) |-9.3542 (0.6612) 0(0.021)
4|-4.4171 (0.0225) [-18.2459 (2.9465) 0 (0.0263)
5]-4.4039 (0.035) |-17.2991 (1.2285) 0 (0.0205)
6(-4.2933 (0.043) -17.5176 (1.3442) 0(0.0112)
71-0.521 (0.0497) |-11.3935 (0.9244) 0 (0.0591)

log Bayes factor
(fitted vs. true)
0 weak

-50 strong

Incorrect model
preferred
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Table S4

No Feedback

Negative Feedback

Positive Feedback

parameter a B mean |variance B mean |variance B mean |variance
Kon 1 1 1 1 1 1 1 1 1(1.00E+09( 1.00E-09( 1.00E-18
Kos 1 1 1 1 1| 1.00E+10] 1.00E-10| 1.00E-20 5 5 1 0.2
K 10 0.1 100 1000 10 0.1 100 1000 10 0.1 100 1000
dm 8 40 0.2 0.005 8 40 0.2 0.005 8 40 0.2 0.005
K, 3 0.01 300 30000 3 0.01 300 30000 3 0.01 300 30000
dp 2 4 0.5 0.125 2 4 0.5 0.125 2 4 0.5 0.125
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Table S6

Subtree

No Feedback

Negative Feedback

Positive Feedback

-1634.1 (0.4333)

-1636.3000 (0.9074)

-1641.6333 (0.8172)

-1814.7 (0.2646)

-1824.6000 (0.7211)

-1843.4667 (4.9320)

-1835.4 (0.5568)

-1834.6333 (1.1837)

-1865.3333 (4.3910)

~1700.3 (0.1528)

-1703.6333 (0.2906)

-1711.4000 (2.0075)

-1838.6 (0.4842)

-1843.9333 (1.5603)

-1848.7667 (2.1184)

-1597.1 (0.7126)

-1595.7000 (0.2000)

-1602.7858 (0.0231)

-1747.4 (0.1453)

-1753.1000 (0.7095)

-1754.5000 (0.1528)

-1820.4 (0.0882)

-1821.8667 (0.2603)

-1825.2333 (0.2333)

1
2
3
4
5
6
7
8
9

-1450.7 (0.0577)

-1454.8000 (0.1528)

-1453.7333 (0.2333)

10

-1554.4 (0.1732)

-1553.9000 (0.0000)

-1560.1000 (0.2517)

11

-1615.6 (0.0882)

-1615.1000 (0.0577)

-1617.6000 (0.1732)

12

~1591.0 (0.0577)

-1592.7333 (0.0667)

-1598.5333 (0.0882)

13

-1546.5 (0.1528)

-1551.8000 (0.1732)

-1554.8667 (0.6386)

14

-1714.6 (5.2129)

-1769.1000 (7.7253)

-1795.0667 (9.8660)

15

-1803.4 (0.4933)

-1832.0667 (0.2333)

-1810.9333 (0.7796)



Table S6

https://doi.org/10.1101/053231

Goodness-of-fit null distribution quantile

Table S7

Reject (p < 0.01 or p >0.99)

Marginal (p < 0.025 or p > 0.975)

Accept

Experiment |Subtree number [No Feedback Negative Feedback|Positive Feedback
1(0.2978 (0.1125) 0.2033 (0.0996) 0.0033 (0.0033)
1 2|0.1811 (0.0804) 0.2578 (0.0617) 0 (0)
3|0.5478 (0.0473) 0.1444 (0.0307) 0(0)
40.0167 (0.0058) 0.0944 (0.0195) 0 (0)
5]0.0567 (0.0291) 0.0467 (0.0158) 0 (0)
60.0222 (0.004) 0.0044 (0.0022) 0(0)
710.9867 (0.0058) 0.8478 (0.0478) 0.0533 (0.019)
) 810.7422 (0.0713) 0.5322 (0.0356) 0.0267 (0.0051)
910.8389 (0.0879) 0.6122 (0.0695) 0.0067 (0)
10{0.9044 (0.0292) 0.59 (0.0386) 0.0867 (0.0102)
11|0.9956 (0.0011) 0.9267 (0.0133) 0.16 (0.0084)
12|0.9756 (0.0048) 0.9267 (0.0315) 0.0078 (0.0011)
13/0.97 (0.0133) 0.6011 (0.083) 0.02 (0.0033)
3 140.0089 (0.0022) 0 (0) 0 (0)
15/0.9789 (0.0211) 0.3689 (0.1529) 0.08 (0.0058)
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Supplementary Figure captions

Figure S1: Prior distributions for in silico testing. STILT was run using parameter prior
distributions tailored to each model, chosen such that the true model parameter used for data
generation is contained in the distribution, but not identical to the mode of the distribution. (A)
No Feedback, (B) Negative Feedback and (C) Positive Feedback.

Figure S2: The particle filter provides estimates latent mRNA and DNA trajectories.
Protein (top), mRNA (middle) and DNA (bottom) trajectories are estimated by STILT and show
very good agreement between the true value (solid) and the resampled trajectories. The 50%
and 95% confidence intervals of the resampled trajectories are shown as band plots, along with
the median (dashed line). For DNA the true value (solid) is compared with the mean over the
sampled histories (dashed) . The trajectories for each cell of the simulated lineage are plotted
separately for improved visibility. In each case the correct model is assumed for the simulated
data set. Results are shown for the (A) No Feedback, (B) Negative Feedback and (C) Positive
Feedback models.

Figure S3: Posterior distributions of model parameters are robustly estimated in most
cases. We estimate the posterior distribution of each model parameter for every combination of
model used for data generation and model used for inference. Each combination is fit three
times (red, 95% confidence interval) to provide an estimation of the robustness of the inference
procedure, and compared against the prior distribution (gray). (A) Data generated with the No
Feedback model. (B) Data generated with the Negative Feedback. (C) Data generated using the
Positive Feedback model.

Figure S4: Parameter inference without including cellular lineage trees fails to converge
to the correct model parameters. Single-cell-based inference was performed for each of the
seven cells from each of the three synthetic datasets. The fractional error of each posterior is
plotted and compared to the prior for each model parameter and dataset. The posteriors are
robustly estimated, across the repeats of the inference procedure. However, STILT’s tree-based
inference shows improved parameter convergence to the true value compared to the
single-cell-based inference for most parameters. Additionally, there is substantial variation
among cells due to the difference in information content of their respective trajectories. (A) No
Feedback, (B) Negative Feedback, and (C) Positive Feedback.
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Figure S5: We pre-process quantified fluorescence lineage trees to remove inaccurate
data. (A) Many cells show a substantial change in morphology, going from a flat (left) to round
(middle) morphology just prior to division. This change often leads to an artificial jump in the
quantified fluorescence intensity (right) at the last time point prior to division in many cells, and
is thus censored. (B) Fluorescence signal at time points where cell nuclei overlap cannot be
reliably quantified and are also censored. (C) Time points showing large fluctuations in
fluorescence intensity due to contamination overlapping the segmented nuclei are likewise
excluded.

Figure S6: We obtain 15 NanogVENUS subtrees of 7 cells from 3 experiments. 15
NanogVENUS subtrees of 7 cells each are fitted with each of the autoregulatory models. The
subtrees are obtained from 7 microscopy positions from 3 independent experiments, obtained
by dividing trees into non-overlapping subtrees of seven immediately-related cells. Unreliable
data points (red) are censored (see Methods) and not used for inference.

Figure S7: The particle filter samples from latent trajectories for the protein (top) and
mRNA (bottom) conditional on the observed protein measurements. The particle filter was
performed for each of the NanogVENUS subtrees using the (A) No Feedback, (B) Negative
Feedback and (C) Positive Feedback models.

Figure S8: We estimate the posterior distribution of all model parameters for every
NanogVENUS subtree, fit with each of the three autoregulatory models. Each combination
is performed in triplicate (red) to assess robustness with respect to the stochastic nature of the
inference procedure. Priors distributions are shown in gray. Each subtree was fit with the (A) No
Feedback, (B) Negative Feedback and (C) Positive Feedback models.

Figure S9: We use the goodness-of-fit test to determine which auto-regulatory models
are compatible with which Nanog subtrees. We compute the goodness-of-fit quantiles of the
real data with respect to simulations for the (A) No Feedback model, (B) Negative Feedback
model and (C)Positive Feedback model.

Figure S10: We estimate autofluorescence and expression levels of endogenous Nanog
reporters. (A) Top: Schematic Nanog overexpression construct. The NanogVENUS and
iRFPnucmem proteins are translated at similar levels. iRFPnucmem allows direct comparison of
the construct with an empty vector (no NanogVENUS) and Nanog alone (without VENUS). CAG
= constitutive promoter; 2A = sequence for protein “cleavage”; iRFP (targeted to nuclear
membrane) and VENUS = fluorescent proteins. Bottom: Schematic representation of cell lines.
Cells express a fluorescently labeled Nanog protein (either VENUS or KATUSHKA) from one
endogenous allele. Exogenous NanogVENUS was transiently transfected 2 days before
analysis. (B) We estimate the autofluorescence of NanogVENUS (InegNV) using wild-type mESCs.
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We also estimate the 0.95 quantile of endogenous NanogVENUS (I,\V) in unperturbed NV cells.
(C) We measure NanogVENUS levels and define compartments of exogenous Nanog as No
Exogenous (below negative control levels); 1x, 2x, and 3x overexpression corresponding to up
to 100%, 200% and 300%, respectively, of wild-type Nanog levels; and very high which has
more than 300% wild-type Nanog expression. (D) We estimate the autofluorescence level (0.95
quantile) of NanogKATUSHKA (InegNK) using the NanogVENUS cell line. The intensity
distribution of unperturbed NanogkKATUSHKA mESCs is shown for comparison. (E) We
compare simulated (gray) and measured (white) down-regulation relative to the median of the
No Exogenous overexpression compartment, for three experimental replicates. Distributions are
of the relative expression of individual cells for both experiment and simulation.

Supplementary Table captions

Table S1: Model parameters used for generating the synthetic dataset. Parameters differ
slightly between the No Feedback, Negative Feedback, Positive Feedback models so as to
provide similar order of magnitude between trajectories generated from each model. The mRNA
degradation (g,,) and translation (k) rate constants have units of per hour per count mRNA, and
the protein degradation rate (g,) per hour per count protein.

Table S2: Parameters of the gamma prior distributions I'(o, ) used for inference of the
synthetic datasets.

Table S3: Bayes Factor analysis shows that model selection is less robust for
single-cell-based inference. The computed log Bayes Factors of each model indicate that the
incorrect model is preferred (red boxes) for one cell in the (A) No Feedback dataset, and for 3
cells in the (B) Negative Feedback dataset. (C) The Positive Feedback model is inferred
correctly for each of the Positive Feedback datasets. Each row indicates the difference of the
marginal log likelihood (mean, s.d.; n=3) of each fitted model and the marginal log likelihood of
the best model for that cell/dataset, i.e. a value of 0 indicates the best model for that
cell/dataset.

Table S4: Parameters characterizing the gamma distributions I'(o, 3) used for parameter
prior distributions for the NanogVENUS subtrees inference.

Table S5: We estimate the median (95% confidence interval) of the posterior distributions
of each model parameter for every NanogVENUS subtree using the (A) No Feedback, (B)
Negative Feedback, and (C) Positive Feedback models.
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Table S6: Evidence of each subtree/model combination. We estimate the evidence
(marginal log likelihood) of each model applied to each dataset using the particle filter (mean,
s.e., n=3).

Table S7: We use the goodness-of-fit test to determine which autoregulatory models are
compatible with the NanogVENUS subtrees. For each subtree and model we estimate the
null distribution of the average marginal log likelihood per transition (see Figure S9). We use this
empirical null distribution to compute the quantile of the average marginal log likelihood per
transition of each dataset (mean, s.e.m., n=3 replicates). Each model is accepted if it is within
the 95% confidence interval of the empirical distribution, marginally accepted if it is not accepted
but within the 98% confidence interval, and rejected otherwise.


https://doi.org/10.1101/053231

bioRxiv preprint doi: https://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Online Methods to: Exact Bayesian lineage tree-based

. inference identifies Nanog negative autoregulation in mouse
: embryonic stem cells

’ Justin Feigelman'?*, Stefan Ganscha!, Simon Hastreiter®, Michael

s Schwarzfischer?, Adam Filipczyk?, Timm Schroeder?®, Fabian J. Theis®>*, Carsten
6 Marr®”, and Manfred Claassen""

7 Mnstitute of Molecular Systems Biology, ETH Ziirich, 8093 Ziirich, Switzerland

8 Institute of Computational Biology, Helmholtz Zentrum Miinchen - German Research Center for

9 Environmental Health, 85764 Neuherberg, Germany

10 3Department of Biosystems Science and Engineering, ETH Ziirich, 4058 Basel, Switzerland

11 4Department of Microbiology, Oslo University Hospital, 0450 Oslo, Norway

12 5Technische Universitiat Miinchen, Center for Mathematics, Chair of Mathematical Modelling of

13 Biological Systems, 85748 Garching, Germany

14 *Corresponding author

s Contents

16 1 Chemical reaction networks 2
v 2 Inference of latent history and model parameters 3
18 2.1 Inference using bootstrap particle filtering . . . . . .. .. ... 3
19 2.2 Gamma Priors . . . . . . ... e e e 5
2 2.3 STILT: Stochastic Inference on Lineage Trees . . . . . . . . .. .. ... ... ... 6
21 2.4 Single cell versus tree-based inference . . . . . . . .. ... oo 10
» 3 Model assumptions 10
2 3.1 Celldivision . . . . . . oL 10
2 3.2 Feedback models . . . . . . . .. 10
2 3.3 Biallelic expression . . . . . . . . Lo 11
2 3.4 Cellular compartments . . . . . . . . . ... 11
7 4 Model specifications 12
28 4.1 Measurement function . . . . . . . . ... 12
2 4.2 Prior distributions . . . . .. ..o 12
30 4.3 Initial conditions . . . . . . . .. L 13
3 4.4 Number of particles . . . . . . . .. L 13
2 5 Implementation 14
33 5.1 Model definition via SBML . . . . . . . ... oo 14
34 5.2 Simulation . . . . . ..o 14
3 5.3 Data structure . . . . . . .. e 14
s 6 Model evaluation 14
37 6.1 Marginal likelihoods and Bayes Factors . . . . . . . .. ... .. ... ... .... 14
38 6.2 Goodness-of-fit test . . . . . . . .. 15


https://doi.org/10.1101/053231

bioRxiv preprint doi: https://doi.org/10.1101/053231; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

s 7 Time-lapse fluorescence microscopy data 16
40 7.1 Pre-processing . . . . . . . .. e 16
@ 7.2 Estimation of fluorescence intensity conversion factor . . . . . . .. ... ... .. 16
2 8 Experimental validation of Negative Feedback model 17
3 8.1 Exogenous Nanog construct . . . . . . .. . .. . L L L 17
“ 8.1.1 ESCeculture . .. .. ... .. e 17
45 8.1.2 Nanog overexpression experiments . . . . . . . . . . . ... .. ... 18
46 8.1.3 Expression plasmids . . . . . . . ... 18
a7 8.2 Exogenous NanogVENUS expression compartments. . . . . . ... ... ... ... 18
48 8.3 Downregulation of endogenous Nanog levels . . . . . ... ... .. ... .. .... 18
49 8.3.1 Comparison of experimental replicates . . . . . . ... ... ... ... ... 19
50 8.4 In silico perturbation experiment . . . . . ... .. Lo oL 19
51 8.5 Comparison to simulations . . . . . . . . . . . . . ... e 20

» 1 Chemical reaction networks

53 We consider the case of parameter inference and model comparison for stochastic models of gene
s« regulation described by chemical reaction networks. A chemical reaction network consists of a set
s of chemical species (e.g. DNA, mRNA, protein, etc.) which may interact via a set of chemical
ss reactions corresponding to synthesis, destruction, or modification.

57 Each reaction is defined by its stoichiometry, i.e. the quantity of each educt consumed and prod-
ss  uct produced by the reaction, and reaction rate. Reactions are presumed to take place stochastically
5o as a function of the state of the system, i.e. the number of molecules of each species at a given
¢ point in time. The probability of a reaction occurring in infinitesimal time, called the reaction
s propensity, depends on the number of molecules of each educt available, the reaction volume (i.e.
s2 of the cellular compartment wherein the reaction takes place), and on a reaction constant. We con-
63 sider reactions that are at most bimolecular, since reactions involving more than two species rarely
e occur in biology. Zeroth order reactions involve the production of a species with no dependence
es on an educt, for example due to constitutive production; their reaction propensities are constant.
e First order reactions proceed with propensity proportional to the number of available molecules
e of a single educt. Second order reactions involve two species, and their propensity is proportional
e to the abundances of both involved educts, and so on. The reaction constants k depend on the
¢ chemical species involved, temperature and reaction system volume. Reaction propensities are
7 summarized in Table Al.

Reaction order Reaction Propensity function (a)
Zeroth 0—X k
First X =Y kx
Second X+Y—=>Z kxy
Second (same species) 2X -»Y kx(x —1)/2
Third X+Y+7Z—- A kxyz

Table A1l: Reaction propensities for chemical reactions of zeroth, first, and second order. k denotes
a kinetic constant and x,y, z the number of molecules of species X,Y and Z, respectively.
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2 2 Inference of latent history and model parameters

» 2.1 Inference using bootstrap particle filtering

7z STILT builds upon the recursive, simulation-based particle filter first introduced by Pitt and
7« Sheppard [1]. The particle filter approximates the posterior distribution of the latent history of all
7 chemical species for each cell, and all model parameters by iteratively including new observations.
76 Consider a chemical reaction network with Ny chemical species, of which N, < N, are observed
77 via measurement. The vector of reaction constants governing the reactions of this network is de-
7z noted by 8. We denote by Yo.n = (Y¢,,.-., Y¢,) the set of observations obtained at a series
. of N discrete measurement time points g, ...,ty. Each observation Y; € RNe consists of mea-
s surements of IV, observed chemical species. We assume that the observations Y; constitute noisy
a1 measurements of the true unknown state of the system at time ¢, denoted by X;. We denote by
2 X, 4, the path (trajectory) of the random variable X; from time ¢; to time ¢, and denote by
o Xon = (Xig, .., Xty ) the value of X; at the measurement time points to, ..., tx.

The objective of the bootstrap particle filter is to sample from the posterior joint density
P(Xity,tx1:0Y0:n, M) of latent trajectories Xp, ;. and parameters @ for a model with index
M, given the observed data Yg.5. We drop the model index M for simplicity; when comparing
models we will again introduce this notation. The latent trajectories X[, ;) are realizations
of a stochastic process, and the data Y.y represent noisy observations of (a function of) the
latent process obtained at discrete times. The posterior joint density depends on the likelihood
P(Yo.n|X{t,,t5], @) and parameter prior probability distribution m(6) according to Bayes’ Law:

P(YO:N‘X[tO,tN];B)P(X[to,tN]aa)
P(Yo.n)
o P(YO:N‘X[to,tN])P(X[
- P(Yo.n)
~ P(Yon|Xon)P(Xizy,15110)7(8)
N P(Yo.n) '

P(Xiy,en1:0Yo0.n) =
110)7(6)

to,tN

s« The simplification on the right side of (1) is possible since the probability of observing data
&5 Yo.n given a latent trajectory Xy, ;] depends only on its value at the measurement timepoints
s Xo.n. Furthermore, it does not depend on the underlying parameters @ of the stochastic process
7 (measurement error is considered separately). The probability P(X{, ;,1|6@) captures the evolution
s of the stochastic processes parameterized by 6.
8 The observations Y.y is related to X[, ;5] by a measurement function g with parameter n:
w P(Yo.n|Xon) = 9(Yo.n; Xo:n,n). The function g depends on the measurement process and/or
o apparatus. For example, g might be a (multivariate) Gaussian in which case 1 contains the variance
o2 of the measurement process and potentially a scaling factor. We restrict ourselves to chemical
o3 reaction networks for which the stochastic process X; is a Markov jump process on a subset of the
o integer lattice NVs, corresponding to molecular copy numbers reachable by the chemical reactions
o of the network. For such a system, the exact likelihood of the latent trajectory P (X +41X4,,0)
% can be computed [2], and exact samples of X, ;.1|X¢,,6 can be generated e.g. using Gillespie’s
o algorithm [3]. Note that the transition density (i.e. P(Xy/|Xy,8),t" > t) of the stochastic process
¢ is in general not known, but can be approximated for small systems, e.g. using the Finite State
o Projection [4].

Assuming uncorrelated errors in the observation function g, the likelihood P(Yg.nx|Xo.n) fac-

torizes as:
N

P(Yo.n[Xon) = [T P(Y0 X)) (2)
i=0
10 for a series of N observations.
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Furthermore, the stochastic process X; is Markovian such that the probability P(X|Xp, ) =
P(X,|X;) for some s > t. The likelihood of the trajectory Xp, ;] therefore decomposes as:

N
P(X[to,tzv]|0) = P(Xt0|9) HP(X[ti—lxti]

i=1

Xt 1,0) 3)

Following the derivation of Gordon et al. [5], we combine (2) and (3), and substitute into (1),
to obtain a new expression for the posterior density:

P(Y 4| X)) P(Xt,_y 1,1

N
Xy, ,.0)
P(Xity1x1: 01 Yon) = [[ =

P(Xy,|0)(0)

i=1 P(Yf7)
_ P(YtN|XtN)P(X[tN—1,tN]‘XtN71?9>
P(YtN)
N P(YL, X, ) P(X X, ,,0) “
ti |}t [ti—1,ts] ti—1
P(X, |0)7(6
X bl P(Ytl) ( to‘ )W( )
P(Y 5 [ Xip )P Xty w0 [ X1, 6)
= - -~ P(Y[:, )1 N] - P(X[tg,tN71]76|YO!N—1)
N
This can be rewritten as
P(Xpy 1 tnXn-1,0)
P(Xtg,tn], 01 Y 05) = wpy — 2 -00] P(Xito,tn 11,01 Y0.n-1) (5)

P(YtN)

1 where wy = P(Yi, | Xey)-

102 Hence, there is a simple update rule relating the posterior distribution using observations until
w3 timepoint tx_; to the posterior distribution with the next observation at timepoint ¢5. We note
e also that one can generate a sample from the posterior joint density at time #;, P(X{,.+,},0/Yo:i),
ws by first sampling a trajectory from the marginal distibution P(X(, 4.1
106 parameter 0|X[t0,m, suggesting a Gibbs sampling approach.

107 These observations and the recursive factorization of the joint posterior (5) motivates the so-
s called bootstrap (recursive) particle filter [5], which iteratively generates samples (particles) from
109 the posterior distribution conditioned on all prior observations:

Y.;) and then sampling a
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Algorithm 1: Bootstrap particle filter

Data: A set of observed data points Y.y at timepoints tg, ..., ¢y, parameter prior
7 :RY — Ry 4, observation function ¢g(Y;X,n) = P(Y|X), number of particles K
Result: A set of particles {(X(k)

[totn
P(Xiy,e01,0Y)
1 Initialization;
for k=1...K do
Sample parameter values from the prior: 0% ~ m(0);

K
],H(k )) }k sampled from the posterior density
=1

w N

Sample initial state conditional on first observed data point: ng) ~ (X[ Yo, M);

| Initialize particle weight to wék) =1/K

S} [

Iterate over observation time points ;

for i=1...N do

Generate a set of particle indices ¢*) € {1,...,K},k=1,..., K such that
) a K 4

P(G(k) =a)= w§7)1/22:1 wzQﬁ

9 fork=1...K do

o N o

10 Generate a sample trajectory XEZ)_l,ti] ~ P(-|X§ikl)), 0(6(k))) ;
)

11 Concatenate to previously sampled trajectory: Xftko)’ti] = [XE:OZZAPXEEA,M]];
12 Set the weight of the k" particle to the likelihood:

w™ = P(Y,,|X{Y) = g(Yo; X[ m);
13 Generate a new set of parameters 6™ from the conditional density:

o ~ P(oIX{, )

L 0,ti]

14 Sample from the posterior ;
15 Generate a set of particle indices e*) € {1,...,K},k=1,..., K such that

a K 4
P = a) =)/ S5, w: K

16 Construct a sample of K particles from the posterior: {(XE:ZEPQ(G(M) \Yo:N) }k:

The recursive particle filter begins by sampling parameters 8 from the parameter prior distri-
bution 7(0), and an initial state X;, from its prior, for an ensemble of K particles, i.e. each particle
is a sample from the joint density of X;, and €. At each iteration 4, the particles are resampled
according to their normalized weights wgk) / Zf:l wfé), such that particles that have a state ng)
for which the current observation Y, is likely are sampled more frequently. After updating the
latent histories X{, +,1, new samples are generated for the parameters conditional on those latent

histories using a Gibbs sampling approach. Together the sample (X[ti](k)7 H(k)) is used to simulate
a new trajectory on the interval [t;, ¢;11] using the stochastic simulation algorithm or variants [6, 7].
The result of the recursive particle filter at iteration ¢ is an exact sample from the posterior joint
density of (X, +,],0[Yo::), as shown in (4).

2.2 Gamma priors

We consider the case of chemical reaction networks, in which case each parameter 61,...,0; € 0
corresponds to the kinetic constant of a chemical reaction (see Table Al). The inference procedure
is significantly simplified if one assumes that the prior of each parameter is gamma distributed,
and that the prior distributions of all parameters are conditionally independent:
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d d
m(0) = H mp(0p) = H L(6p; ap, Bp) (6)

1 where o, and f, are the hyperparameters for the distribution of 6,,p = 1...d, and I'(z; o, ) =

127 %xo"le’ﬂx. The two parameters o and § of the gamma distribution can be chosen e.g. to

s  match a target mean p and variance o2

o = p2)o’ (7)
B = plot (8)

120 The assumption of conditional independence between model parameters is often justified, as infor-
130 mation about the covariance of biological constants is often not available.

Using gamma priors for each model parameter, the likelihood P (X[ ,4,1/0) of a particular
(fully-observed) realization of the Markov jump process X; on the interval [t,t+ 7] is conjugate to
the prior, such that the conditional density P(0|X; ;1) is also gamma distributed (see Wilkinson
et al. [2], p. 281):

P(X[t t+‘r]‘0) P(X[t t+r}|9) d
POX )y 1) = ottt gy — 2t T g 8
( | [t,t+ ]) P(X[t7t+7-]) ( P(X[t7t+‘r]) Z];[l ( Py “p P) ( )
9

d
= H L(0p; 0 +1p, Bp + Gp)

1 where 7, is the number of reaction firings of reaction p on the interval [¢,¢ + 7]. The term G, =

w LT ap(Xs)ds is the integral of the reaction propensity a, of the p'" reaction (Table Al),

0, Jt

i rescaled by the reaction constant 6,. The rescaling renders G, dependent only on the instantaneous
3¢ configuration of the system at all points along the trajectory, and not on the reaction constants.
135 Hence, a new sample for 0 given the newly simulated trajectory (line 13 of Algorithm 1) can be
s generated by simply sampling from the updated gamma posterior (9); furthermore, the summary
s statistics r, and G, are sufficient for describing the posterior distribution of 8,. Thus, the full
138 trajectories do not need to be stored, but instead the new simulations can be used to merely update
1 the parameters of the posterior distribution of 8 (i.e. set o, < oy + 7y, Bp < B + Gp), reducing
uo  storage requirements.

w 2.3 STILT: Stochastic Inference on Lineage Trees

12 The particle filtering strategy described in Algorithm 1 is suitable for inference of the latent history
w3 of a single cell. However, if the cellular lineage is known it is possible to exploit the tree structure
us  to improve the performance of the inference algorithm, for instance by constraining the range
us of possible initial values for daughter cells at the moment of division according to the state of
us the mother cell. This is more informative than assuming arbitrary distributions for the initial
w7 conditions of latent species, as required in Algorithm 1. Moreover, when incorporating the tree
us structure, the inferred parameter values are required to generate trajectories that have a high
uo likelihood for multiple cells simultaneously as the cells proliferate. Such an approach is more
150 efficient than performing inference on all cells simultaneously while neglecting the chronological
151 and genealogical order owing to the less constrained initial conditions and lack of convergence of
12 the parameter distributions.

153 STILT performs tree-based inference as outlined in Algorithm 2. We consider a tree comprised
s of N, total cells, with indices j = 1,..., N.. For the j* cell there is a series of N; (possibly
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155 multivariate) measurements obtained at times 7¢y,...,7 tn;, corresponding to each of the N, ob-
s served species, denoted by /Y 1.n, = (?Yiy,, ... ijJ'th ), . The algorithm begins by initializing a
157 set of K particles for the tree’s founding cell with index j = 1, where each particle k comprises
155 both a latent initial state 1X§f) and a set of parameters %), All particles are initially equally
150 weighted as 1/K. The algorithm then iterates through all of the measurement time points, where
wo for simplicity we assume that measurements of all cells are obtained at a regular interval At (i.e.
w6 Ity = nAt V0, n € N); however, the method is equally valid for irregular measurement time inter-
12 vals. At each iteration ¢, particles are resampled with frequencies proportional to their weights, and
63 cells that are alive/measured at the current timepoint ¢A¢ are simulated one time step using the
e generative stochastic process with the sampled parameters 0™ to generate a sample 7 Xfl AL (i+1)A]
s of the latent history of cell j over the time interval [iAt, (i + 1)At].
166 If a cell is observed to divide between this timepoint and the next, the cell’s contents are
17 allocated to the daughter cells. If both daughter cells are present, the total cellular contents of
18 the mother cell must be conserved. For simplicity the division is assumed to take place just before
o the first observation of the two daughter cells at time (¢ + 1)At. Cells are ordered such that cell j
o gives rise to cells with indices 25 and 25 + 1, with latent states 2JX(k)l and 2j“X(k) , for the kM
i particle. The conservation relationship between mother and daughter cells is enforced by requiring
12 that 27 X,(ﬁ L+ +1ch+)1 =J Xgill. However, some species may be presumed to be identical between
w3 mother and daughter cells, e.g. DNA in active or inactive conformation.
17 After each forward simulation or division step the likelihood P(9Yy,,, |/ ngzl) =9(Yy, ,; Xg le , 1)
s of each latent history is computed according to the observation function g, and used to reweight
e the particles. The observations of each cell are presumed independent conditional on the latent
w7 state, thus the likelihood of the complete set of observed cells is the product of the likelihoods of
s each cell, and the total weight of particle k is given by the product of the weights of each observed
e cell at that time point.
Assuming conditionally independent gamma priors 7(6,) = I'(6,; o, 8p) for each parameter 6,
the posterior probability of the model parameters conditional on the sampled latent histories until
the current time point is shifted similarly to in (9), where o, increases by the summed number
of reaction firings and S, by the summed integrals of the (rescaled) propensity functions, over all
newly simulated trajectories on the interval [iAt, (i + 1)At]. We define the set A; to be the set of
indices of all cells observed at any point on the interval [0, iAt]:

A = {jJty <iAt} (10)

Let 7r,(iAt) be the number of firings of reaction p in cell j at all times ¢ < iAt and G, (iAt) =
1 pmin(Yin;,iAt)
Hp Jty

cell j until time ¢At, for a particular realization of the stochastic process for cell j. With these
definitions, the posterior joint density of model parameters 6 is given by:

a,("Xs)ds be the integral of the rescaled propensity function of reaction p for

d
PO1B;) = [[T(Opi cap+ Y “rplilt), B, + Y “Gp(iAt)) (11)
p=1

acA; a€A;

1o where the set B; = {QX[atl,min(
;i cess for all cells observed at or before time iAt. Eq. (11) provides the means to generate sam-
12 ples 0™ from the probability density of model parameters conditional on a particular sampled
183 complete genealogy B;. The parameter samples 6" for each particle k are obtained by substi-
s tuting the sampled trajectories for that particle into all expressions, i.e. *X becomes *X*) “rp

atNa*iAt)]}ae.Ai gives the set of realizations of the stochastic pro-

185 becomes r( ), and G, becomes “GZ(,k). Since only the summary statistics are necessary to com-
185 pute the posterior of the parameters, the full trajectories do not need to be saved, leading to
17 a significant reduction in storage requirements. Finally, after iterating through all timepoints,
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the particles are resampled according to their weights yielding a set of K latent trajectories
(if stored) and parameter sets. Thus the tree-based inference algorithm extends the single-cell-
based inference algorithm (Algorithm 1) by establishing continuity between mother and daughter
cells and initializing new latent trajectories for daughter cells according to the division process.
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Algorithm 2: STILT algorithm

w N

Data: A set of observations Y = {(?Y,...,7 Yy,
T={'T,.... YT} ={(ts,... ,th].)}j.Vzcl; parameter prior 7 : R? — Rq 4;
observation function ¢g(Y;X,n) = P(Y|X); number of particles K; measurement
time interval At X

Result: A set of particles {({1X(k), cee NCX("')} ,B(k)) }k sampled from the posterior

=1
density P({'X,...,NX},0|Y,T)

initialization;

for k=1... K do

Sample parameter values from the prior: 0% ~ w(0);

)}j\/:cl of N, cells observed at timepoints

Sample initial state conditional on first observed data point: 1X§§) ~ (1Y, );
Initialize particle weight to wék) =1/K
Generate a set of particle indices ¢*) € {1,...,K},k=1,...,K such that

P(e(k) =a)= w(()a)/ Zle w(()é);

7 compute maximum of all timepoints: tyax = max(7T) ;
8 loop over all observed timepoints;
9 for i = 0: [tmax/At] do

10
11
12
13
14
15
16
17
18

19

20
21

22

23
24

25

26

27

28

29

determine cells alive at this timepoint;

o= {jliAt €T} ;

loop over particles ;

for k=1...K do

loop over cells at current timepoint ;

for j € o do

Get index of current timepoint for cell j;

¢ = find(t, = iAt) ;

Compute the partial weight of particle k for the j*" cell:

Tw® = POY, PXY) = 90 Y0, /X0 m);

Generate a sample trajectory 1X%) ~ P(~|jX(€(k)) o)
ple traj Y T AL (i41) At ti

if (i +1)At ¢ /T then

Initialize daughter cells;

(QngZ)N%Jrngfjl) ~ P(., .|jx(7€) ) ;

)

tit1/
else
Concatenate to previously sampled trajectory:
iy (k) — iy e®) i (k) .
B I X DAy T []X[J'tl,iAt]’jX[iAt,(i+1)At]]’

Compute the total weights for particle k: wgk) = Hjea ngk) ;
Generate a set of particle indices ¢*) € {1,...,K},k=1,..., K such that
a K 14
P(e(k) =a) = w§+)1/ Py w§+)15

Sample new parameters 0% from the conditional density:

k i (7)) Ne :
0% ~ p <9| {jx[jtl,mt]}j_1> ’

Construct a sample of K particles from the posterior:

g (€9) Ne (e K
{ X[jtl’thJ]}jzl ,0 V. T

k=1
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w3 2.4 Single cell versus tree-based inference

s In the previous sections we presented two algorithms for inferring model parameters using the
s bootstrap particle filter. Algorithm 1 treats each cell individually while Algorithm 2 explicitly
106 incorporates the known cellular lineage tree. As an alternative to Algorithm 2, it is also possible to
w7 fit all cells by simply discarding lineage knowledge, artificially synchronizing all cells to start at the
18 same time point, and fitting cells in parallel. However, testing revealed that this approach quickly
19 converges to local optima due to the inability to fit all cells simultaneously without information
20 about their initial conditions. In contrast, Algorithm 2 benefits from exploiting the initial iterations
20 of the algorithm with fewer cells in order to pre-converge the parameter distributions, and provides
22 good estimates for the initial conditions of daughter cells upon division of the mother cell under
203 the assumed division process.

204 The single-cell based inference performed consistently worse than the tree-based inference using
205 STILT on synthetic data (Table S3, Figure S4), in terms of model identification and parameter
26 estimates. This is likely because the single cell-based inference does not exploit the lineage structure
207 to improve the estimation of the initial conditions (i.e. by enforcing conservation of inherited cellular
208 material between mother and daughter cells), and because it is not obvious how to combine the
20 inference results of individual cells in order to provide a better estimate of the overall population
210 parameters.

a3  Model assumptions

2 3.1 Cell division

zs We assume that at the time of division, each mother cell allocates its contents (mRNA and protein)
2 randomly with equal probability to each daughter cell. Thus the number of mRNA molecules are
25 distributed as:

0.5™0my!
P(Ml = ml,Mg = m2|M0 = mo) = 0 '6m0—m1,m2 (12)

(mo — ml)!ml.
26 where My, Mo are the number of mRNA molecules of the two daughter cells upon division, and M
a7 that of the mother cell; 0, , is the Kronecker delta. The protein contents are allocated analogously,
218 although for numerical reasons the binomial distribution is approximated by a normal distribution
20 with equivalent mean and variance.

220 The conformation of the DNA (i.e. active or inactive) for each gene is assumed to persist from
22 mother cell to daughter cell at division. This assumption is motivated by the observation that
2 progeny of a cell typically resemble the ancestor cell in terms of gene activity. However, due to
223 the stochastic nature of the model, some simulated trajectories may still switch activation state
24 shortly after division, effectively permitting cells to also switch activation state upon division if
25  this trajectory exhibits high likelihood. We note however that this is not an essential assumption
26 of the inference procedure and can be easily changed for alternative scenarios.

= 3.2 Feedback models

28 In the feedback models, the DNA activation and inactivation rates are modified by the protein
29 abundance. For the Negative Feedback model the amount of protein modulates the rate of DNA
20 inactivation and for the Positive Feedback model protein modulates the rate of DNA activation. We
an consider the case of switch-like activation/inactivation of the DNA with increasing concentration
2 of protein. We achieve this by assuming that the propensity of DNA activation in the Positive
23 Feedback model is given by aon = konP? and of DNA inactivation by aog = kogP? in the Negative
2 Feedback model.
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235 We assume fast binding and dissociation of protein to the DNA relative to protein production
25 and degradation, such that the protein abundance can be treated as approximately constant on
2r7  the time scale of binding dynamics. With this assumption, the probability of DNA being in either
2 the active (DNA™) or inactive state (DNA) evolves for the Negative Feedback model according to
29 the chemical master equation:

P(DNA* t) = P(DNA, t)kon — P(DNA*dt, t)ko P> (13)
P(DNA,t) = —P(DNA, t)kon + P(DNA*, )k P2 (14)
Requiring that Psg(DNA™) + Psg(DNA) = 1, the steady state solution gives:

P2
Pss(DNA) = 15
ss(DNA) L | 2 (15)

off

kon
Psg(DNA*) = —fet 16
ss ( ) L | p2 (16)

a0 Thus the probability of DNA being inactive is a sigmoidally increasing function of the number of
an - proteins. This activation function is a Hill function with coefficient 2, corresponding to cooperative
22 binding of two Nanog molecules at the promoter/enhancer. The quantity (kog/kon)'/? determines
x3  the protein abundance for which the DNA has 50% probability of being active.

Similarly, for the Positive Feedback model, the probability of the DNA states evolves as:

P(DNA*,t) = P(DNA, t)kon P? — P(DNA*, t)kogs (17)
P(DNA,t) = —P(DNA, t)kon P? + P(DNA*, t)kogt (18)
for which the steady state solution gives:
ioff
Pss(DNA) = W (19)
P2

Psg(DNA*) = ——.
SS( ) %_’_PQ

24 which is a Hill function with coefficient 2 for the probability of DNA activation.

» 3.3 Biallelic expression

a6 In the synthetic data sets we consider expression dynamics of a single allele only. Thus, there
a7 are precisely four species: DNA in active and inactive conformations, mRNA and protein. In the
23 NanogVENUS subtree modeling, the fluorescent fusion protein NanogVENUS is also expressed
20 only in a single allele [8]. Hence we apply the same models as for the synthetic data. However,
0 there is also the possibility of expression in the other, unlabeled Nanog allele. Since we cannot
;1 quantify this allele, we assume that its expression is highly correlated to the observed allele, which
2 has previously been reported for the same system [9]. Assuming equal proportions of observed
»3  and unobserved Nanog protein, the total amount is roughly double, which translates to a four-
s fold rescaling of the estimated rate constants ko, and kog for the Positive and Negative Feedback
»s  models, respectively. The inference procedure is otherwise not affected.

» 3.4 Cellular compartments

s For simplification, we do not explicitly model cellular compartments such as cytoplasm or nucleus.
s Thus nuclear translocation effects are implicitly captured by the estimated rate constants. The
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50  NanogVENUS experiments analyzed [8] quantify only nuclear protein. Thus the model pertains
%0 only to the expression dynamics of nuclear Nanog. The estimated protein degradation rate also
%1 captures both degradation and implicitly the dilution to the cytoplasmic compartment.

= 4 Model specifications

w 4.1 Measurement function

STILT requires the specification of an observation function that yields the likelihood of a particular
observation Y, given the state of the latent history X;, at some time ¢, this function is referred to
as g in Section 2 and corresponds to the measurement process. In the case of time-lapse fluorescence
microscopy one typically assumes that the fluorescence intensity is proportional to the abundance
of fluorophores. Assuming that the measurement process induces some small error ¢, this gives the
simple linear relation

Y., =X, +e (21)

x4 where A is the mean fluorescence intensity per molecule. In the analysis of the synthetic lineage
s trees (Figure 2), no conversion between proteins and fluorescence intensity was necessary, i.e. A = 1.
s We let € ~ N(0,0?) with standard deviation o = 200 proteins. This is the same as was used for
7 generating the noisy observations of the synthetic data.

268 In the analysis of NanogVENUS fluorescence lineage trees, we estimate A ~ 10° proteins per
x%0 unit fluorescence intensity based on comparison of mean concentration estimated from Western
20 blot and mean fluorescence intensity of unbiased NanogVENUS lineage trees (see Section 7.2). We
o likewise assume Gaussian measurement noise, and use the NanogVENUS lineage trees to estimate
2z the standard deviation to be approximately ¢ = 2 x 10* based on the small signal fluctuations.
oz We note that the exact value of the measurement error should not bias the inference results, but
o rather, too small a value will lead to non-robust estimation of parameters as there is a higher
s risk of too many particles being discarded due to low likelihood, and too high a value leads to a
a6 poorer ability to infer model parameters as too few particles are discarded. However, the robust
o7 estimation of model parameters and apparent divergence from the prior (see Figure S8) seems to
s indicate an adequate choice for the magnitude of the measurement error o.

= 4.2 Prior distributions

0 STILT is a Bayesian inference technique and thus requires specification of prior distributions for
s model parameters. We utilize Gamma priors distributions for each parameter, which greatly
22 simplifies the sampling procedure (see 2.2). For the in silico experiments, the true model parameter
23 were known. In this case, the priors distributions were chosen so that they i) contain the true model
¢ parameters, and ii) allow for easy visual assessment of convergence to the true model parameters.
285 For the investigation of the Nanog subtrees, the prior distributions were obtained as follows.

s MRNA degradation The half-life of Nanog mRNA in mouse ES cells cultured in serum/LIF
27 has been estimated as 6.8 h [10], and 3.9-6.4 h [11]. We thus chose o = 8 and § = 40 for which
28 the 95% confidence interval of the half-life is (1.9 h, 8.0 h).

20 Transcription The Nanog mRNA transcription rate was recently estimated as approximately
20 125 molecules/h in serum/LIF [10]. Moreover, the number of Nanog mRNA molecules in mouse ES
201 cells under serum/LIF conditions is approximately 300 or fewer, rarely exceeding 400 [12, 13]. Using
22 the mean estimated degradation rate of 0.2 h™!, and assuming DNA remains active, the expected
23 number of mRNAs (given by ky,/gm) would thus be approximately 625 molecules which is more
24 than typically expected. We therefore set the prior distribution constants to be a = 10,5 = 0.1
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s for which the 95% confidence interval of the transcription rate becomes [47.95,170.85] h—!, and
26 the expected number of transcripts is approximately 500. This number is somewhat reduced by
27 the fact that the DNA is typically not persistently active, and by the cell division process which
28 reduces the mRNA count by a factor of approximately 2.

20  Protein degradation The half-life of Nanog has been reported as approximately 2.1 + 0.8 h
w0 [14]. Nanog’s half-life was also measured in the analyzed data set and found to be closer to 5 h
;0 [8]. We therefore conservatively set the prior distribution constants to be o = 2, 8 = 4 such that
sz the 95% confidence interval of the half-life is approximately 0.5 — 11.5 h.

3 Translation The translation rate of Nanog is not well characterized. However, the estimated
;s mean number of Nanog molecules per cell is approximately 350,000, the mean degradation rate
w5 approximately 0.2 h™!, and mean number of mRNA molecules roughly 200. In the deterministic
26 limit, the expected number of proteins is given by (p) = %(m}, where (p) and (m) denote the mean
37 protein and mRNA counts, respectively. Substituting our estimates, we obtain approximately 350
0s mMRNA~!h~!. We thus chose o = 3, 8 = 0.01 such that the mean (std.) translation rate is 300£173
0 MRNA~! h~!. We note that this is in rough agreement with the mean estimated translation rate
a0 of 478 mRNA~! h™! over all analyzed genes in mouse fibroblasts (maximum estimated rate of 1000
su mRNA™! h_l) [15]

sz DINA activation and inactivation The rate of DNA activation and inactivation for Nanog is
sz not well studied. By inspecting the analyzed NanogVENUS subtrees, we surmise that periods of
s rapid fluorescence intensity likely correspond to periods of DNA activity, and periods of decline
ais to DNA inactivity. Thus activation and inactivation presumably proceeds with expected waiting
sis time on the order of hours and not days or longer. Consistent with this, Sokolik et al. estimated
a7 active/inactive switching times to be approximately 3.8 & 1.2 h [14]. Since the autoregulation
as models studied differ in the form of their activation/inactivation rates, it was necessary to choose
a9 priors for each separately. For each of the three models, the prior distributions for ko, and kog
20 were chosen such that the waiting times for activation/inactivation were on the order hours, and
a1 such that trees simulated with these parameters produced reasonable dynamics, i.e. observed DNA
2 state switching, and approximately correct order of magnitude for number of proteins.

» 4.3 Initial conditions

24 The initial state of the founder cell of the cellular lineage trees is unknown. In the considered
»s  models DNA and mRNA are entirely latent, while protein is observed with noise. For both the
ns in silico experiments and the NanogVENUS subtrees, we initialized each cell’s DNA state to be
w7 active or inactive with 50% probability, and to have an initial mRNA count uniformly sampled
»s  from [0,50]. The protein copy number was sampled from a Gaussian distribution centered on the
2o first observation, with standard deviation specified by the measurement function (see Section 4.1).

» 4.4 Number of particles

s All implementations of the bootstrap particle filter require specification of the number of particles
s to use for approximating the latent history and posterior parameter distributions. The accuracy
;3 of the approximation improves in the Monte Carlo sense as the number of particles is increased.
1 However, the incurred computational overhead increases proportionally. We used 7 x 10° particles
s for inference of the synthetic lineage trees, 10° for each synthetic cell for the single-cell-based
s algorithm, and 108 particles for the NanogVENUS subtrees. We determined the number of particles
;37 to use based on robustness of convergence of the parameter posteriors, and run-time. Inference
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s typically completed on a multicore machine in approximately 10h for 10° particles for a single
s subtree.

w 5 Implementation

sa STILT (see Algorithm 2) was implemented using Matlab 2015a. It includes code for importing
s SBML models and fast, parallel stochastic forward simulations for the system state using Matlab’s
us  parallel computing toolbox.

s 5.1 Model definition via SBML

s Our implementation supports the import of biochemical network models from SBML using libS-
us  BML 5.12.0 [16], but can also be specified directly in Matlab. Species, reactions and their param-
s eters are translated into a stoichiometric matrix and vectorized Matlab functions for computing
us  reaction propensities (Section 1).

s D.2 Simulation

30 The stochastic simulation code was implemented using explicit, adaptive T-leaping [17, 18], which
1 generates approximate samples from the exact stochastic process. In general, T-leaping approxi-
2 mates the Markov jump process by a Poisson process with the same expected number of reactions
13 firing for time intervals where the reaction propensities remain relatively constant. Such an ap-
4 proximation is generally necessary when the system becomes stiff, i.e., when there exist reactions
s with widely varying time scales such as is the case for the protein production and degradation
36 compared to DNA activation and inactivation. As for ref. [17] our implementation distinguishes
»7 between critical and non-critical reactions (based on current educt availability, the parameter N, is
38 set to 10) and performs explicit 7-leaping (with parameter ¢ = 0.03) for non-critical reactions with
9 error bounding implemented for first, second and third order reactions. The simulation code was
0 implemented completely vectorized and provides the approximated integrated reaction propensi-
s1  ties (for mass action propensities only) and the number of reactions firing, which are required for
w2 inference (see Section 2). The forward simulation code can be further accelerated by converting the
13 entire function or only the Poisson random number generation to C code, which lead to significant
s speedup for the studied systems.

s 9.3 Data structure

6 Measurement data are specified using a generic Matlab structure containing measurement times,
s cell number and an indicator for censoring (e.g. for inaccurate or missing data) as well as measure-
s ments and their respective measurement errors. Field names of measurements are automatically
;0 matched to SBML species. Parameter priors, model specifications (e.g. behaviour on cell division),
s compilation behavior and other user configurations are provided via an options structure.

-+ 6 Model evaluation

w» 6.1 Marginal likelihoods and Bayes Factors

The particle filtering approach presented above can be used for performing model comparison via
P(M1|Yo.n)
P(M2[Yo:n)’
(M7) to Model 2 (M3) for any two models. As before, we denote the series of observations at

Bayes Factors, i.e. by computing the ratio of the posterior probabilities of Model 1
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times to,...,tn by Yo.n = (Yi,,-.., Yty ). Using Bayes’ law, one can reformulate the marginal

posterior probability of a model M as:

P(Yo.n|M)P(M)
P(YO:N)

P(M[You) = (22)

Following Wilkinson et al. [2], p. 294, we can approximate the marginal likelihood of the model
P(Yo.n|M) using the sampled particles at each iteration i. Firstly, the distribution of the observed
data at time t;;; depends only observations up to t;: P(Yy, ,|Yon, M) = P(Y,,[Yo., M).
Moreover, this probability is approximated by the expectation of the likelihood, or weights w(*),
of the particles:

P(Yt11+1 ‘YO:iy M) -

P(Yi, X, ) P(Xt, 4 [Youi, M)dX,y

71+1) i+l

—

K
1 k (23)
=~ K Z P(Yti+1 |X'(fz421)

k=1 ————

(k)
Wit

sz where the ngz , are sampled (via the particle filter) from the marginal posterior up to time #;;1
s given by P(Xy,,,[Yo., M). This is nothing more than a Monte Carlo approximation of the integral,
s which provides an unbiased approximation of P(Yy, ,[Yo., M) with variance decreasing as K -1
376 [19]
Next, since the distribution of each observation depends only on previous observations, the
marginal probability of the entire set of observations P(Y.n|M) is given by the product:

N
P(YOIN‘M) = P(Yto) H P(Yti+1 |Y0Zia M) (24)
i=0
377 Assuming a priori equally likely models, the factor of P(M) in (22) cancels between the two

ss - models and the Bayes Factor reduces to the ratio of marginal likelihoods. In the analysis presented
s in this work we primarily utilize log Bayes Factors and marginal log likelihoods due to their superior
;0 numerical performance.

@ 6.2 Goodness-of-fit test

2 1o assess the extent to which a particular model agrees with an observed data set, we developed
33 a simple goodness-of-fit (GOF) test. The GOF test utilizes an estimate for model parameters
s obtained from the particle filter to generate many synthetic datasets, which are then compared
;s against the measured data. Specifically, we use the assumed model to generate many synthetic
s lineage trees of the same number of generations as the observed data using the median posterior
7 parameter estimate of each parameter. For each newly simulated data set, we approximate its log
s likelihood conditioned on the parameter set that was used to generate that data. The conditional
s log likelihood (CLL) is approximated again via a particle filter, where the parameters are fixed.
s This conditional particle filter only samples from the latent history of all state variables while
s keeping the parameters fixed, and is essentially the same as in Algorithm 2 omitting the parameter
s resampling step.

303 To compensate for the fact that the simulated datasets and the measured dataset do not neces-
34 sarily contain the same number of transitions, we normalize the estimated CLL of each simulation
35 by the number of simulated transitions (i.e. between measurement time points). We likewise
36 normalize the CLL of the actual data by the number of transitions (subtracting censored observa-
37 tions), to obtain the average CLL per transition. Without this compensation the CLL is always
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s decreasing with the number of transitions since the log likelihood is never greater than zero, which
39 could potentially bias the CLL depending on the random lifetime of each simulated cell.

400 In all applications of the GOF we used 300 samples to approximate the null distribution of the
a1 CLL, and 500 particles per sample to approximate the CLL. The GOF test approximates the null
w2 distribution of the CLL, i.e. the distribution of CLL values yielded by the particle filter when the
w3 parameters and model utilized are known to be true. We compute the CLL of the actual dataset
ws using the same parameter values and compare it with the null distribution of the CLL. If it lies
a5 within this distribution, then with high probability the dataset could have been produced by the
w6 chosen mechanistic model and parameter set, and the model cannot be rejected. Conversely, if
w7 the CLL of the observed dataset lies outside the null distribution, the model and parameters are
w8 unlikely to have produced this dataset. Thus, we define three categories of model agreement with
wo  the null distribution: reject (p < 0.01 or p > 0.99), marginal (p < 0.025 or p > 0.975), and accept,
a0 otherwise. Empirical p-values are estimated using the empirical cumulative distribution function
a1 of the estimated CLL.

« 7 Time-lapse fluorescence microscopy data

as 7.1 Pre-processing

as We obtained quantified time-lapse fluorescence microscopy movies of NanogVENUS in mouse em-
a5 bryonic stem cells from the data set of Filipczyk et al. [8] and converted fluorescence intensities to
a6 protein numbers as described in Section 4.1.

a17 Since the time-lapse fluorescence microscopy quantification introduces error due to variability in
as  the cellular (nuclear) segmentations, background correction, etc., we performed a data cleaning step
a0 prior to analysis. We censored measurements for all automatically segmented cells that could not be
20 manually verified, e.g. if the cells were too densely packed or overlapping to be reliably quantified.
2 We further censored very large jumps (the top 5% of absolute change in intensity) in the quantified
a2 intensity of individual cells, which result from either contamination due to microscopic debris,
23 errors in cell segmentation, and in some cases jumps in the intensity at the last time point before
a4 cell division which presumably arise due to a sudden change in the cellular morphology preceding
«s division that leads to a large overlap of cytoplasmic and nuclear volumes (see Supplementary Fig.
w5 for examples). Censored measurements affect the inference by rendering all simulated particles
a2 equally likely at that iteration; the algorithm otherwise proceeds as normal.

428 After cleaning and selecting data sets, we obtained a total of 7 quantified cellular genealogies
w20 from 3 different experiments. To improve computational efficiency, and for comparison with the
a0 synthetic data, we subdivided these large trees into smaller subtrees each containing 7 cells with
a1 no overlap between subtrees, thus obtaining 4 subtrees from the first experiment, 8 subtrees from
a2 3 different parent trees of the second experiment, and 1 subtree from each of 3 parent trees of the
13 third experiment; in total 15 subtrees were used for further analysis (see Supplementary Fig. 7).

a 7.2 Estimation of fluorescence intensity conversion factor

To estimate the absolute number of NanogVENUS molecules per cell, we performed Western Blots
experiments on 10% polyacrylamide gels. We compared Western Blots with a known quantity of
NanogGFP single knock-in fusion ESCs and with different quantities of recombinant GFP (Cata-
logue number: 632373, Clonetech, CA, USA). Both NanogGFP and GFP proteins were detected
using an anti-GFP primary antibody consisting of two monoclonal clones (Catalogue number:
1181460001, Roche, Mannheim, Germany). Western Blot band intensities were quantified by us-
ing the Gel Analyser tool in FIJI to gate on protein lanes and quantify band intensities over
background. We found that the relationship between the GFP quantities « and the corresponding
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intensity y is best described by a sigmoid function:

Vo) = (e ) e (29

The model parameters A;, K;, n; were obtained by local optimization using multiple restarts
initialized according to Latin-hypercube sampling. The exponent n determines the shape of the
sigmoid function, K sets the inflection point, A is the maximum of the curve and ¢ is a log-normally
distributed error term with expectation 1 and standard deviation o, as is suggested for Western
Blot data [20]. We compared this model against linear models both with and without intercept
and found it to be superior according to both the Bayesian Information Criterion and coefficient
of variation between replicates. We solve Eq. (25) for x to obtain

r=—" (26)

The total quantity of protein z is related to the cellular average P; as
x=PFP;-c-w. (27)

a5 where c¢ is the number of loaded cells and w is the molecular weight for the protein of interest. Thus
a6 we determined the number of proteins P; per cell from the sample intensity y; of each Western
«r Blot replicate j by first computing z from the observed intensity y according to Eq. (25), and then
s substituting into Eq. (27).

430 As Pj is a combination of uncertain variables, we obtained error bars for each P; individually
wo by applying standard error propagation to account for uncertainties in the number of cells ¢ (we
w1 assume a standard deviation of 10%) and uncertainties in the model (estimated via the standard
w2 deviation o of our noise model). However, we find that the uncertainties for each individual
w3 replicate P; are always smaller than the inter-replicate standard deviations by a factor of 0.3
as or smaller. Therefore, we only consider the standard deviation across replicates, as this is the
w5 dominant source of uncertainty in our procedure. Finally, we determined the fold-change between
us  NanogVENUS and NanogGFP from three Western Blots. Uncertainty of protein abundance over
wr  replicates was estimated by simple error propagation. All above experiments and analysis were
s performed in triplicate.

449 The resulting estimate is of approximately 350,000 + 72,000 molecules of NanogVENUS ex-
w0 pressed in each cell. Using the distribution of NanogVENUS fluorescence intensities over unsorted
s mESCs, we obtain a median intensity of approximately 3.5, from which we determine the cal-
ss2  ibration factor of NanogVENUS fluorescence intensity to NanogVENUS molecules count to be
w53 approximately 100,000.

«~ 8 Experimental validation of Negative Feedback model

= 8.1 Exogenous Nanog construct
s 8.1.1 ESC culture

7 Mouse ESCs were of R1 background and report endogenous Nanog protein levels from one allele
s by fluorescent fusion proteins, either NanogVENUS (NV) or NanogKATUSHKA (NK). ESCs were
o cultured in DMEM (Catalogue number: D1145 Sigma, MO, USA) supplemented with 2mM Glu-
w0 taMAX (Catalogue number: 35050-038, Gibco, USA),1% Non-essential amino acids (Catalogue
w1 number: 11140-035, Gibco, CA, USA), 1mM Sodium Pyruvate (Catalogue number: S8636, Sigma,
w2 MO, USA), 50uM b-mercaptoethanol (Catalogue number: M6250, Sigma-Aldrich, USA), 10% FCS
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w3 (Catalogue number: 2602P250915, PAN, Aidenbach, Germany) and 10ng/ml LIF (GFM200, Cell
s Guidance Systems, Cambridge, UK) on 0.1% porcine gelatin (Sigma, Catalogue number: G1890-
ws  100G).

w6 8.1.2 Nanog overexpression experiments

w7 30000 cells were seeded in a well of a 24w plate and transfection was performed 5-7h after seeding.
ws  For transfections, 250ng plasmid, 1ul Lipofectamine 2000 (11668-019, Life Technologies) and 50ul
w0 Opti-MEM (31985-062; Life Technologies) were mixed and added to the cells. Cells were analyzed
wo by flow cytometry 46h after transfection using a BD LSR Fortessa (BD Biosciences, CA, USA)
a1 and data were analysed with FlowJo (OR, USA). Cells were gated for non-debris and singlets using
a2 FCS-A, SSC-A and FCS-W channels. Fluorescence channels were compensated using controls that
a3 only expressed one of each fluorescent protein. R1 wild-type cells were used as control for cellular
an - autofluorescence. All experiments have been performed as triplicates.

a5 8.1.3 Expression plasmids

s The Nanog coding sequence was cloned in several variants as a 2A construct into a piggybac
a7 vector that has been modified to express a fluorescent nuclear membrane tag (iIRFPnucmem) from
s the CAG promoter using the In-Fusion system (Catalogue number: 638911, Takara, Japan). The
a0 resulting constructs are supposed to express iRFPnucmem and Nanog proteins in equal abundances.
w0 The plasmid CAG.iIRFPnucmem-P2A-NanogVENUS was used in overexpression experiments to
s allow for comparison of exogenous NanogVENUS levels with endogenous NanogVENUS levels
a2 of the R1 NanogVENUS cell line. The NanogVENUS plasmid performed identically to positive
w3 control plasmids (CAG.iRFPnucmem-P2A-Nanog; with or without ATG for Nanog). An empty
e vector control (CAG.iIRFPnucmem-P2A) was also used during experiments.

ws 8.2 Exogenous NanogVENUS expression compartments

w5 Using the wild-type cell line which expresses no NanogVENUS, we obtained the NanogVENUS
w7 intensity distribution due only to autofluorescence (Figure S10A), from which we deduce the 0.95
ss quantile of NanogVENUS autofluorescence, denoted Iﬁég. We then used the expression distribution
w0 of a cell line which expresses NanogVENUS at one endogenous allele (NV cell line, see Section 8.1)
w0 to derive the 0.95 quantile of unperturbed NanogVENUS expression, denoted I3V (Figure S10A).
201 We define the NanogVENUS No Exogenous compartment as NanogVENUS fluorescence inten-
102 sities that are below Irzl\ég. Since NanogVENUS is only expressed on one allele of the NV cell line,
w3 the total quantity of Nanog in the cell is approximately twice this amount. Based on this we define
w4 the 1x overexpression (OE) compartment to be intensities that are above the No Exogenous com-
w5 partment but below 200% of the normal level 13"V, The 2x OE compartment has NanogVENUS
w6 intensities IV between 2-4 times normal, and the 3x OE compartment between 4-6 times normal.

w7 Cells with higher NanogVENUS intensities fall into the “very high” intensity compartment.

w 8.3 Downregulation of endogenous Nanog levels

w To investigate negative feedback, we utilize the NK cell line (see Section 8.1), and compute
soo  the expression levels of endogenous NanogKATUSHKA for different levels of exogenous trans-
son  genic NanogVENUS expression. We first obtain the autofluorescence intensity distribution on
s2 the NanogKATUSHKA channel using NV cells which express no KATUSHKA, from which we
s3  estimate the 0.95 quantile of intensity of the KATUSHKA negative compartment, denoted Ir]l\ég
s (Figure S10B). We first normalize NanogKATUSHKA fluorescence relative to background by sub-
s0s  tracting Iﬁ;g from the measured intensities. We then compute the median fold-change, for each
so6  overexpression compartment k, of normalized expression of NanogKATUSHKA relative to that
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k | NanogVENUS Intensity range (Z1'") | NanogVENUS median ex-
compartment pression (INY,, % of I)MV)

1 | No Exogenous (=00, INY) 9.55%

2 | 1x OE Y. 2 x 1Y) 56.56%

3 | 2x OE [2,4) x I}V 263.87%

4| 3x OE [4,6) x IV 482.38%

5 | very high [6 x IV, 00) 1254.41%

Table A2: NanogVENUS compartments. Intensities are defined relative to the 0.95 quantile of
NanogVENUS expression in the NV cell line I}VV, and the 0.95 quantile of NanogVENUS expres-
sion in the WT line, Irjl\ég. For each NanogVENUS intensity compartment we compute the median

NanogVENUS intensity IVY, relative to IV .

med

sor  of the No Exogenous compartment (see Figure 4E, Table A2). Denoting the NanogKATUSHKA
sos  expression of a cell with index j by I jN K and its NanogVENUS expression by I JN V', the median
so0  fold-change for compartment k is given by:

median (IJNK — Iﬁg?)
GV ez Vy

median  (INK — [NK)
GiNVerNvy v &
H 1

FCYE =

(28)

s 8.3.1 Comparison of experimental replicates

su The NanogVENUS overexpression experiment described above was performed three times. To
s compensate for batch effects, the distributions in each experiment were normalized relative to the
si3 first experiment. Specifically, for each replicate, the fluorescence intensity of endogenous NanogKA-
su.. TUSHKA was scaled linearly so that the median intensity of cells matches to the median intensity
sis Of the first experiment. The same NanogKK ATUSHKA background level Ir]l\(’;? was used for each of
sis  the three replicates (see Section 8.3).

2 8.4 In silico perturbation experiment

We replicate the experimental setup by extending the Negative Feedback model to include exoge-
nous Nanog (Pex), such that the propensity of DNA inactivation becomes

Aoff = koff(Pen + Pex)2~ (29)

s From the time-lapse fluorescence microscopy movies of NanogVENUS subtrees we obtain estimates
s of posterior distributions of parameters for the Negative Feedback model (Table S5b). We compute
s the median of the posterior for each parameter and subtree, and then the mean of the medians for
szn each parameter over the subtrees (Table A3). We then perform in silico perturbation experiments
s2  using these mean parameter values and various levels of exogenous Nanog.

523 To mimic the experimental setup, we sampled intensity values IV directly from the measured
s distributions of exogenous NanogVENUS for each overexpression compartment separately. We
sss  convert the sampled intensities into a specific number of molecules by computing the overexpression
26 relative to wild-type NV cells. Since the fluorescent reporter is expressed only on one allele, a 100%
sz increase of NanogVENUS corresponds to an approximately 50% increase in total Nanog levels. We
s assume approximately 2 x 10° NanogVENUS molecules in a cell with no exogenous perturbation
s20 (see Figure S7). We thus compute the sampled amount of exogenous NanogVENUS molecules as

115y 5
50 Poy = 512\}‘\, (2 x 10°).
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Parameter Value
kon 0.6854
koft 5.690 x 10~
km, 110.3
Gm, 0.226
kp 619.5
9p 0.220

Table A3: Parameter values used for simulation of exogenous Nanog

531 For each sampled quantity of exogenous NanogVENUS, we generated 50 synthetic lineage trees
s of b generations each. The founder cell of each lineage tree had DNA initially active, between 0
53 and 150 mRNA molecules (uniformly sampled), and between 10° and 2 x 10° Nanog molecules
s (uniformly sampled). The exogenous Nanog levels were held fixed at the sampled value for the
s duration of the simulation.

s 8.5 Comparison to simulations

The distribution of endogenous Nanog following perturbation was computed for each overexpression
compartment after 46h of simulated time. The fold-change of endogenous Nanog expression relative
to expression with no perturbation was computed analogously to (28):
: sim
FCI = ——— % (30)
7 median(N5T")
s where N;}}C“ denotes the number of endogenous Nanog molecules of cell j, 46 hours after the
533 perturbation corresponding to compartment k.
539 In Figure 4E, we plot the distribution of the fold-change of simulated cells with respect to the
s0  No Exogenous compartment as a box-and-whiskers plot (median shown as red line). We compare
s this against the median (mean, s.e.m., n=3 experimental replicates) fold-change computed for the
s22 experimental data, see Eq. (28). The comparisons against each experimental replicate individually
se3  are shown in Figure S10E.
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