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Abstract

Just like recurrent somatic alterations characterize cancer genes, mutu-
ally exclusive or co-occurring alterations across genes suggest functional
interactions. Identifying such patterns in large cancer studies thus helps
the discovery of unknown interactions. Many studies use Fisher’s exact
test or simple permutation procedures for this purpose. These tests as-
sume identical gene alteration probabilities across tumors, which is not
true for cancer. We show that violating this assumption yields many spu-
rious co-occurrences and misses many mutual exclusivities. We present
DISCOVER, a novel statistical test that addresses the problems with com-
mon tests. A pan-cancer analysis using DISCOVER finds no evidence for
widespread co-occurrence. Most co-occurrences previously detected do
not exceed expectation by chance. In contrast, many mutual exclusivities
are identified. These cover well known genes involved in the cell cycle
and growth factor signaling. Interestingly, also lesser known regulators of
the cell cycle and Hedgehog signaling are identified.

Availability: R and Python implementations of DISCOVER, as well as
Jupyter notebooks for reproducing all results and figures from this paper
can be found at http://ccb.nki.nl/software/discover .
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1 INTRODUCTION

1 Introduction

Tumor development emerges from a gradual accumulation of somatic alter-
ations that together enable malignant growth. As has been revealed by recent
genomic profiling efforts, an immense diversity exists in the alterations that
tumors acquire (Vogelstein et al. 2013; Lawrence et al. 2014). Whether by e.g.
copy number aberration, point mutation, or DNA methylation, alterations of
many genes may potentially trigger transformation. Often though, the fate
of a cell acquiring a certain alteration depends on other alterations already
present (Ashworth et al. 2011). Therefore, with an ever-expanding catalog of
cancer genes, a need arises to establish how alterations in those genes interact
to transform healthy cells to cancer cells. This task can be approached by sta-
tistical analyses aiming to uncover more complex, combinatorial patterns in
somatic alterations.

Two such patterns are co-occurrence and mutual exclusivity. In the for-
mer, a group of genes tends to be altered simultaneously in the same tumor,
whereas in the latter, mostly only one out of a group of genes is altered in a
single tumor. Mutual exclusivity is frequently observed in cancer genomics
data (Thomas et al. 2007; Yeang et al. 2008). Individual alterations targeting
similar biological processes are believed to be mutually redundant, with one
alteration being sufficient to deregulate the affected process. Identifying mu-
tual exclusivity can therefore help in finding unknown functional interactions.
With this in mind, several statistical methods have been proposed to identify
significant patterns of mutual exclusivity (Ciriello et al. 2012; Vandin et al.
2012; Szczurek and Beerenwinkel 2014).

Just as mutual exclusivity is interpreted as a sign of redundancy, co-
occurrence is often held to entail synergy. Alteration of only one of the two
genes would be relatively harmless, whereas cells with alterations in both
progress to malignancy. If such synergy exists, cancer genomes should be en-
riched for these co-alterations, i.e. tumors harboring alterations in both genes
should be more frequent than expected by chance. Several studies have re-
ported an abundance of co-occurring somatic alterations in various types of
cancer (Bredel et al. 2009; Gorringe et al. 2010; Klijn et al. 2010; Milosevic
et al. 2012; Kandoth et al. 2013; Remy et al. 2015). For somatic copy num-
ber changes, however, it has also been suggested that co-occurring alterations
emerge from tumors’ overall levels of genomic disruption (Zack et al. 2013).
Indeed, tumors display a wide diversity in genomic instability, both across
and within cancer types. In tumors harboring many alterations, one should
not be surprised to see simultaneous alterations in any pair of genes. In con-
trast, two genes altered in a tumor carrying a small number of alterations
might instead have resulted from a purifying selective process. Suggesting
synergy as an explanation for observed co-occurrence is only reasonable if a
simpler explanation like tumor-specific alteration rates can be rejected.
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2 RESULTS

In this paper, we address the statistical implications of heterogeneous alter-
ation rates across tumors for co-occurrence and mutual exclusivity detection.
With extensive analyses of simulated data, we show how commonly used
statistical tests are not equipped to deal with the mismatch between what is
assumed by the test and what is encountered in the data. In the presence of
heterogeneous alteration rates, countless spurious co-occurrences are picked
up in data that are controlled not to contain any. At the same time, many
instances of true mutual exclusivity are missed. Based on these observations,
we introduce a novel statistical independence test that incorporates the overall
alteration rates of tumors to successfully solve the issues observed before.

We applied this test to a selection of more than 3,000 tumors across 12
different cancer types. Only one co-occurrence was detected that is not ex-
plained by overall rates of alteration alone. On the other hand, many more
cases of mutual exclusivity were detected than would have been possible with
traditional tests. The genes targeted by these alterations cover many of the
core cancer pathways known to display such exclusivity. However, we also
identified exclusivity among less canonical actors in the cell cycle, and among
regulators of Hedgehog signaling.

2 Results

2.1 Common tests for co-occurrence or mutual exclusivity as-
sume homogeneous alteration rates

A commonly used test for both co-occurrence and mutual exclusivity is
Fisher’s exact test applied to a 2 × 2 contingency table (Milosevic et al. 2012;
Kandoth et al. 2013; Remy et al. 2015). The test is used to support co-
occurrence when the number of tumors with alterations in both genes is
significantly higher than expected by chance. Likewise, it suggests mutual
exclusivity when the number of tumors with alterations in both genes is sig-
nificantly lower. The validity of this test depends on the assumption that
genes’ alterations across tumors are independent—a reasonable assumption—
and identically distributed (i.i.d.). The latter implies that the probability of an
alteration in a gene is the same for any given tumor. With cancer’s hetero-
geneity in mind, this assumption may prove more problematic. Surely, a gene
is more likely found altered in tumors with many somatic alterations overall,
than in tumors with only few such changes.
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2 RESULTS

Figure 1: Overview of the DISCOVER method. (a) The input to the method is
a binary alteration matrix with genes in the rows and tumors in the columns.
The following panels illustrate how the two genes highlighted in red and
green are tested for co-occurrence. (b) To identify co-occurrences or mutual
exclusivities, a null distribution is estimated that describes the overlap in al-
terations of two genes expected by chance. Co-occurrence and mutual exclu-
sivity correspond to the tails of this distribution. (c) In the Binomial model, a
single alteration probability is estimated per gene that applies to all tumors.
The expected number of alterations per gene matches the observed number.
The expected number of alterations per tumor does not match the observed
number. The product of two genes’ alteration probabilities gives the proba-
bility of overlap by chance, which multiplied by the number of tumors gives
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2 RESULTS

the expected number of tumors with alterations in both genes, in this case 0.8.
(d) In the Poisson-Binomial model, gene alteration probabilities are estimated
for each tumor individually. The expected number of alterations both per
gene and per tumor match the observed numbers. The product of two gene
alteration probabilities is also computed per tumor. The expected number of
tumors with alterations in both genes according to this model is 1.5.

Other tests used for co-occurrence or mutual exclusivity depend on the
same i.i.d. assumption as described for Fisher’s exact test. This is the case for
permutation tests that estimate the expected number of tumors altered in both
genes by randomly reassigning gene alterations across tumors (Bredel et al.
2009; Vandin et al. 2012). It is also true for a simple Binomial test that we will
use to illustrate the consequences of violating the i.i.d. assumption. This test is
depicted in Figure 1c. The alteration probability pi of a gene is estimated to be
the proportion of tumors altered in that gene. For example, gene 3 in Figure 1a
is altered in 2 of the 5 tumors, resulting in p3 = 0.4 (Fig. 1c). If alterations
targeting two genes are independent, the probability of a tumor altered in
both genes equals the product p1 · p2 of those genes’ alteration probabilities.
Hence, out of m tumors, m · p1 p2 tumors are expected to harbor alterations
in both genes. In the example in Figure 1a, the probability of alterations in
both genes 3 and 5 would be p3 · p5 = 0.4 · 0.4 = 0.16. Therefore, if alterations
of genes 3 and 5 were independent, we would expect 5 · 0.16 = 0.8 tumors
with alterations in both. Observing more such tumors suggests co-occurrence,
whereas observing fewer suggests mutual exclusivity (Fig. 1b).

2.2 Assuming homogeneous alteration rates leads to invalid
significance estimates

To illustrate the effect of the i.i.d. assumption on the detection of mutual ex-
clusivities and co-occurrences, we performed analyses on simulated data. Ge-
nomic alterations were generated such that the alteration frequencies both per
gene and per tumor resemble those observed in real tumors, but without any
designed relation between the genes’ alterations—i.e. genes were simulated
to be independent. As these simulated data do not contain co-occurrences
or mutual exclusivities, all identified departures from independence are by
definition spurious. We can therefore use these data to check the validity of
the Binomial test. When testing many pairs of independently altered genes, a
valid statistical test should produce P-values that approximately follow a uni-
form distribution. In contrast, when we test for co-occurrence in these data,
the P-value distribution shows a large skew towards extremely low values
(Fig. 2a). Even highly conservative significance levels will mark the majority
of gene pairs as significant hits. Given that no true co-occurrences exist in the
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2 RESULTS

simulated data, all these hits are false positives. If we test for mutual exclusiv-
ities instead, we observe a skew towards the high end of the P-value spectrum
(Fig. 2c).

Figure 2: Histograms of P-values obtained on simulated data using either
the Binomial test (a-d) or the DISCOVER test (e-h). The P-values apply to
gene pairs with three different types of relation: gene pairs with independent
alterations (a, c, e, g), gene pairs with co-occurring alterations (b, f), and gene
pairs with mutually exclusive alterations (d, h).

We next evaluated the sensitivity of the Binomial test. For this, we tested
simulated co-occurrences and mutual exclusivities, which we added to the
data. A sensitive test should produce only low P-values for these positive
cases, and so the resulting P-value distribution should be heavily skewed
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2 RESULTS

towards zero. If we test for co-occurrences, this is indeed the case (Fig. 2b).
Testing for mutual exclusivity however, reveals a distribution that, although
skewed towards lower P-values, is much more stretched out across the [0, 1]
interval (Fig. 2d). Even highly liberal significance levels will only recover a
small part of the positive cases.

We conclude that the Binomial test is anti-conservative as a co-occurrence
test. In contrast, as a mutual exclusivity test, it is conservative. While we
used the Binomial test for this illustration, we found the same to be true for
Fisher’s exact test (Supplemental Fig. 1). To confirm our hypothesis that the
i.i.d. assumption is causal to this incorrect behavior, we generated additional
simulated data, making sure that the overall alteration rate is similar across
the tumors. Using the Binomial test to detect co-occurrence and mutual ex-
clusivity of independent genes results in P-value distributions that are much
closer to uniform (Supplemental Fig. 2). This confirms that statistical tests
that rely on the i.i.d. assumption are not suited for co-occurrence analysis,
and have reduced sensitivity for mutual exclusivity analysis.

2.3 A novel statistical test for co-occurrence and mutual exclu-
sivity

Our new method, which we call Discrete Independence Statistic Controlling
for Observations with Varying Event Rates (DISCOVER), is a statistical inde-
pendence test that does not assume identically distributed events. The main
ingredients of the method are depicted in Figure 1d. Unlike the simpler Bino-
mial test, we allow different tumors to have different alteration probabilities
for the same gene—the alteration probabilities for genes 3 and 5 in Figure 1d
now vary per tumor, in contrast to Figure 1c. For tumors with many altered
genes, this probability is higher than for tumors with only few alterations.
To estimate these alteration probabilities, we solve a constrained optimiza-
tion problem that ensures that the probabilities are consistent with both the
observed number of alterations per gene and the observed number of alter-
ations per tumor. The probability of concurrent alterations in two indepen-
dent genes is then obtained for each tumor individually, by multiplying the
tumor-specific gene alteration probabilities, as indicated in the right panel of
Figure 1d. With these probabilities, an analytical test based on the Poisson-
Binomial distribution can be performed to decide whether the number of tu-
mors altered in both genes deviates from the expectation.

We repeated the simulation study performed for the Binomial test, this
time applying the DISCOVER test. First, our data only contained indepen-
dently generated alterations. Testing for co-occurrence (Fig. 2e) and mutual
exclusivity (Fig. 2g) resulted in P-value distributions much closer to uniform,
as one would expect. The fact that these distributions are not truly uniform is
a property shared by all discrete test statistics (Lancaster 1961); it makes dis-
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2 RESULTS

crete tests slightly more conservative. Most importantly, the anti-conservative
bias towards co-occurrence of the Binomial test is not present in the DIS-
COVER test. By testing simulated co-occurrences, we established that the
removal of the anti-conservative bias does not compromise the sensitivity for
true co-occurrences (Fig. 2f). Moreover, the sensitivity for mutual exclusivities
is improved when compared with the Binomial test (Fig. 2h).

2.4 Extension to a group-based mutual exclusivity test

Mutual exclusivity is not restricted to pairs of genes. Larger groups of genes
may also display alteration patterns in which most tumors only have an alter-
ation in one of the genes. We considered three statistics to assess the mutual
exclusivity of groups of genes: coverage, exclusivity, and impurity (Fig. 3a).
For all three of these statistics, its expectation for groups of independent genes
can be described by a Poisson-Binomial distribution (see Methods), and thus a
statistical test can be formulated for determining significance. Based on sim-
ulated data, we established that the impurity-based group test has the best
balance between sensitivity and specificity (Supplemental Fig. 3).
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2 RESULTS

Figure 3: Extension of the DISCOVER test for mutual exclusivity within
groups of genes. (a) Three alternative statistics for measuring the degree of
mutual exclusivity within a group of genes. Coverage refers to the number of
tumors that have an alteration in at least one of the genes. Exclusivity refers
to the number of tumors that have an alteration in exactly one gene. Impurity
refers to the number of tumors that have an alteration in more than one gene.
(b) ROC curves comparing the performance of the DISCOVER (AUC: 0.89),
muex (AUC: 0.83), and MEMo (AUC: 0.81) tests on simulated gene sets.

We compared the performance of this group-based DISCOVER test to that
of two other published mutual exclusivity tests: MEMo (Ciriello et al. 2012)
and muex (Szczurek and Beerenwinkel 2014). MEMo combines a permutation
test for mutual exclusivity with an algorithm that identifies groups of genes
to test. In our comparison, we evaluate the mutual exclusivity tests applied
to pre-identified groups of genes, and thus only consider the permutation test
used by MEMo, which we will refer to as the MEMo test. This test is based on
the coverage statistic. Significance is assessed by a permutation method that
takes into account tumor-specific alteration rates. Unlike the DISCOVER test,
it estimates this alteration rate with respect to a small set of recurrently altered
genes as opposed to all genes. The muex test considers both the coverage and
the impurity of a group of genes. In assessing significance, identical alteration
probabilities are assumed. It is thus, like Fisher’s exact test, another example
of a test based on the i.i.d. assumption.

The comparison was performed on simulated data. Groups of genes with
mutually exclusive alterations of various degrees of impurity served as posi-
tive examples. For each such group, we also selected groups of independent
genes of the same size and matched to have similar alteration frequencies, to
serve as negative examples. In total, 10 data sets of 100 positive and 100 neg-
ative groups were generated. Averaged ROC curves across the 10 repetitions
are displayed in Figure 3b. Only the DISCOVER test combines a high sensi-
tivity with a high specificity. Both the MEMo test and muex are only able to
identify most of the mutually exclusive groups at the cost of many spurious
finds. A further inspection of the results revealed that these methods show
sufficient sensitivity, but are lacking in specificity by assigning low P-values
to many negative gene sets (Supplemental Fig. 4).

2.5 Co-occurrence and mutual exclusivity in pan-cancer so-
matic alterations

We analyzed a set of 3,386 tumors covering the 12 cancer types studied in the
TCGA pan-cancer initiative (The Cancer Genome Atlas Research Network et
al. 2013). An alteration matrix was constructed from recurrent copy number
changes and high-confidence mutational drivers. Copy number changes were
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2 RESULTS

analyzed for 118 genes, of which 40 gains and 78 losses. In addition, mutation
data was added for 286 genes previously classified as high-confidence driver
genes (Tamborero et al. 2013). In total 404 genomic alterations were analyzed
covering 374 unique genes, as 30 genes are frequently targeted by both copy
number changes and mutations.

We tested for pairwise co-occurrence and mutual exclusivity between pairs
of genes not located on the same chromosome. These tests were stratified
for cancer type to avoid confounding due to cancer type-specific alteration
frequencies. Complementing the pairwise tests, we also employed the DIS-
COVER group test to detect patterns of mutual exclusivity in larger groups of
genes. The groups we tested were selected using two different approaches. In
the first approach, we extracted gene sets from the canonical pathway collec-
tion of MSigDB (Subramanian et al. 2005). We tested 23 such gene sets based
on pathway membership. In the second approach, we aimed to detect de novo
gene sets purely based on the data. For this, we applied a clustering algorithm
to the pairwise mutual exclusivity results to identify groups of genes showing
a high degree of interaction.

2.6 No evidence for widespread co-occurrence

A remarkable outcome of our analysis is that we found no evidence for
widespread co-occurrence of somatic alterations. At a maximum false dis-
covery rate (FDR) of 1%, no significant co-occurrences were identified. Relax-
ing the FDR threshold to 3%, we could recover one co-occurrence, between
mutation of TP53 and amplification of MYC. It was recently suggested that
MYC-amplified tumors show higher levels of MYC expression in tumors with
a TP53 mutation than in tumors without (Ulz et al. 2016). No further, reason-
able relaxation of the significance threshold led to additional hits. Certainly,
more gene pairs exist that harbor alterations in overlapping sets of tumors.
Yet, the sizes of those overlaps do not exceed what is expected by chance if
differences in tumor-specific alteration rates are taken into account. This is in
sharp contrast with the significance estimates obtained with the Binomial test,
which identifies 21,627 significant co-occurrences, almost one third of all pairs
tested.

With the aim of establishing that the DISCOVER test is not overly conser-
vative, we tested for co-occurrence between copy number changes of genes on
the same chromosomes. Due to the inherent correlation in copy number of
genes situated close to each other, such gene pairs can be considered positive
controls. Indeed, all but one of the 112 pairs of tested genes located in the
same recurrently altered segment are identified as co-occurring by the DIS-
COVER test. In addition, 18 pairs of genes situated on the same chromosome
arm are detected as co-occurring, as are DDAH1 on 1p22 and MCL1 on 1q21.
More generally, pairs within the same segment are assigned lower P-values
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2 RESULTS

on average than are pairs within the same chromosome arm (P = 7 × 10−39,
Supplemental Fig. 5). The same is true, to lesser extents, for pairs within
the same chromosome arm compared to pairs within the same chromosome
(P = 6 × 10−8), and for pairs within the same chromosome compared to pairs
across chromosomes (P = 0.0004).

2.7 Mutually exclusive alterations target core cancer pathways

Figure 4: Overview of detected pairwise mutual exclusivities. (a) Comparison
of the number of significant mutual exclusivities found for a gene and the
number of tumors in which it has been altered. (b) Mutual exclusivities that
overlap with high confidence interactions in the STRING functional interac-
tion network depicted in their biological context. Red lines represent a mutual
exclusivity between the connected genes. Dotted lines depict a functional in-
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2 RESULTS

teraction.

Pairwise mutual exclusivities were found among 181 pairs of genes, at a
maximum false discovery rate of 1% (Supplemental Table 1). We once more
confirmed that detecting mutual exclusivities using the Binomial test results
in far fewer significant mutual exclusivities—only three pairs were identified.
Among the 181 gene pairs, there were 107 unique genes. Many of these are
significantly mutually exclusive with only one or a few other genes. For some,
reduced statistical power due to low alteration frequency may be the reason
for not detecting more associations. However, alteration frequency is not the
dominant factor in how often mutual exclusivity is detected (Fig. 4a). For
example, mutations of KRAS are far less frequent than TP53 or PIK3CA mu-
tations. Yet, KRAS was found mutually exclusive with more genes than were
the latter two genes.

Since mutual exclusivity is believed often to occur between functionally
related genes, we determined the overlap of the identified gene pairs with
the STRING functional interaction network (Szklarczyk et al. 2015). 31 of the
identified gene pairs have a high-confidence functional interaction in STRING
(Fig. 4b). This overlap is significantly higher than the 5 overlapping pairs
expected by chance (P < 1 × 10−4), as determined using a permutation test.
Moreover, 121 of the mutually exclusive gene pairs share a common interactor
in the STRING network. By chance, this is only expected to be the case for 80
gene pairs (P = 0.003). This suggests that the mutual exclusivities identified
are indeed for a large part driven by biological factors. The mutual exclusiv-
ities that overlap with STRING interactions revolve around three commonly
deregulated processes in cancer: growth factor signaling, cell cycle control,
and p53 signaling.

2.7.1 Growth factor signaling

Genes coding for proteins involved in growth factor signaling are frequently
altered in cancer. These alterations display a high degree of mutual exclu-
sivity. Mutations targeting the receptor EGFR are mutually exclusive with
mutations in its downstream mediator KRAS. In turn, KRAS mutations are
mutually exclusive with mutations in its family member NRAS, its negative
regulator NF1, and its downstream effector BRAF. All of these alterations are
able to deregulate RAS signaling, and one is sufficient. Mutual exclusivity
of mutations in KRAS and mutations in both PIK3R1 and PIK3CG may be
driven by the known cross-talk between RAS signaling and PI3-kinase (PI3K)
signaling (Rodriguez-Viciana et al. 1994).
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2 RESULTS

Figure 5: Examples of gene sets with mutually exclusive alterations. The P-
values were computed using DISCOVER’s group-based test. Panels a and b
show predefined gene sets extracted from MSigDb. Panels c and d show gene
sets identified using our de novo group detection approach.

The PI3K signaling cascade itself is also characterized by many mutually
exclusive alterations. Mutations in the PIK3CA and PIK3R1 genes—both cod-
ing for components of the PI3K complex—are mutually exclusive. Alterations
in the PTEN gene—a negative regulator of the downstream activation of AKT
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2 RESULTS

by PI3K—are mutually exclusive with mutations in PIK3CA, but also with al-
terations in the upstream activator of the cascade ERBB2. PI3K signaling is
also the central biological process in several of the gene sets found mutually
exclusive with the group-based test (Fig. 5a, Supplemental Fig. 6). Central
genes in PI3K signaling such as SOS1, AKT1, and AKT3 were not found as
mutually exclusive with other pathway members in the pairwise analysis, yet
the groupwise test correctly detects it.

2.7.2 Cell cycle control

Many tumors harbor alterations that disable the cell cycle control present in
healthy cells. This control arises from a tightly regulated interplay between
cell cycle activating Cyclins and CDKs, and CDK inhibitors, linked together
by the master cell cycle regulator RB1. Alterations in these genes are also
mutually exclusive. For example, copy number gains in Cyclins D1 and E1
are mutually exclusive, as are CDKN2A copy number loss and both mutation
and copy number loss of RB1. The transcriptional activation of CCND1 by
MYC is also reflected in the mutual exclusivity between copy number gains
in the two genes. Also as a group, cyclins, CDKs, and CDK inhibitors show a
clear pattern of mutual exclusivity (Fig. 5b, Supplemental Fig. 6). CDK4 and
CDKN1B, central players in the regulation of the cell cycle, did not show up in
the pairwise results, but are highly exclusive with the other genes involved.

2.7.3 p53 signaling

p53 plays a pivotal role in deciding on cell fate after cellular stresses common
in cancer development. For this reason, p53 mutations are the most common
alterations in cancer. Not all tumors disable p53 function genetically how-
ever. Alterations in regulators of p53 provide an alternative way to deregulate
p53 function in p53-wildtype tumors, but are likely redundant in tumors that
already have a dysfunctional p53 protein. Indeed, we found alterations in sev-
eral regulators of p53 to be mutually exclusive with TP53 mutation. For exam-
ple, mutations in its positive regulator ATM, but also mutations in its negative
regulator HUWE1 are mutually exclusive with TP53 mutations. MDM2 and
MDM4, highly similar negative regulators of p53, have a mutually exclusive
pattern of copy number gains. Mutations in CASP8, a downstream mediator
of p53-induced apoptosis, tend also not to overlap with TP53 mutations.

2.8 De novo gene set detection

As a final step in our analysis, we detected de novo gene sets purely based on
observed patterns of mutual exclusivity, without input based on recorded bio-
logical knowledge. To this end, we applied correlation clustering to a network
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derived from pairwise mutual exclusivities (see Methods). The identified clus-
ters were tested for groupwise mutual exclusivity with the group-based test.

One of the most significant gene sets includes RB1 and CDKN2A, two piv-
otal players in cell cycle control (Fig. 5c). PARK2 (Gong et al. 2014), WWOX
(Yan et al. 2015), FHIT (Sard et al. 1999), PTPRD (D Wang et al. 2014; Solomon
et al. 2008), and MAPK12 (Zarubin and Han 2005) have also all been linked
to a regulating role in various phases of the cell cycle. They have been found
to do so by regulating cyclins, CDKs, or CDK inhibitors. This functional sim-
ilarity may explain these genes’ mutual exclusivity with RB1 and CDKN2A.
As of yet, LRP1B and CSMD1 have not been linked to cell cycle control. Their
mutual exclusivity with respect to several regulators of the cell cycle may in-
stigate further study in this direction.

Another group of genes with a high degree of mutual exclusivity (P =
7 × 10−8) consists of genes that have been implicated in the regulation of
Hedgehog signaling (Fig. 5d). With the exception of ARHGAP35, all genes
in this group have experimentally been linked to a regulatory role in Hedge-
hog signaling. GNAS (Regard et al. 2013; He et al. 2014), TBX3 (Takabatake
et al. 2002), and WT1 (Kann et al. 2015) were found to directly regulate the
pathway. ARID1A, coding for a component of the SWI/SNF complex, is likely
to play a similar role, since loss of another component of this complex, Snf5
was found to lead to activation of the Hedgehog pathway (Jagani et al. 2010).
Besides these two examples, several other gene sets were identified that com-
bine known interaction partners with interesting leads for undiscovered inter-
actions.

3 Discussion

The recent growth in the number of large genomics data sets gives rise to a
parallel increase in statistical power to detect ever more complex associations.
As another consequence of larger sample sizes, however, poorly matched as-
sumptions will have an increasing impact on the results. A central assumption
behind commonly used statistical tests for co-occurrence and mutual exclusiv-
ity is that a gene’s alteration probability is identical across all tumors. Using
simulated data, we have shown that this assumption is not only unjustified,
but that it leads to a full reversal of the associations. The Binomial test we used
for illustration is but a representative of a larger class of independence tests
based on the same assumption. This class includes analytical approaches such
as Fisher’s exact test, muex (Szczurek and Beerenwinkel 2014), and CoMEt
(Leiserson et al. 2015), but also permutation tests where gene alterations are
uniformly shuffled across the tumors.

We have presented a novel independence test based on assumptions that
better match the reality of cancer genomics data. With this new test, we ana-
lyzed tumors across 12 different cancer types for the presence of co-occurrence
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and mutual exclusivity. Only one case of co-occurrence was found, whereas
numerous cases of mutual exclusivity were detected. Performing the same
analysis with the Binomial test led to the detection of many co-occurrences
and almost no mutual exclusivity. Many of the mutual exclusivities missed
by the Binomial test can be related to central processes in cancer biology. We
found strong mutual exclusivity between genes involved in growth factor sig-
naling and cell cycle control. Also lesser known players in the regulation of
cell cycle and Hedgehog signaling were identified. Based on the results of our
simulation study, we are confident that the vast majority of co-occurrences
detected by the Binomial test are spurious.

The absence of widespread co-occurrence contradicts what was found in
previous genome-wide studies. Besides, it seems counter to our expectation
of positive selection for synergy that led us to look for co-occurrence in the
first place. It is true that synergy resulting from the concurrent alteration of
two genes has been observed. Concurrent mutation of two genes has been
reported to act on a tumor’s response to chemotherapy, or more generally on
patient survival (Gross et al. 2014; Malinowska-Ozdowy et al. 2015). None of
these phenotypes, however, have been the subject of the selection from which
the original tumor emerged. Only after selective pressure for that particular
phenotype has taken place—for example by treating patients—would enrich-
ment for such co-occurrences be detected. There is no doubt cancer-driving
alterations often act in concert. Yet if statistical results are to serve as sup-
port for, or even meant to identify synergy, other possible explanations for the
observed co-occurrence should be accounted for. In our pan-cancer analysis,
overall alteration rates explained most if not all co-occurrence.

The need to take into account higher-level structural features of samples is
not unique for co-occurrence and mutual exclusivity analysis. In testing the
relationship between high-dimensional gene expression data and phenotypes
of interest, latent sources of heterogeneity can have a profound effect on the
results. Approaches like surrogate variable analysis (Leek and Storey 2007),
have been developed to adjust analyses appropriately. Similarly, genome-wide
association studies face the issue of latent population substructure. Again, if
ignored, such substructure can drastically alter the findings. Linear mixed
models have gained popularity as a method to prevent confounding (Yu et al.
2006). Both of these examples have become standard methodologies in many
biomedical analyses. With this work, we hope to achieve that researchers per-
forming analysis of co-occurrence and mutual exclusivity will take note of the
methodological issues of commonly used tests, and we propose DISCOVER
as a usable alternative.
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4 Methods

4.1 Independence statistic

We assess both co-occurrence and mutual exclusivity by counting how many
tumors have an alteration in both genes and comparing this to the number
of tumors expected to have such an overlap by chance if these alterations
were independent. Importantly, the overlap expected by chance should factor
in the fact that tumors with many alterations have a higher chance of such
overlap than tumors with fewer alterations. Our null distribution modeling
this overlap therefore takes into account both the alteration rate per gene, and
the alteration rate per tumor. To this end, let pij denote the probability of an
alteration in gene i and tumor j. We assume that the alteration probability
of a gene is higher in tumors with many alterations overall, than in tumors
with fewer alterations. Therefore, pij may be different from pik for the same
gene i in two different tumors i and k. Then, for two independent genes
with alteration probabilities p1j and p2j, the probability of an alteration in
both genes in tumor j is p1j p2j, while for tumor k it is p1k p2k. Given such
probabilities for a set of tumors, the number of tumors that have an alteration
in both genes follows a Poisson-Binomial distribution.

The Poisson-Binomial distribution (YH Wang 1993) describes the sum of
independent, non-identically distributed Bernoulli random variables that have
success probabilities p1, p2, . . . , pn. Its probability mass function is defined as
follows.

P(X = x) = ∑
A∈Fx

(
∏
i∈A

pi ∏
j∈Ac

(1 − pj)
)

Here, Fx contains all subsets of size x of {1, 2, . . . , n}, and Ac denotes the
complement of A.

Based on this distribution, we can estimate the probability of observing
a number of tumors with alterations in two genes as extreme—as high for
co-occurrence, or as low for mutual exclusivity—as the one observed.

If, for a given gene i, all probabilities pij are equal for every tumor j, then
the Poisson-Binomial distribution reduces to a Binomial distribution. How-
ever, estimating an individual alteration probability for every single tumor,
ensures that the heterogeneity in alteration rates across tumors is taken into
account.

4.2 Estimating gene- and tumor-specific alteration probabili-
ties

To apply the DISCOVER test, we need estimates of the alteration probabilities
pij for all genes i and all tumors j. Let X ∈ {0, 1}n×m denote the n × m binary
alteration matrix where an entry xij is 1 in case of an alteration in gene i and
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tumor j, and 0 otherwise. We use the notation xi• and x•j for the marginal
sums of the ith row and jth column respectively. Furthermore, let Xij denote
the random variable for xij, and Xi• and X•j the corresponding marginal sums.
If we were to assume that the alteration of a gene is equally likely across all
tumors, then the alteration probability only depends on the number of altered
tumors xi• and the total number of tumors m.

pij = P(Xij = 1|xi• = k) =
k
m

, ∀j

Estimating the alteration probabilities this way ensures that the expected
number of alterations Ep(Xi•) = ∑j pij for a gene matches the observed num-
ber xi•. In fact, the familiar expression above, is the one that maximizes the
likelihood of the observed alterations under the constraint that the expected
number of alterations per gene matches the observed number. To make this
more explicit, we can reformulate the probability estimation as a constrained
optimization problem.

max
p

Lp(X ) =
n

∑
i=1

m

∑
j=1

pijxij + (1 − pij)(1 − xij)

s.t.
m

∑
j=1

pij =
m

∑
j=1

xij , 1 ≤ i ≤ n

0 ≤ pij ≤ 1 , 1 ≤ i ≤ n, 1 ≤ j ≤ m

All of the above is based on the assumption that alteration probabilities
for a gene are equal across tumors. Symptomatic for this assumption are
probability estimates such that the expected number of alterations per tumor
Ep(X•j) = ∑i pij generally does not match the observed number x•j. To take
into account tumor-specific alteration rates, the above optimization problem
can be extended such that this expectation is also matched.

max
p

Hp(X ) = −
n

∑
i=1

m

∑
j=1

pij log(pij) + (1 − pij) log(1 − pij)

s.t.
m

∑
c=1

pic =
m

∑
c=1

xic , 1 ≤ i ≤ n

n

∑
r=1

prj =
n

∑
r=1

xrj , 1 ≤ j ≤ m

0 ≤ pij ≤ 1 , 1 ≤ i ≤ n, 1 ≤ j ≤ m
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With this new formulation, the number of parameters to fit is increased by
a factor m. As a consequence, optimizing the likelihood Lp(X ) of the model
risks overfitting the data. Therefore, instead of optimizing the likelihood we
choose to optimize the information entropy Hp(X ). It can be shown that in
the optimal solution to this reformulated problem, each alteration probability
can be written in terms of two parameters (Supplemental Methods).

pij =
1

1 + eµi+λj

Here, each parameter µi for gene i is shared by all tumors, and each param-
eter λj for tumor j is shared by all genes. Because of this, while the original
optimization problem aims to estimate n × m alteration probabilities, we can
obtain the optimal solution by estimating only n + m parameters. Moreover,
all genes with the same number of altered tumors share the same value for µi.
Likewise, all tumors with the same number of altered genes share the same
value for λj. This sharing of parameters leads to an even larger reduction in
the effective dimensionality of the optimization.

Unlike for the Binomial case, there is no closed-form solution for estimat-
ing the µi and λj parameters. Instead, we use the quasi-Newton numerical
optimization algorithm L-BFGS (Liu and Nocedal 1989).

4.3 Stratified analysis

When the data consist of clearly separate groups of tumors, such as is the case
in the pan-cancer analyses with its different cancer types, it is preferable to
stratify the analysis on these groups. If for example in the mutual exclusivity
analysis, group structure is not taken into account, the detected mutual ex-
clusivities may be little more than markers for the underlying cancer types,
rather than biologically related genes. The DISCOVER test is easily stratified
for different groups by solving the constrained optimization problem sepa-
rately for the tumors of each group. The group-specific background matrices
can then be concatenated to construct a single global, but stratified, parameter
matrix.

4.4 False discovery rate control

Commonly used procedures for multiple testing correction assume that the
P-values are distributed uniformly under the null hypothesis. This is the case
for e.g. Bonferroni correction and the Benjamini-Hochberg procedure. How-
ever, hypothesis tests that are based on a discrete test statistic, such as our
DISCOVER test, are known to lead to non-uniform P-value distributions un-
der the null hypothesis. In fact, pooling the P-values across tests with a large
set of different parameters results in a P-value distribution that is skewed to-
wards 1.0. This complicates the application of the standard procedures for
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multiple testing correction. While these procedures would still control the
family-wise error rate or false discovery rate at the specified threshold, they
will be more conservative because of the non-uniformity caused by the dis-
crete test statistic. For the analyses in this paper, we used an adaptation of the
Benjamini-Hochberg procedure for discrete test statistics (Carlson et al. 2009).

4.5 Group-based mutual exclusivity test

We have defined a family of group-based mutual exclusivity tests. The fol-
lowing statistics can be used to assess groupwise mutual exclusivity. Each of
these statistics can be shown to follow a Poisson-Binomial distribution, which
we make use of to estimate significance.

• Coverage: the number of tumors that have an alterations in at least one
of the genes. Significance is based on the probability of observing a
coverage at least as high in independent genes. The Poisson-Binomial
parameters for a group of genes {gi | i ∈ I} can be derived from the
individual gene alteration probabilities as follows.

pj = 1 − ∏
i∈I

(1 − pij) , 1 ≤ j ≤ m

That is, the probably of at least one alteration is one minus the probabil-
ity of not having any alteration.

• Exclusivity: the number of tumors that have an alteration in exactly one
of the genes. Significance is based on the probability of observing ex-
clusivity at least as high in independent genes. The Poisson-Binomial
parameters can be derived from the gene alteration probabilities as fol-
lows.

pj = ∑
i∈I

pij ∏
k∈I\{i}

(1 − pkj) , 1 ≤ j ≤ m

• Impurity: the number of tumors that have an alteration in more than
one gene. Significance is based on the probability of observing impurity
at least as low in independent genes. The Poisson-Binomial parameters
can be derived from the gene alteration probabilities as follows.

pj = 1 − ∏
i∈I

(1 − pij)− ∑
i∈I

pij ∏
k∈I\{i}

(1 − pkj) , 1 ≤ j ≤ m

That is, the probability of more than one alteration is one minus the
probabilities of no alterations and exactly one alteration. As a special
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case of this, if a group of only two genes is tested, the above expression
reduces to pj = p1j p2j. This is the same parameterization as was used
for the pairwise test.

4.6 Simulation data

An alteration matrix was constructed such that alteration frequencies across
both genes and tumors resembled those of real tumors. For this, we used the
copy number data of the TCGA breast cancer study as a reference. Based on
the copy number matrix for 24,174 genes and 1,044 tumors, we constructed
two sequences of marginal counts corresponding to the number of amplifi-
cations across genes and across tumors. These two sequences were used as
degree sequences to construct a random bipartite graph following the config-
uration model. The adjacency matrix of this bipartite graph was then used as
alteration matrix for the simulated data analyses. Because of the way this ma-
trix was constructed, the alteration frequencies across both genes and tumors
resemble those of the breast cancer tumors used for reference, yet there is no
dependence between alterations across genes. For the analyses, only genes
with at least 50 alterations were tested.

Mutually exclusive and co-occurring gene pairs, as well as mutually exclu-
sive gene sets were generated based on two parameters: coverage, the num-
ber of tumors altered in at least one of the genes; and impurity or overlap,
the proportion of covered tumors altered in more than one of the genes. To
generate pairs of mutually exclusive genes, we used quantile regression to re-
late the coverage of independent gene pairs to their to impurity. Simulated
mutually exclusive gene pairs were generated such that their impurity was
below the first percentile predicted by the quantile regression model based
on their coverage. Likewise, pairs of co-occurring genes were generated such
that the number of tumors altered in both genes exceeded the 99th percentile
based on the coverage of independent gene pairs. Mutually exclusive gene
sets were generated by randomly sampling the gene set size from {3, 4, 5, 6},
the percentage of covered tumors from {0.2, 0.4, 0.6, 0.8}, and the impurity
from {0.02, 0.05, 0.08}. Impure alterations, i.e. additional alterations in an al-
ready covered tumor, were assigned to tumors with a probability proportional
to the tumor’s overall alteration frequency.

For all analyses, the background matrix for the DISCOVER test was esti-
mated on the complete alteration matrix, including genes with fewer than 50
alterations, and including simulated co-occurrences or mutual exclusivities.

4.7 Pan-cancer alteration data

Preprocessed somatic mutation and copy number data for the 12 cancer
types studied in the TCGA pan-cancer initiative (The Cancer Genome At-
las Research Network et al. 2013) were obtained via Firehose (analysis run
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2014_07_15). Mutations were extracted from the input of the MutSig 2CV
analysis. Mutations for genes that have previously been identified as high-
confidence mutational drivers (Tamborero et al. 2013) were included in the
analysis. Discretized copy number changes were extracted from the out-
put of GISTIC2. We considered genes altered if GISTIC2 qualified their
copy number change as high-level. Pan-cancer recurrently altered regions
were obtained via Synapse (syn2203662). For each region, we selected their
most likely driver genes for inclusion in the analysis. If a region con-
tained only one gene, this gene was assumed its driver. In the case of
more genes, genes were selected if they overlapped with the list of high-
confidence mutational driver genes, or with a curated list of cancer genes
(http://www.bushmanlab.org/links/genelists).

Background matrices for the DISCOVER test were estimated for each type
of alteration—mutation, amplification, and deletion—separately, and based on
the genome-wide alteration matrices before gene selection. Stratification for
the 12 different cancer types was applied as described before. The background
matrix used in the analysis was subsequently composed out of the relevant
rows in the three alteration type-specific background matrices.

4.8 Overlap with the STRING functional interaction network

Version 10.0 of the STRING network (Szklarczyk et al. 2015) was used to deter-
mine overlap of detected mutual exclusivities and functional interactions. We
constructed a functional interaction graph by connecting genes with an edge
if they have a high-confidence STRING interaction, defined by a combined
score greater than 800. A mutual exclusivity graph was constructed by con-
necting genes with an edge if alterations in these genes were found mutually
exclusive at a maximum FDR of 1%. The overlap corresponds to the number
of edges appearing in both graphs. To determine enrichment of this overlap,
we estimated a null distribution by randomly shuffling the gene labels of the
mutual exclusivity graph 10,000 times and computing the overlap of these
shuffled mutual exclusivity graphs with the unshuffled functional interaction
graph.

4.9 De novo gene set detection

Our algorithm for detecting de novo sets of mutually exclusive genes com-
bines two ideas from community detection. Its goal is to detect gene sets
with a high likelihood of being mutually exclusive based on the results of a
pairwise mutual exclusivity analysis. There are three main steps. First, a mu-
tual exclusivity graph is constructed where genes are connected by an edge
if their alterations have been identified as mutually exclusive by the pairwise
test. For this step, we used a permissive significance criterion—a maximum
FDR of 10%—so as not to exclude potentially interesting gene pairs that may
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simply not have reached significance due to the limited sample size. Second,
groups of genes with a high density of mutual exclusivity edges between them
are identified using a graph partitioning algorithm. Finally, these groups are
subjected to the groupwise mutual exclusivity test to retain only those groups
that are mutually exclusive as a group.

The graph partitioning step is based on overlapping correlation clustering.
In correlation clustering, nodes in a graph are clustered such that the com-
bined weight of edges within clusters is maximized, and the combined weight
of edges between clusters is minimized. The particular algorithm we used
(Bonchi et al. 2013) allows nodes to be assigned to multiple clusters. More-
over, we modified the original algorithm such that groups of nodes can be
designated that should always share the same cluster assignments. We used
this for two situations. First, genes in the same copy number segment have
highly correlated copy number alterations, and consequently highly similar
mutual exclusivities. Purely based on genomic data there is no reason to pre-
fer one gene over the other, which is why we always assign all such genes
to the same cluster. Second, we assume copy number alterations and muta-
tions targeting the same gene serve the same function, and therefore add the
constraint that these are always assigned to the same cluster.

The edge weights of the mutual exclusivity graph play an important role
in the objective function of correlation clustering. A common phenomenon in
pairwise associations is that one gene is found mutually exclusive with many
other genes, but those genes are not all mutually exclusive with each other.
The edges connecting the former gene may therefore not be indicative of gene
set membership. They should be assigned a lower weight than edges that
more specifically connect genes with a high degree of internal connectivity.
To this aim, we selected the edge weights to optimize a modularity objective.
In modularity optimization, a graph is compared with random graphs hav-
ing the same number of nodes, edges, and degree distribution. Edges that
are specific to the graph being partitioned are preferably kept within clusters,
whereas edges that also appear in many of the random graphs will often span
two clusters. We used a modularity measure based on conditional expected
models (Chang et al. 2012). This measure ensures that edges connecting sets
of nodes with high node degrees receive a lower weight than edges that con-
nect sets of nodes with low node degrees. In addition, it also allows for the
covariance between the mutual exclusivity tests to be taken into account.
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Supplemental figures

Supplemental Figure 1: Histograms of P-values obtained on simulated data
using Fisher’s exact test. The P-values apply to gene pairs with three dif-
ferent types of relation: gene pairs with independent alterations (a, c), gene
pairs with co-occurring alterations (b), and gene pairs with mutually exclusive
alterations (d).

Supplemental Figure 2: Histograms of P-values obtained by testing indepen-
dent gene pairs for either co-occurrence (a) or mutual exclusivity (b) using the
Binomial test. Simulated alteration data were generated in such a way that
gene alteration frequencies resemble those in real tumors. Alteration frequen-
cies of tumors are similar for all tumors.
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SUPPLEMENTAL FIGURES

Supplemental Figure 3: ROC curves describing the performance on simulated
gene sets of the DISCOVER test based on three alternative statistics: Coverage,
the number of tumors that have an alteration in at least one of the genes;
Exclusivity, the number of tumors that have an alteration in exactly one gene;
Impurity, the number of tumors that have an alteration in more than one gene.
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SUPPLEMENTAL FIGURES

Supplemental Figure 4: P-value calibration curves for the DISCOVER, muex,
and MEMo group tests. For a statistical test, the significance level α should
approximate the false positive rate. In such a case, the calibration curve would
be a diagonal line. For the DISCOVER test, the calibration curve is close to
diagonal. For the MEMo test, significance levels up to approximately 0.3 lead
to higher false positive rates, while for higher significance levels the false
positive rate is overestimated. This is even more extreme for muex.
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Supplemental Figure 5: Comparison of P-values obtained when testing for
co-occurrence between genes within the same recurrently altered segment,
within the same chromosome arm, within the same chromosome, and across
chromosomes. Differences in mean are tested with the Mann-Whitney U test.
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Supplemental Figure 6: Overview of the significantly mutually exclusive gene
sets from the MSigDb canonical pathway collection.

Supplemental tables

Page 31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2016. ; https://doi.org/10.1101/052803doi: bioRxiv preprint 

https://doi.org/10.1101/052803
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTAL TABLES

Supplemental Table 1: Significantly mutually exclusive alter-
ations found in the pan-cancer data at a maximum FDR of 1%.
The first four columns show the genes and the types of alteration
involved (mut = point mutation; gain, loss = copy number gain,
loss). The P-value is obtained using DISCOVER’s mutual exclu-
sivity test. The Q-value is the false discover rate estimated using
the method of Carlson et al.(Carlson et al. 2009)

Gene 1 Gene 1
alteration

Gene 2 Gene 2
alteration

P-value Q-value

CDH1 mut TP53 mut 6.7e-15 4.6e-12
PIK3CA mut PIK3R1 mut 4.1e-14 1.6e-11
CSMD1 loss CDKN2A loss 2.9e-13 8.2e-11
PTEN loss CSMD1 loss 3.4e-13 8.2e-11
CSMD1 loss CDKN2B loss 1e-12 2.2e-10
TP53 mut PIK3CA mut 1.6e-12 2.9e-10
ARID1A mut TP53 mut 2.7e-12 4e-10
TP53 mut CTNNB1 mut 2.7e-12 4e-10
TP53 mut MAP3K1 mut 4.2e-11 7e-09
KRAS mut TP53 mut 1.2e-10 2e-08
ATM mut TP53 mut 1.6e-10 2.4e-08
FHIT loss CSMD1 loss 3.2e-10 4.9e-08
CTCF mut TP53 mut 1.8e-09 3e-07
GATA3 mut TP53 mut 4e-09 7.1e-07
RB1 loss CDKN2A loss 5.5e-09 9.5e-07
KRAS mut CTNNB1 mut 7.6e-09 1.2e-06
PTEN mut TP53 mut 7.8e-09 1.2e-06
RB1 loss CDKN2B loss 8.2e-09 1.2e-06
KRAS mut SPOP mut 1e-08 1.5e-06
KRAS mut BRAF mut 1.2e-08 1.7e-06
RB1 loss CSMD1 loss 2.4e-08 3.5e-06
RB1 loss PTPRD loss 6.1e-08 9.5e-06
KRAS mut CTCF mut 8.7e-08 1.4e-05
FGFR2 mut KRAS mut 1.2e-07 1.8e-05
PTEN loss PTPRD loss 2.3e-07 3.8e-05
PPP2R1A mut PIK3R1 mut 4e-07 6.6e-05
TP53 mut PIK3R1 mut 4.3e-07 6.8e-05
CEP170 gain WHSC1L1 gain 4.4e-07 6.8e-05
PTEN loss CDKN2B loss 5.2e-07 7.9e-05
CTNNB1 mut FBXW7 mut 6.2e-07 9.4e-05
LRP1B loss CDKN2B loss 6.7e-07 9.8e-05
ZFHX3 mut TP53 mut 8.1e-07 0.00012
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PTEN loss CDKN2A loss 8.4e-07 0.00012
NFATC1 loss CSMD1 loss 8.4e-07 0.00012
WWOX loss CSMD1 loss 1.1e-06 0.00015
MLL2 mut CTCF mut 1.1e-06 0.00015
ZFHX3 mut CTNNB1 mut 1.2e-06 0.00016
CHD4 mut CTCF mut 1.3e-06 0.00017
LRP1B loss CDKN2A loss 1.5e-06 0.00021
GATA3 mut PIK3CA mut 1.7e-06 0.00023
KRAS mut PPP2R1A mut 1.9e-06 0.00025
PARK2 loss CDKN2B loss 2e-06 0.00025
AKT3 gain WHSC1L1 gain 2e-06 0.00025
SDCCAG8 gain WHSC1L1 gain 2.1e-06 0.00026
ORAOV1 gain CCNE1 gain 2.9e-06 0.00035
CCND1 gain CCNE1 gain 2.9e-06 0.00035
MCL1 gain WHSC1L1 gain 3.1e-06 0.00037
MDM4 gain WHSC1L1 gain 3.2e-06 0.00037
ARID1A mut ARHGAP35 mut 3.2e-06 0.00037
CCND1 gain ING1 gain 3.7e-06 0.00041
ORAOV1 gain ING1 gain 3.7e-06 0.00041
SIN3A mut CTCF mut 3.7e-06 0.00041
MDM4 gain MYC gain 4.3e-06 0.00048
KRAS mut MLLT4 mut 4.4e-06 0.00048
RBFOX1 loss CSMD1 loss 4.7e-06 0.0005
ARID5B mut PPP2R1A mut 5e-06 0.00051
CEP170 gain CCND1 gain 5e-06 0.00051
CEP170 gain ORAOV1 gain 5e-06 0.00051
RB1 mut CDKN2A loss 5e-06 0.00051
PARK2 loss CDKN2A loss 5.6e-06 0.00057
NRAS mut KRAS mut 6e-06 0.00059
AKR1C2 gain CCND1 gain 6.1e-06 0.00059
AKR1C2 gain ORAOV1 gain 6.1e-06 0.00059
KRAS mut SMARCA4 mut 6.4e-06 0.00061
NUMA1 mut TP53 mut 6.4e-06 0.00061
PTEN loss WWOX loss 8.1e-06 0.00077
TP53 mut EP300 mut 8.2e-06 0.00077
MTOR mut TP53 mut 8.5e-06 0.0008
RB1 mut CDKN2B loss 8.9e-06 0.00081
ASPM mut CTNNB1 mut 8.9e-06 0.00081
PARK2 loss CSMD1 loss 9.7e-06 0.00088
KRAS mut KALRN mut 9.7e-06 0.00088
PTEN loss PIK3CA mut 1.1e-05 0.00095
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CCND1 gain BCL2L1 gain 1.1e-05 0.00096
ORAOV1 gain BCL2L1 gain 1.1e-05 0.00096
ORAOV1 gain IRS2 gain 1.1e-05 0.00097
CCND1 gain IRS2 gain 1.1e-05 0.00097
KRAS mut EP300 mut 1.3e-05 0.0012
CHD8 mut TP53 mut 1.3e-05 0.0012
AKT3 gain ERBB2 gain 1.4e-05 0.0012
AKT3 gain CCND1 gain 1.4e-05 0.0012
AKT3 gain ORAOV1 gain 1.4e-05 0.0012
SDCCAG8 gain ERBB2 gain 1.4e-05 0.0012
SDCCAG8 gain ORAOV1 gain 1.5e-05 0.0012
SDCCAG8 gain CCND1 gain 1.5e-05 0.0012
PTEN loss PDE4D loss 1.6e-05 0.0013
CHL1 loss CDKN2A loss 1.6e-05 0.0013
CNTN6 loss CDKN2A loss 1.6e-05 0.0013
KRAS mut ATR mut 1.7e-05 0.0014
CEP170 gain ERBB2 gain 1.8e-05 0.0014
CHL1 loss CDKN2B loss 1.8e-05 0.0014
CNTN6 loss CDKN2B loss 1.8e-05 0.0014
CTCF mut ERBB2 mut 1.9e-05 0.0015
CSMD1 loss PTPRD loss 2.1e-05 0.0015
CTNNB1 mut DMD mut 2.1e-05 0.0015
CCND1 gain MYC gain 2.1e-05 0.0015
ORAOV1 gain MYC gain 2.1e-05 0.0015
KRAS mut PIK3CG mut 2.1e-05 0.0015
CTNNB1 mut ATRX mut 2.1e-05 0.0016
CTCF mut CTNNB1 mut 2.3e-05 0.0017
MCL1 gain ORAOV1 gain 2.3e-05 0.0017
MCL1 gain CCND1 gain 2.3e-05 0.0017
TP53BP1 mut TP53 mut 2.4e-05 0.0017
PTEN loss DMD loss 2.6e-05 0.0018
CTNNB1 mut MLL3 mut 2.6e-05 0.0019
TP53 mut CASP8 mut 2.6e-05 0.0019
CNTN4 loss PTPRD loss 3e-05 0.0022
PIK3CA mut BCOR mut 3.1e-05 0.0022
KRAS mut PIK3R1 mut 3.4e-05 0.0024
CTNNB1 mut ABCB1 mut 3.4e-05 0.0024
PTEN mut ERBB2 gain 3.5e-05 0.0025
CNTN4 loss CDKN2A loss 3.5e-05 0.0025
CNTN4 loss CSMD1 loss 4.1e-05 0.0029
ARID1A mut PIK3CA mut 4.1e-05 0.0029
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FHIT loss CDKN2A loss 4.2e-05 0.0029
KRAS mut CDK12 mut 4.2e-05 0.0029
PIK3CA mut FBXW7 mut 4.3e-05 0.0029
CNTN4 loss CDKN2B loss 4.3e-05 0.0029
KRAS mut LIFR mut 4.5e-05 0.003
CNTN6 loss CSMD1 loss 4.5e-05 0.003
CHL1 loss CSMD1 loss 4.5e-05 0.003
KRAS mut ARHGAP35 mut 4.5e-05 0.003
TP53 mut HUWE1 mut 4.5e-05 0.003
KRAS mut FN1 mut 4.7e-05 0.003
KRAS mut NF1 mut 4.7e-05 0.003
LRP1B loss CSMD1 loss 4.7e-05 0.003
TP53 mut MAP3K4 mut 4.9e-05 0.0032
PDE4D loss CDKN2A loss 5e-05 0.0032
CTNNB1 mut RASA1 mut 5.1e-05 0.0033
CTCF mut RBMX mut 5.4e-05 0.0034
FHIT loss CDKN2B loss 5.4e-05 0.0034
KRAS mut MLL3 mut 5.5e-05 0.0035
TP53 mut NSD1 mut 5.7e-05 0.0035
WWOX loss PARK2 loss 5.9e-05 0.0037
FN1 mut CTNNB1 mut 6e-05 0.0037
CTCF mut TRIO mut 6.1e-05 0.0038
KRAS mut MDC1 mut 6.1e-05 0.0038
KRAS mut DICER1 mut 6.3e-05 0.0039
KRAS mut DMD mut 6.5e-05 0.004
CTNNB1 mut TAF1 mut 6.6e-05 0.004
ERBB2 gain WHSC1L1 gain 6.6e-05 0.004
SMC3 mut KRAS mut 6.9e-05 0.0041
PDE4D loss CDKN2B loss 6.9e-05 0.0041
SLC16A1 loss CSMD1 loss 6.9e-05 0.0041
CTCF mut TAF1 mut 7e-05 0.0042
TP53 mut BCOR mut 7.4e-05 0.0044
TP53 mut PIK3CB mut 7.5e-05 0.0044
MDM4 gain MDM2 gain 7.7e-05 0.0045
NRAS mut RNF43 mut 8e-05 0.0047
AGAP2 gain CDKN2A loss 8.1e-05 0.0047
KRAS mut ESR1 mut 8.2e-05 0.0048
WWOX loss MAP2K4 loss 8.3e-05 0.0048
RB1 loss LRP1B loss 8.4e-05 0.0048
MDM4 gain KAT6A gain 9e-05 0.0052
COL18A1 mut PIK3CA mut 9e-05 0.0052
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CCND1 mut MECOM mut 9.3e-05 0.0053
CEP170 gain KAT6A gain 9.7e-05 0.0056
PPP2R1A mut RBMX mut 0.0001 0.0058
TPR mut CTNNB1 mut 0.00011 0.0064
KRAS mut EGFR mut 0.00011 0.0065
CTCF mut CIC mut 0.00012 0.0066
CHD4 mut CTNNB1 mut 0.00012 0.0068
CDKN2A loss DMD loss 0.00012 0.0068
TPR mut KRAS mut 0.00012 0.0068
CHL1 loss PTPRD loss 0.00012 0.0069
CNTN6 loss PTPRD loss 0.00012 0.0069
CBFB mut TP53 mut 0.00013 0.0071
KRAS mut FOXA2 mut 0.00013 0.0071
MDM4 gain EGFR gain 0.00013 0.0074
GATA3 mut CDH1 mut 0.00013 0.0075
ARID5B mut FOXA2 mut 0.00014 0.0075
ATM mut CTCF mut 0.00014 0.0077
MTOR mut KRAS mut 0.00014 0.0079
AGAP2 gain CDKN2B loss 0.00016 0.0088
NFE2L2 mut GNAS mut 0.00017 0.0093
CTNNB1 mut APC mut 0.00017 0.0093
TP53 mut ADCY1 mut 0.00017 0.0093
KRAS mut PRPF8 mut 0.00017 0.0093
NRAS mut AXIN2 mut 0.00017 0.0095
MCL1 gain PIK3CA mut 0.00018 0.0096
KRAS mut AMPH mut 0.00018 0.0098
PTEN loss FHIT loss 0.00018 0.0098
PIK3CA mut MYC gain 0.00018 0.0099

Page 36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2016. ; https://doi.org/10.1101/052803doi: bioRxiv preprint 

https://doi.org/10.1101/052803
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTAL TEXT

Supplemental text

Parameter estimation

To apply the DISCOVER test, we need estimates of the alteration probabilities
pij for all genes i and all tumors j. These estimates are used as parameters of
the Poisson-Binomial distribution used by the test. Here, we show that each
alteration probability can be written in terms of two parameters.

pij =
1

1 + eµi+λj

For estimating the parameters of the Poisson-Binomial distribution we
maximize the information entropy (or equivalently below, minimize the neg-
ative of the entropy), subject to the constraints that the expected row and
column marginals match the observed ones.

min
p

n

∑
i=1

m

∑
j=1

pij log pij + (1 − pij) log(1 − pij)

s.t.
m

∑
j=1

pij = Ri , 1 ≤ i ≤ n

n

∑
i=1

pij = Cj , 1 ≤ j ≤ m

0 ≤ pij ≤ 1 , 1 ≤ i ≤ n, 1 ≤ j ≤ m

where

Ri =
m

∑
j=1

xij

Cj =
n

∑
i=1

xij

We first turn this constrained optimization problem into an unconstrained
one by defining the Lagrangian dual. The Lagrangian is as follows.

L(p, µ, λ) = ∑
i,j

pij log pij + (1 − pij) log(1 − pij) + ∑
i

µi(∑
j

pij − Ri)

+ ∑
j

λj(∑
i

pij − Cj)
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which we rewrite to

L(p, µ, λ) = ∑
i,j

pij log pij + (1 − pij) log(1 − pij) + ∑
i

µi ∑
j

pij − ∑
i

µiRi

+ ∑
j

λj ∑
i

pij − ∑
j

λjCj

We then optimize the Lagrangian with respect to the variables pij by setting
the partial derivatives to 0 and solving for those variables.

∂L
∂pij

= log pij − log(1 − pij) + µi + λj = 0

From this, we derive that

log
pij

1 − pij
= −µi − λj

The left-hand side of this equation is the familiar logit function, the inverse
of which is the logistic function. Hence, we obtain the following expression
for pij.

pij =
1

1 + eµi+λj

With this, we can formulate the Lagrangian dual as follows.

max
µ,λ

∑
i,j

pij log pij +(1− pij) log(1− pij)+∑
i

µi(∑
j

pij −Ri)+∑
j

λj(∑
i

pij −Cj)

where pij is defined as above.
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