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Abstract

Two-dimensional collective cell migration assays are used to study malignant spreading and tissue repair.

These assays involve combined cell migration and cell proliferation processes, both of which are modulated

by cell-to-cell crowding effects. Previous discrete models of two-dimensional collective cell migration assays

involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting

potential proliferation events if the randomly chosen target site is occupied. There are two potential limitations

of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the

occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism

leads to the standard logistic growth function, but there is increasing evidence suggesting that cells do not

always grow logistically. Motivated by these limitations we introduce a generalised proliferation mechanism

into a two-dimensional lattice-based exclusion process model, which allows non-nearest neighbour proliferation

events to take place over a template of r ≥ 1 concentric rings of lattice sites. Further, the decision to abort

potential proliferation events is made using a crowding function, f(C) ∈ [0, 1] with f(0) = 1 and f(1) = 0.

This approach accounts for the density of agents within a group of lattice sites rather than dealing with the

occupancy of a single site only. Analysing the continuum limit description of the stochastic model shows that

the standard logistic source term, λC(1 − C), where λ is the proliferation rate, is generalised to a universal

growth function, λCf(C). Comparing the solution of the continuum description with averaged simulation

data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C),

the quality of the continuum-discrete match increases with r. Therefore, we suggest that estimating r from

time lapse images will help distinguish between situations where the simpler continuum model is adequate

from other situations where repeated simulations of the stochastic algorithm is required.
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I. INTRODUCTION

Two-dimensional collective cell migration assays are routinely used to study combined cell migration

and cell proliferation processes [1, 2]. These assays provide insight into cancer [3, 4] and tissue repair [5,

6]. Broadly speaking, there are two different kinds of two-dimensional collective cell migration assays.

(i) Cell proliferation assays, as shown in Figure 1(a)-(c), are initiated by uniformly distributing a

population of cells on a two-dimensional substrate. Over time, individual cells undergo migration and

proliferation events, which eventually leads to the formation of a confluent cell monolayer [7, 8]. (ii)

Scratch assays, as shown in Figure 1(d)-(f), are also initiated by uniformly distributing a population of

cells on a two-dimensional substrate. However, a wound, or scratch is made to create a cell-free region

adjacent to a region that is occupied by cells [9, 10]. Over time, individual cells undergo motility

and proliferation events with the net result being the spreading of cells into the vacant region [9, 10].

A critical feature of both proliferation and scratch assays is the role of cell-to-cell interactions and

crowding. At low cell density, individual cells are relatively free to move and proliferate because of the

abundance of free space [7, 12]. In contrast, at high cell density, individual cells are strongly influenced

by cell-to-cell crowding, which reduces their ability to move and proliferate [7, 12].

There are two different approaches to modelling two-dimensional collective cell migration assays.

In the first approach, a continuum reaction-diffusion equation is applied to mimic certain features

of the experiment [5, 6]. Using continuum models, most previous studies represent cell migration

with a diffusion-type mechanism and a logistic source term to represent carrying capacity-limited

proliferation [5, 6, 12–19]. In the second modelling approach, a discrete random walk model is used

to mimic certain features of these experiments [20, 21]. Here, many previous studies represent cell

migration using an unbiased exclusion process [22], which incorporates hard core exclusion to model

cell-to-cell crowding [23–28]. Cell proliferation is incorporated by allowing agents to place daughter

agents on the lattice, and crowding effects can be incorporated by ensuring that potential proliferation

events that would place a daughter agent on an occupied site are aborted [25, 26]. Discrete random

walk models have an advantage over continuum models when it comes to comparing model predictions

with experimental observations. Experimental data in the form of snapshots and time lapse movies

show the position of individual cells within the population. These images and movies can be directly

compared with the predictions of discrete models, whereas continuum models do not provide direct

information about individuals within the population [29–31].

Discrete time, lattice-based random walk models of collective cell migration assays typically invoke

the following discrete proliferation mechanism [23–26]. During any time step, of duration τ , each agent

is given the chance to proliferate with probability Pp. To incorporate crowding effects, the target site

for the placement of the daughter agent is chosen, at random, from the nearest neighbouring lattice
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sites surrounding the mother agent. If the target site is vacant, a daughter agent will be placed onto the

target site. However, if the target site is occupied, the event is aborted. Mean field analysis of this kind

of proliferation mechanism shows that it gives rise to a logistic source term in the partial differential

equation (PDE) description of the model [8, 25, 26]. The logistic model is the most commonly-invoked

source term in continuum reaction-diffusion models of collective cell migration assays [5, 6, 12–19].

Although carrying-capacity limited proliferation has been traditionally modelled using the logistic

equation, dC/dt = λC(1 − C) [5, 6, 12–15, 19], where λ is the proliferation rate and the density has

been scaled relative to the carrying capacity density, there is a growing awareness that the logistic

model does not always match experimental data. For example, West and colleagues [32] compare data

describing the growth of tumour spheroids in a wide range of animal models and show that the growth

is best described by a generalised logistic model, dC/dt = λC3/4(1 − C1/4). Similarly, our previous

analysis of a suite of scratch assays suggests that when a logistic-type reaction-diffusion equation is

calibrated to match experimental data with a range of initial cell densities, there is no unique choice

of λ for which the logistic model matches the entire data set for all initial conditions considered [10].

One way of interpreting this result is that cells do not proliferate logistically. While several previous

theoretical studies have analysed generalised logistic growth models, such as dC/dt = λCα(1 − Cβ)γ

for arbitrary constants α, β and γ [33], the question of which discrete exclusion process mechanisms

correspond to these generalised logistic growth models is yet to be examined.

The aim of this work is to present, and analyse, a discrete model of two-dimensional collective

cell migration assays. In all cases we consider the cell migration to be modelled in a standard way,

namely as an unbiased, nearest neighbour exclusion process where potential migration events occur

with probability Pm per time step of duration τ [8]. The focus of our work is on the details of

the proliferation mechanism. Potential proliferation events occur with probability Pp per time step

of duration τ . In the traditional model, the location of the daughter agent is chosen by randomly

selecting a nearest neighbour lattice site. If the randomly selected target site is vacant, the proliferation

event is successful, whereas if the randomly selected target site is occupied, the proliferation event

is aborted [8, 25, 26]. Two extensions of the standard model are analyzed. (i) We first consider

non-nearest neighbour proliferation mechanisms, whereby the crowdedness of any individual agent

is influenced by a larger template on the lattice, and it is possible for the daughter agent to be

placed on a non-nearest neighbour site. This first extension is consistent with in vitro [34] and in

vivo [35] experimental observations of non-nearest neighbour proliferation mechanisms. (ii) We note

that the traditional discrete proliferation mechanism corresponds to a linear relationship between the

per capita growth rate and the density, (1/C)dC/dt = λ(1−C) [8, 25, 26]. By adjusting the way that

we measure the local density, Ĉ ∈ [0, 1], we implement a suite of discrete models that correspond to

(1/Ĉ)dĈ/dt = λf(Ĉ), by introducing a crowding function, f(C) ∈ [0, 1] with f(0) = 1 and f(1) = 0.
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The focus of this work is to design and implement a generalised cell proliferation mechanism into

a lattice-based random walk model of cell migration and proliferation that incorporates these two

extensions. We derive the continuum limit PDE description of the discrete model, and apply both

the discrete and continuum models to mimic a suite of cell proliferation and scratch assays. Our

results illustrate several interesting features about the relationship between the discrete model and the

continuum limit description.

II. DISCRETE MATHEMATICAL MODELS

We adopt the convention that dimensional variables are primed, whereas non-dimensional variables

are unprimed. A lattice-based random walk model will be used to describe the collective motion of a

population of cells with an average cell diameter of ∆′. The lattice spacing is taken to be equal to the

average cell diameter so that there are, at most, one agent per site. All simulations are non-dimensional

in the sense that they are performed on a hexagonal lattice with unit lattice spacing, ∆ = 1. These

non-dimensional simulations can be used to model any particular cell population by re-scaling with

the dimensional cell diameter, ∆′.

Each lattice site, indexed (i, j) where i, j ∈ Z+, has position

(x, y) =


(
i∆, j∆

√
3/2

)
if j is even,(

(i+ 1/2)∆, j∆
√
3/2

)
if j is odd,

such that 1 ≤ i ≤ I and 1 ≤ j ≤ J . In any single realisation of the model, the occupancy of site s is

denoted Cs, with Cs = 1 if the site is occupied, and Cs = 0 if vacant. Since site s is associated with a

unique index (i, j), we will use Cs and Ci,j interchangeably.

Traditional discrete model : If there are N(t) agents present at time t, then during the next time

step of duration τ , N(t) agents are selected independently at random, one at a time with replacement,

and given the opportunity to move [8, 26]. The randomly selected agent attempts to move, with

probability Pm, to one of the six nearest neighbour sites (Figure 2(a)), and the target site is chosen

randomly. To mimic crowding effects, a motility event is aborted if an agent attempts to move to an

occupied site.

Once N(t) potential motility events are attempted, another N(t) agents are selected independently,

at random, one at a time with replacement, and given the opportunity to proliferate with probability

Pp. The location of the daughter agent is chosen, at random, from one of the six nearest neighbour

sites [8, 25, 26]. If the selected site is occupied, the potential proliferation event is aborted. In contrast,

if the selected site is vacant, a new daughter agent is placed on that site. After the N(t) potential
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proliferation events have been attempted, N(t+ τ) is updated [8, 25, 26]. One of the limitations of the

traditional discrete model is that the continuum limit description leads to the traditional logistic source

term [25, 26], however several observations indicate that logistic growth is not always appropriate [10,

32]. As such, we consider two extensions of the discrete proliferation mechanism to explore how to

incorporate more general, universal, growth functions.

Extension 1 : We first generalise the traditional discrete proliferation mechanism so that crowding

effects are felt over a larger spatial template, and daughter agents can be placed on non-nearest

neighbour lattice sites. The placement of daughter agents on non-nearest neighbour sites is consistent

with previous in vitro [34] and in vivo [35] experimental observations. To achieve this goal, we consider

a proliferative agent at site s, and we use Nr{s} to denote the set of neighbouring sites, where r ≥ 1 is

the number of concentric rings of lattice sites surrounding s. For example, when r = 1, N1{s} denotes

the set of six nearest-neighbouring sites, as demonstrated in Figure 2(a). In contrast, when r = 2,

N2{s} also includes the set of the next nearest-neighbouring sites, as demonstrated in Figure 2(e).

More generally, the number of sites in Nr{s} is ZNr = 3r(r + 1).

To implement this extension we first choose a value of r ≥ 1. For any potential proliferation event,

the target site for the placement of the daughter agent is chosen from Nr{s}. If a randomly chosen

target site is vacant, a daughter agent is placed at that site. If a randomly chosen target site is occupied

the potential proliferation event is aborted.

Extension 2 : Instead of deciding to abort a potential proliferation event depending on the occupancy

of a single randomly chosen site, we now consider a more general approach to incorporate crowding

effects. We assume that a proliferative agent at site s senses the occupancy of all sites within Nr{s},

and detects a measure of the average occupancy of those sites, Ĉs = (1/ZNr)
∑

s′∈Nr{s}

Cs′ . This means

that Ĉs ∈ [0, 1] is a measure of the crowdedness of the region surrounding s. We anticipate that using

Ĉs to determine whether potential proliferation events are aborted is more realistic than the traditional

model where the decision depends solely on the occupancy of a single, randomly chosen site.

To use Ĉs to determine whether a potential proliferation event succeeds, we introduce a crowding

function, f(C) ∈ [0, 1] with f(0) = 1 and f(1) = 0. To incorporate crowding effects we sample a

random number, R ∼ U(0, 1). If R < f(Ĉs), a daughter agent is placed at a randomly chosen vacant

site in Nr{s}, whereas if R > f(Ĉs), the potential proliferation event is aborted. This extension can

be applied to different sized templates by varying r ≥ 1.

Generalised discrete model : We now implement an algorithm that can be used to simulate both

extensions 1 and 2. In this generalised model, a proliferative agent can place a daughter agent at any

vacant target site in Nr{s}, and crowding effects are modeled by f(C). Therefore, during a potential

proliferation event, a randomly selected agent at site s attempts to proliferate with probability Pp per
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time step of duration τ . If the agent is to attempt to proliferate, crowding effects are incorporated by

calculating f(Ĉs). If the potential proliferation event is to succeed, a daughter agent is placed at a

randomly selected vacant site in Nr{s}.

Figure 2 shows four different schematic illustrations of the generalised proliferation mechanism on

a hexagonal lattice. In each illustration, three examples are shown in which sites in Nr{s} are either:

(i) all vacant with Ĉs = 0 (Figure 2(a), (e), (i) and (m)); (ii) half occupied with Ĉs = 0.5 (Figure

2(b), (f), (j) and (n)); or, (iii) fully occupied with Ĉs = 1 (Figure 2(c), (g), (k) and (o)). The first

row (Figure 2(a)-(d)) corresponds to the traditional model with r = 1 and f(C) = 1 − C. In this

case, with Ĉs = 0.5, the probability that a potential proliferation event takes place is Pp/2, and the

probability of a particular proliferation event producing a daughter agent at a particular site is Pp/6

(Figure 2(b)). The second row (Figure 2(e)-(h)) corresponds to r = 2 and f(C) = 1 − C. In this

case, with Ĉs = 0.5, the probability that a potential proliferation event takes place is Pp/2, and the

probability of a particular proliferation event producing a daughter agent at a particular site is Pp/18

(Figure 2(f)). Comparing the outcomes in the first and second row of Figure 2 illustrates the first

generalisation of the discrete proliferation mechanism as we are simply applying the same proliferation

mechanism, with the same crowding function, over a larger template of lattice sites.

The schematic illustrations in the third (Figure 2(i)-(l)) and fourth (Figure 2(m)-(p)) rows of Figure

2 show how the outcomes in the first and second rows can be generalised by choosing different f(C).

For example, with f(C) = (1−C)2, agents are less likely to proliferate than when f(C) = 1−C. With

r = 1, Ĉs = 0.5 and f(C) = (1−C)2 (Figure 2(j)), the probability that a potential proliferation event

takes place is Pp/4, and the probability of a particular proliferation event producing a daughter agent

at a particular site is Pp/12, and this is very different to the traditional model with r = 1, Ĉ = 0.5 and

f(C) = 1− C (Figure 2(b)). Similarly, with r = 2, Ĉs = 0.5 and f(C) = (1− C)2 (Figure 2(n)), the

probability that a potential proliferation event takes place is Pp/4, and the probability of a particular

proliferation event producing a daughter agent at a particular site is Pp/36, which is very different to

the case where f(C) = 1− C with r = 2 and Ĉs = 0.5 (Figure 2(f)).

III. CONTINUUM DESCRIPTION

While the individual-level details of the generalised discrete proliferation mechanism, highlighted

in Figure 2, are very different to the traditional proliferation mechanism, it is not immediately clear

how these differences manifest when we consider the collective behaviour of a population of motile

and proliferative agents. To investigate this question we will first derive the mean field continuum

limit description of the discrete models, and then compare the performance of the continuum limit

descriptions with averaged data from repeated simulations of the discrete model.
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Traditional model : We first explain how the continuum limit description of the traditional model

can be derived before we consider the more general case. We average the occupancy of site s over many

identically prepared realisations to obtain ⟨Cs⟩ ∈ [0, 1] [26] and then develop a discrete conservation

statement describing the change in average occupancy of site s from time t to time t+ τ ,

δ⟨Cs⟩ =
Pm

6
(1− ⟨Cs⟩)

∑
s′∈N1{s}

⟨Cs′⟩ −
Pm

6
⟨Cs⟩(6−

∑
s′∈N1{s}

⟨Cs′⟩) +
Pp

6
(1− ⟨Cs⟩)

∑
s′∈N1{s}

⟨Cs′⟩, (1)

where
∑

s′∈N1{s}

⟨Cs′⟩ is the sum of the average occupancy of sites in N1{s}. The first and second terms

on the right of Equation (1) represent the effects of migration into, and out of, site s, respectively. The

third term on the right of Equation (1) represents the effect of proliferation. To arrive at Equation (1),

we make the usual mean field assumption that the occupancy of lattice sites are independent as we

interpret the products of terms like ⟨Cs⟩ and
∑

s′∈N1{s}

⟨Cs′⟩ as a net transition probability [25, 26, 36, 37].

We expand each term in Equation (1) as a Taylor series about site s, neglect terms of O(∆3), and

divide both sides of the resulting expression by τ . Identifying ⟨Cs⟩ with a smooth function, C(x, y, t),

we consider the limit as ∆ → 0 and τ → 0 jointly, with the ratio ∆2/τ held constant. This process

leads to the PDE [26]
∂C

∂t
= D∇2C + λC (1− C) , (2)

where the diffusivity is D = (Pm/4) lim
∆→0,τ→0

(
∆2/τ

)
, and the proliferation rate is λ = lim

τ→0
(Pp/τ). To

obtain a well-defined continuum limit we require Pp = O(τ) [21, 26]. Equation (2) confirms that the

traditional proliferation mechanism is associated with the usual logistic source term. Furthermore, in

one dimension, Equation (2) simplifies to the Fisher-Kolmogorov model [38, 39].

Generalised model : The migration mechanism in the traditional and generalised models are equiv-

alent, whereas the generalised proliferation mechanism involves both a variable size template and a

different mechanism, based on f(C), to incorporate crowding. The corresponding discrete conservation

statement is

δ⟨Cs⟩ =
Pm

6
(1− ⟨Cs⟩)

∑
s′∈N1{s}

⟨Cs′⟩−
Pm

6
⟨Cs⟩(6−

∑
s′∈N1{s}

⟨Cs′⟩)+
Pp

ZNr

(1− ⟨Cs⟩)
∑

s′∈N1{s}

⟨Cs′⟩
f
(
⟨Ĉs′⟩

)
1− ⟨Ĉs′⟩

,

(3)

where ⟨Ĉs⟩ = (1/ZNr)
∑

s′∈Nr{s}

⟨Cs′⟩. The first two terms on the right of Equation (3) are identical to the

corresponding terms in Equation (1). The third term on the right of Equation (3) represents the change

in occupancy of site s due to proliferation. The factor f(⟨Ĉs′⟩)/(1−⟨Ĉs′⟩) is a measure of the crowding

at site s′, in terms of f(C), relative to the probability that sites in the neighbourhood are vacant. Again,

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2016. ; https://doi.org/10.1101/052969doi: bioRxiv preprint 

https://doi.org/10.1101/052969


Equation (3) implicitly assumes that the occupancy of lattice sites are independent [25, 36, 37]. To

obtain a continuum description, we expand each term in Equation (3) in a Taylor series about site s

and truncate terms of O(∆3). Dividing the resulting expression by τ , we identify ⟨Cs⟩ with a smooth

function, C(x, y, t), and consider the limit as ∆ → 0 and τ → 0 jointly, with the ratio ∆2/τ held

constant. The resulting PDE is
∂C

∂t
= D∇2C + λCf (C) . (4)

Details of the Taylor series expansions used to derive Equation (4) are given in Appendix A. Comparing

Equations (2) and (4), the population-level impact of the change in the proliferation mechanism is to

alter the per capita growth rate from the linearly decreasing function of density, λ(1−C), to the more

general λf(C). Therefore, the generalised discrete mechanism encodes more general crowding effects

than the traditional model. For the remainder of this work we set f(C) = Cα−1(1−Cβ)γ, where α, β

and γ are constants [33], but many other choices of f(C) are possible.

IV. RESULTS AND DISCUSSION

Our main result, so far, is to describe how to incorporate a generalised proliferation mechanism into

a discrete two-dimensional model of cell migration and cell proliferation with crowding effects, and

to derive the mean field continuum limit description. However, at this stage, it is unclear how well

the continuum model will predict averaged data from repeated stochastic simulations of the discrete

model. To explore this issue we now apply the discrete and continuum models to mimic both a cell

proliferation assay and a scratch assay (Figure 1). We systematically vary r and f(C) to explore how

these choices affect the performance of the continuum description.

A key parameter in all applications of the discrete model is Pp/Pm, which measures the frequency of

proliferation events relative to the frequency of motility events for an isolated agent [26]. This ratio can

be estimated from experimentally observable quantities including the doubling time t′d = (τ ′ loge 2)/Pp,

the cell diffusivity D′, and the average cell diameter, ∆′. For typical values: t′d = 24h [26]; D′ = 1000

µm2/h [8]; and, ∆′ = 24µm [10], we have Pp/Pm ≈ 0.001. Therefore, all simulations and analysis

in the main document correspond to ∆ = τ = Pm = 1 and Pp = 0.001. These non-dimensional

simulations can be used to model a population of cells with an arbitrary dimensional cell diameter and

an arbitrary doubling time by re-scaling ∆ and τ with appropriate choices of ∆′ and τ ′, respectively [26].

To ensure the conclusions drawn from these simulations are applicable to a wide range of cell lines,

we repeat all simulations and analysis for a higher proliferation rate, ∆ = τ = Pm = 1 and Pp = 0.05

(Supplementary Material). Therefore, the results in the main document correspond to a typical cell

line with a standard doubling time of t′d = 24h, while additional results correspond to a much smaller
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doubling time of t′d = 14h (Supplementary Material).

Cell proliferation assay. We consider a suite of simulations of a cell proliferation assay based on

the geometry of the images in Figure 1(a)-(c). We use a lattice of size I×J to accommodate a typical

population of cells (∆′ = 24µm [10]). Since the images in Figure 1(a)-(c) show a fixed field of view

that is much smaller than the spatial extent of the real experiment, and the cells in the experiment are

distributed uniformly, we apply zero net flux boundary conditions along all boundaries [4]. Simulations

are initiated by randomly populating each lattice site with a constant probability, so that there is, on

average, no spatial gradients in agent density across the lattice. For each combination of r and f(C),

we consider two different initial densities: 5% and 20%. Snapshots from the model are given in Figure

3.

To mimic the way that cell proliferation assays are reported [7], we calculate the time evolution of

the total number of agents on the lattice, which, when divided by the total number of lattice sites,

gives the agent density per unit area [26]

⟨C⟩ = 1

IJ

I∑
i=1

J∑
j=1

Ci,j.

We further average these results over many identically prepared simulations so that we report relatively

smooth data where stochastic fluctuations in the agent density are negligible. To compare averaged

simulation data with the solution of the continuum model, we note that the absence of spatial gradients

in the cell proliferation assay means that, on average, ∇2C = 0. Therefore, instead of dealing with a

PDE for C(x, y, t), Equation (4) simplifies to the ordinary differential equation (ODE) for C(t) [7]

dC

dT
= Cf(C), (5)

where we have written T = tλ. This re-scaling of the time variable allows us to more easily compare

results in the main paper for a standard proliferation rate (Pp/Pm = 0.001) with additional results

for faster proliferation (Pp/Pm = 0.05) (Supplementary Material). Although it is possible to solve

Equation (5) exactly for certain choices of f(C), it is not always possible to find an explicit solution

for other relevant choices of f(C). Therefore we solve Equation (5) numerically using a backward Euler

approximation with a constant time step, δt, and Picard linearisation with convergence tolerance, ϵ [40].

Results in Figure 4 show that when f(C) is linear, the discrete and continuum density profiles are

indistinguishable for both the lower (Figure 4(b)) and higher (Figure 4(c)) initial density simulations.

Results in Figure 4(d)-(e) quantify the discrepancy between the solution of the continuum model and

averaged discrete density data using E = ⟨C⟩ − C, where ⟨C⟩ is the average density per unit area

from the discrete simulations and C is the solution of Equation (5). In summary, the evolution of E
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(Figure 4(d)-(e)) shows that the error is extremely small, with no discernible trends for the different

choices of r.

Results in Figures 5-7 show similar results to those in Figure 4, except now we consider a range of

nonlinear f(C). The averaged discrete data and the solution of the corresponding continuum model

show that, broadly speaking, the continuum model provides a good prediction of the averaged discrete

results. Furthermore, the same high quality of match between the solution of the continuum models

and the averaged discrete data is observed for both the lower and higher initial densities for all choices

of f(C) considered. When we compare the evolution of the density data between Figures 4-7, we see

that the choice of f(C) has a profound effect on the evolution of the experiment. For example, in

cases where f(C) is larger than the traditional linear crowding function, such as in Figure 5, we see

that the growth process is faster than in the traditional case, such as Figure 4.

Although the match between the average discrete data and the solution of the corresponding con-

tinuum model in Figures 5-7 is very good, there are some trends that are not obvious without making

these comparisons explicit. For example, results in Figures 5-7(b)-(c) indicate that the performance

of the continuum model is slightly poorer than in Figure 4 where f(C) is linear. However, in all cases,

the performance of the continuum model improves as r increases. For example, all results with r = 4

lead to an excellent match regardless of f(C). Therefore, these results indicate that estimating r from

experimental time lapse images will be important if we need to decide whether the continuum approxi-

mation is sufficient, or whether we need to use more computationally demanding repeated simulations

of the discrete model to accurately predict the average behaviour of the experiment. Similar results

and trends are observed when the proliferation rate is much higher (Supplementary Material).

Scratch assay. We also consider a suite of simulations of a scratch assay based on the geometry

of the images in Figure 1(d)-(f). Since the images in Figure 1(d)-(f) show a fixed field of view that

is much smaller than the spatial extent of the real experiment [10], we apply zero net flux boundary

conditions along all boundaries of the lattice. We model the scratch assays on a lattice of size I × J

that is chosen to accommodate a typical population of cells (∆′ = 24µm [10]). To model the initial

condition, we randomly populate all lattice sites with an equal probability of 30%. To simulate the

scratch, we remove all agents from a vertical region, with a width of 23 cell diameters (Figure 1(d)).

Snapshots from the discrete model, for a range of f(C) is shown in Figure 8.

Since the initial condition is uniform in the vertical direction, we average the agent population

density along each vertical column of lattice sites to obtain

⟨Ci⟩ =
1

J

J∑
j=1

Ci,j,
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which is then further averaged over many identically prepared discrete simulations to reduce fluctu-

ations in the averaged density profiles. This procedure allows us to plot the time evolution of the

average agent density as a function of the horizontal coordinate. This is appropriate for our initial

condition where the initial density is independent of the vertical coordinate [4, 10]. Typical results are

shown in Figure 9, with the standard linear f(C), and four different choices of r. In general, we see

the effects of combined agent motility and agent proliferation since the agent density profiles moves

into the initially-vacant region. The effects of proliferation can also be observed as the density profile

increases with time, both within the initially-vacant region and at other locations behind the scratch.

To explore how well the continuum description matches this vertically-averaged discrete density

data, we note that since the initial condition is independent of the vertical location (Figure 1(d)), we

can average Equation (4) in the vertical direction [4, 10] to give,

∂C

∂t
= D

∂2C

∂x2
+ λCf(C). (6)

To solve Equation (6), we apply no flux boundary condition at both boundaries, and the initial

condition is given by C(x, 0) ≡ 0 within the initially-vacant region, and C(x, 0) ≡ 0.30 outside of

this region. We solve Equation (6) numerically by approximating the spatial derivative term with a

central finite difference approximation with uniform spacing δx, and the temporal derivative term is

approximated using a backward Euler method with a uniform time step, δt [40]. The resulting system

of nonlinear algebraic equations is solved using Picard iteration with convergence tolerance, ϵ.

The numerical solution of Equation (6) is superimposed on the averaged discrete density profiles

in Figure 9 for f(C) = 1 − C. As with the cell proliferation assay results in Figure 4, the quality

of the continuum-discrete match is excellent for all r considered. Data in Figures 10-12 show similar

results to those in Figure 9, except now we consider a range of different nonlinear f(C). As with the

results for the cell proliferation assay, we find that the averaged discrete data and the solution of the

corresponding PDE confirms that the continuum model provides a good prediction of the averaged

discrete results. Comparing the evolution of C(x, T ) between Figures 9-12, we see that the choice of

f(C) has a profound effect on the evolution of the scratch assay. For example, choices of f(C) that

are greater than the standard linear function lead to a faster healing response (Figure 10), whereas

choices of f(C) that are less than the standard linear function lead to slower healing (Figure 11).

Again, as for the cell proliferation assays, overall we observe a good quality of match between the

solution of the continuum model and the averaged agent density profiles across all choices of f(C) and

r for the scratch assays. However, for nonlinear f(C), we observe some small discrepancies, and these

discrepancies are most pronounced when r = 1. In contrast, the quality of the continuum-discrete

match is excellent for larger r across all choices of f(C) that we consider.
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V. CONCLUSIONS

In this work we present a new simulation tool to study two-dimensional collective cell spreading.

Based on a two-dimensional exclusion process, we apply the discrete model to describe both a cell pro-

liferation assay and a scratch assay, which are standard experiments used to study various applications

including wound healing and malignant spreading [1, 2].

The main motivation of our work is the observation that most continuum [5, 6, 12–17] and discrete [8,

25, 26] models of collective cell spreading are associated with a logistic growth source term to model cell

proliferation. Despite this, there is mounting in vivo [32] and in vitro [10] evidence suggesting that a

logistic growth term does not always best describe the way that a cell population grows. Motivated by

these observations, we extend the standard exclusion process based discrete model of cell proliferation.

In the traditional model, each agent is given the opportunity to proliferate, and to assess the role of

crowding effects, a potential target site for the deposition of a daughter agent is chosen, at random,

from one of the nearest neighbouring sites. If the randomly chosen target site is occupied, the potential

proliferation event is aborted. Alternatively, if the randomly chosen target site is vacant, the potential

proliferation event succeeds. While this mechanism has been widely invoked, it seems biologically

unreasonable to assume that a proliferative cell randomly inspects a single region of space and decides

whether to proliferate, or not, depending on the occupancy of a single point in space.

Our new, generalised discrete model encompasses two extensions of the traditional model. The first

extension involves choosing a variable proliferation template so that the target site is chosen from a set

of sites contained within r ≥ 1 concentric rings about the mother agent. The second extension involves

a measure of the crowdedness of the mother agent, Ĉs ∈ [0, 1]. A crowding function, f(C) ∈ [0, 1] with

f(0) = 1 and f(1) = 0, which incorporates information from a group of neighbouring sites is used

to quantify the influence of crowding. Analysing the mean field continuum limit of the generalised

model shows that the usual logistic source term, λC(1 − C), is generalised to λCf(C). There are

several interesting consequences of this mean field PDE, namely: (i) the traditional logistic source

term corresponds to linear f(C); (ii) the size of the template, r, does not appear in the continuum

limit description; and, (iii) without making explicit comparisons, it is unclear how different choices of

f(C) and r affect the accuracy of the continuum limit description.

To provide insight into how different choices of f(C) and r affect the accuracy of the continuum limit

description, we generate averaged discrete data from the generalised random walk model applied to

both a cell proliferation assay and a scratch assay for typical cell line with Pp/Pm = 0.001 [8]. Averaged

simulation data are generated for a range of choices of f(C) and r and we find that, overall, the

continuum limit approximation provides a good prediction of the average behaviour of the stochastic

simulations. While there is a modest discrepancy in the continuum-discrete match for nonlinear f(C),
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we find that the quality of the match improves as r increases. Therefore, to make a distinction between

the need for using repeated stochastic simulations or simply working with the continuum description,

we suggest that experimental time lapse images ought to be used to provide an estimate of r. To ensure

that our conclusions are broadly applicable across a wide range of cell lines, all continuum-discrete

comparisons are repeated for a cell line with a particularly fast proliferation rate Pp/Pm = 0.05

(Supplementary Material), and we find that the same general conclusions apply.

Since the focus of this work is to investigate the role of the proliferation mechanism, all our sim-

ulations and analysis invoke the most straightforward unbiased nearest neighbour exclusion motility

mechanism. This mechanism is thought to be a good approximation of the motility of mesenchymal

cell lines that are largely unaffected by cell-to-cell adhesion [8, 11]. However, if dealing with an epithe-

lial cell line, it would be reasonable to invoke a different motility mechanism that involves cell-to-cell

adhesion [36, 37, 41]. Under these conditions it would be interesting to extend the present analy-

sis to investigate the performance of the continuum limit description of the generalised proliferation

mechanism with these kinds of adhesive motility mechanisms.

Acknowledgments : This work is supported by the Australian Research Council (DP140100249,
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VI. APPENDIX A

In this appendix we demonstrate how to derive Equation (3) with r = 1 and and arbitrary f(C).

Extending the derivation to deal with r > 1 is straightforward. To begin, we note that site s, with

position (x, y), has six nearest neighbouring sites: site s′1 with position (x−∆, y); site s′2 with position

(x + ∆, y); site s′3 with position (x −∆/2, y + ∆
√
3/2); site s′4 with position (x + ∆/2, y + ∆

√
3/2);

site s′5 with position (x − ∆/2, y − ∆
√
3/2); and, site s′6 with position (x + ∆/2, y − ∆

√
3/2). It is

useful to first write down expressions for the average density of these six nearest neighbouring sites

expanded in a Taylor series about (x, y),

⟨Cs′1
⟩ = ⟨Cs⟩ −

∂⟨Cs⟩
∂x

∆+
∂2⟨Cs⟩
∂x2

∆2

2
+O(∆3), (7)

⟨Cs′2
⟩ = ⟨Cs⟩+

∂⟨Cs⟩
∂x

∆+
∂2⟨Cs⟩
∂x2

∆2

2
+O(∆3), (8)

⟨Cs′3
⟩ = ⟨Cs⟩ −

∂⟨Cs⟩
∂x

∆

2
+

∂⟨Cs⟩
∂y

√
3∆

2
+

[
1

4

∂2⟨Cs⟩
∂x2

+
3

4

∂2⟨Cs⟩
∂y2

−
√
3

2

∂2⟨Cs⟩
∂x∂y

]
∆2

2
+O(∆3), (9)

⟨Cs′4
⟩ = ⟨Cs⟩+

∂⟨Cs⟩
∂x

∆

2
+

∂⟨Cs⟩
∂y

√
3∆

2
+

[
1

4

∂2⟨Cs⟩
∂x2

+
3

4

∂2⟨Cs⟩
∂y2

+

√
3

2

∂2⟨Cs⟩
∂x∂y

]
∆2

2
+O(∆3), (10)

⟨Cs′5
⟩ = ⟨Cs⟩ −

∂⟨Cs⟩
∂x

∆

2
− ∂⟨Cs⟩

∂y

√
3∆

2
+

[
1

4

∂2⟨Cs⟩
∂x2

+
3

4

∂2⟨Cs⟩
∂y2

+

√
3

2

∂2⟨Cs⟩
∂x∂y

]
∆2

2
+O(∆3), (11)

⟨Cs′6
⟩ = ⟨Cs⟩+

∂⟨Cs⟩
∂x

∆

2
− ∂⟨Cs⟩

∂y

√
3∆

2
+

[
1

4

∂2⟨Cs⟩
∂x2

+
3

4

∂2⟨Cs⟩
∂y2

−
√
3

2

∂2⟨Cs⟩
∂x∂y

]
∆2

2
+O(∆3), (12)

where we have truncated terms of O(∆3). From this point on we drop the angle bracket notation.

There are two terms on the right of Equation (3) that are associated with agent motility, and one term

on the right of Equation (3) that is associated with agent proliferation. We will deal with these two

different types of terms separately.

For agent migration, we need to deal with terms like
∑

s′∈N1{s}

Cs′ , which can be obtained by summing

Equations (7)-(12) to give

∑
s′∈N1{s}

Cs′ = 6Cs +

(
∂2Cs

∂x2
+

∂2Cs

∂y2

)
3∆2

2
+O(∆3).

For agent proliferation, we need to deal with terms like f(Ĉs′1
), f(Ĉs′2

), f(Ĉs′3
), . . . , f(Ĉs′6

). In this

appendix we will show how to deal with f(Ĉs′1
) and we note that the other terms are a straightforward
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extension of these results. First we expand the local density in a Taylor series about site s

Ĉs′1
=

1

6

∑
s′′∈N1{s′}

Cs′′

= Cs′1
+

(
∂2Cs′1

∂x2
+

∂2Cs′1

∂y2

)
∆2

4
+O(∆3),

= Cs −
∂Cs

∂x
∆+

(
3
∂2Cs

∂x2
+

∂2Cs

∂y2

)
∆2

4
+O(∆3). (13)

We re-write Equation (13) as Ĉs′1
= Cs + C̄, where C̄ = O(∆). Therefore, the crowding function at

site s′1 can be expanded in the following way,

f(Ĉs′1
) = f(Cs + C̄),

= f(Cs) +
df(Cs)

dC
C̄ +

d2f(Cs)

dC2

C̄2

2
+O(∆3). (14)

Using Equations (13)-(14) we obtain a series expansion for f(Ĉs′1
). Repeating this procedure for

f(Ĉs′2
), f(Ĉs′3

), . . . , f(Ĉs′6
), we expand all terms in Equation (3) that are associated with proliferation

in a similar way. With all terms in Equation (3) expanded about (x, y), we obtain

δCs = Pm

(
∂2Cs

∂x2
+

∂2Cs

∂y2

)
∆2

4
+ PpCsf(Cs). (15)

Following the same procedure outlined in the main manuscript, Equation (15) leads to Equation (4).
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Figure 4. Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with f(C) = 1− C, as shown in (a). Results in (b)-(c) compare
averaged simulation data and the solution of the corresponding continuum model for a range of
1 ≤ r ≤ 4. Two different initial conditions are considered so that in each realisation we have either
5% (b) or 20% (c) of lattice sites initially occupied. All simulation results are performed on a lattice
with I = 28 and J = 24, and results are averaged across 300 identically prepared realisations of the
discrete model. Profiles in (d)-(e) show the discrepancy between the solution of the continuum model
and the average simulation data for the two different initial conditions shown in (b)-(c), respectively.
All simulation results correspond to ∆ = τ = Pm = 1 and Pp = 0.001, and the numerical solution of
the continuum model is obtained with δt = 1× 10−3 and ϵ = 1× 10−5.
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Figure 5. Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with f(C) = 1− C2, as shown in (a). Results in (b)-(c) compare
averaged simulation data and the solution of the corresponding continuum model for a range of
1 ≤ r ≤ 4. Two different initial conditions are considered so that in each realisation we have either
5% (b) or 20% (c) of lattice sites initially occupied. All simulation results are performed on a lattice
with I = 28 and J = 24, and results are averaged across 300 identically prepared realisations of the
discrete model. Profiles in (d)-(e) show the discrepancy between the solution of the continuum model
and the average simulation data for the two different initial conditions shown in (b)-(c), respectively.
All simulation results correspond to ∆ = τ = Pm = 1 and Pp = 0.001, and the numerical solution of
the continuum model is obtained with δt = 1× 10−3 and ϵ = 1× 10−5.
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Figure 6. Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with f(C) = (1−C)2, as shown in (a). Results in (b)-(c) compare
averaged simulation data and the solution of the corresponding continuum model for a range of
1 ≤ r ≤ 4. Two different initial conditions are considered so that in each realisation we have either
5% (b) or 20% (c) of lattice sites initially occupied. All simulation results are performed on a lattice
with I = 28 and J = 24, and results are averaged across 300 identically prepared realisations of the
discrete model. Profiles in (d)-(e) show the discrepancy between the solution of the continuum model
and the average simulation data for the two different initial conditions shown in (b)-(c), respectively.
All simulation results correspond to ∆ = τ = Pm = 1 and Pp = 0.001, and the numerical solution of
the continuum model is obtained with δt = 1× 10−3 and ϵ = 1× 10−5.
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Figure 7. Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with f(C) = (1− C2)2, as shown in (a). Results in (b)-(c)
compare averaged simulation data and the solution of the corresponding continuum model for a
range of 1 ≤ r ≤ 4. Two different initial conditions are considered so that in each realisation we have
either 5% (b) or 20% (c) of lattice sites initially occupied. All simulation results are performed on a
lattice with I = 28 and J = 24, and results are averaged across 300 identically prepared realisations
of the discrete model. Profiles in (d)-(e) show the discrepancy between the solution of the continuum
model and the average simulation data for the two different initial conditions shown in (b)-(c),
respectively. All simulation results correspond to ∆ = τ = Pm = 1 and Pp = 0.001, and the numerical
solution of the continuum model is obtained with δt = 1× 10−3 and ϵ = 1× 10−5.
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