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Abstract 10 

1. Characterizing species history and identifying loci underlying local adaptation is 11 

crucial in functional ecology, evolutionary biology, conservation and agronomy. The 12 

ongoing and constant improvement of next-generation sequencing (NGS) techniques 13 

has facilitated the production of an ever-increasing number of genetic markers across 14 

genomes of non-model species.  15 

2. The study of variation in these markers across natural populations has deepened the 16 

understanding of how population history and selection act on genomes. Population 17 

genomics now provides tools to better integrate selection into a historical framework, 18 

and take into account selection when reconstructing demographic history. However, 19 

this improvement has come with a burst of analytical tools that can confuse users.  20 

3. Such confusion can limit the amount of information effectively retrieved from 21 

complex genomic datasets. In addition, the lack of a unified analytical pipeline impairs 22 

the diffusion of the most recent analytical tools into fields like conservation biology.  23 

4. To address this need, we describe possible analytical protocols and link these with 24 

more than 70 methods dealing with genome-scale datasets. We summarise the 25 
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strategies they use to infer demographic history and selection, and discuss some of 26 

their limitations. A website listing these methods is available at 27 

www.methodspopgen.com.  28 

Keywords 29 

Coalescent, Software, Molecular evolution 30 

Introduction 31 

Multiple historical and selective factors shape the genetic makeup of populations. The advent 32 

of Next-Generation Sequencing (NGS) in the last 10 years has enhanced our understanding on 33 

how intermingled these factors are, and how they can impact genomic variation. Important 34 

results have been gathered on model species, or species of economic interest. Such results 35 

include, among other examples, an improved understanding of the history of human 36 

migrations, admixture and adaptation (e.g. Sabeti et al., 2002; Abi-Rached et al., 2011; Li and 37 

Durbin, 2011), the origin of domesticated species (e.g. Axelsson et al., 2013; Schubert et al., 38 

2014), and the genetic basis of local adaptation in both model and non-model species (e.g. 39 

Legrand et al., 2009; Kolaczkowski et al., 2011; Roux et al., 2013; Kubota et al., 2015). The 40 

amount of population genomic data that is aimed at elucidating the history of natural 41 

populations has increased enormously in the last five years, even for non-model species. 42 

Studying genetic variation at the genome level allows the demographic factors shaping 43 

species history to be characterised. Further, understanding demographic history is important 44 

in correctly identifying loci under selection. Such data can even help in conservation efforts 45 

by identifying locally adapted genes that can be used to define relevant conservation units 46 

(Fraser and Bernatchez, 2001). 47 

 48 
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In the last 10 years, developments in NGS have continually improved the throughput of data, 49 

while reducing time and cost of their production.  These methods have become more 50 

affordable for teams studying evolutionary processes in biology, and many new methods to 51 

infer demography and selection have been developed.  However, these methodological 52 

advances have brought increased analytical complexity to the field, and an inflation in the 53 

number of methods covering any one topic. As a consequence, it has become increasingly 54 

difficult for all potential users to follow developments and be sure of selecting the most 55 

appropriate method for the question and data in hand.  56 

 57 

An overarching theme that concerns new users in a wide range of contexts is understanding 58 

patterns of heterogenous diversity along the genome. Patterns of nucleotide variation in 59 

genomes are shaped by both intrinsinc and extrinsic factors. Even within a single isolated 60 

panmictic population, interaction between recombination, selection and historical variation in 61 

population size will lead to heterogeneous diversity along the genome. At the scale of several 62 

connected populations or even between emerging species, these processes will affect the rate 63 

at which migration homogenizes the genome (Wolf and Ellegren, 2016).  64 

 65 

A prime example is the situation of a researcher primarily interested in identifying signatures 66 

of recent positive selection in a species of interest. Since a new mutation will see its frequency 67 

increase in a population where it provides a selective advantage (i.e. hard selective sweep), a 68 

large region around it can remain uniform, especially if selection is strong (Sabeti et al., 2002; 69 

McVean, 2007; Vitti et al., 2013). This can lead to an increase in linkage disequilibrium (LD) 70 

between variants associated to the advantageous mutation, as well as a decrease in the age of 71 

the positively selected alleles and their nucleotide diversity. If positive selection occurs only 72 
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in some populations, it may be possible to observe an increase in differentiation at this locus 73 

(Charlesworth et al., 1997). To detect this signature of selection, some methods can track 74 

particularly long haplotypes and linkage disequilibrium along the genome. Others will rather 75 

focus on allele frequency spectrum and nucleotide diversity. Association methods will take 76 

advantage of preliminary knowledge of a phenotype or environment to identify loci displaying 77 

correlated allele frequencies. A few methods aim at inferring the whole history of coalescence 78 

and recombination along genomes, but still make simplifying assumptions and often require 79 

whole-genome resequencing data, which remain unaffordable for many teams.  80 

 81 

Therefore, the choice of methods of any such researcher will depend on the available data and 82 

specifics of the question being addressed. One key aspect is that all these methods and 83 

questions do not have the same requirements in terms of reference genomes and marker 84 

density. For example, recent discussion of RAD-markers has been interesting from this 85 

perspective (Lowry et al., 2016; Catchen et al., 2017). The density of markers obtained along 86 

a genome depends on the choice of the restriction enzyme, and this choice must take into 87 

account the average extent of LD. Genome scans of selection will lose power if this density is 88 

not enough to cover mutations in strong linkage with variants under selection.  89 

 90 

In the absence of any unified framework, combining several tools is necessary to interpret 91 

results. It must be borne in mind that recombination rates vary along the genome, which can 92 

possibly bias tests based on LD. It can therefore be important to characterize the 93 

recombination landscape in natural populations, requiring the use of another method (e.g. 94 

LDHat, Table 1). Background selection can lead to signatures of high differentiation that 95 

mimick disruptive selection (Charlesworth et al., 1997). An assessment of genetic diversity 96 
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within populations, haplotype frequencies and possibly association with phenotype in each 97 

population would therefore be needed to explore this possibility (Charlesworth et al., 1997). 98 

Demographic history impacts patterns of LD, allele age and frequencies at the genome scale, 99 

and affects the efficiency of selection at specific genes. This calls for at least basic checking 100 

of demographic structure and history and ideally building neutral demographic models to 101 

estimate the expected frequency of outliers without involving selection. In addition, most 102 

methods estimating selection coefficients require estimating effective population sizes. 103 

Finally, including markers under selection can bias demographic inference by skewing allele 104 

frequency spectra and LD, which requires careful data filtering and removal of outliers.  105 

 106 

In this simplified example, we see that a reciprocal feedback between different aspects of 107 

evolutionary genomics is needed (Figure 1). Combining approaches is one of the current 108 

grand challenges in evolutionary biology (Cushman, 2014). While large-scale collaborations 109 

and sharing of skills between researchers allow for detailed analyses, a regularly updated list 110 

of methods would be valuable for smaller research teams to quickly start new projects and 111 

evaluate their experimental design.  112 

 113 

In addition to methodological and technical challenges, the widespread use of sophisticated 114 

analytical tools is made difficult by the lack of communication between fields (Shafer et al., 115 

2015), little user-friendliness of software, inflation of data formats (Lischer and Excoffier, 116 

2012) and the ever-increasing number of methods made available. Fields like landscape 117 

genetics and phylogeography have largely focussed on identifying general patterns in 118 

populations history and species diversification. Other researchers are more interested in 119 

identifying specific genes that are involved in adaptation in natural populations. All these 120 
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views contribute to our understanding of causation in biology, an effort that has included 121 

genetics, developmental science and ecology (Laland et al., 2011). A global summary of 122 

methods used in these different fields would therefore facilitate communication between 123 

disciplines.  124 

 125 

The last extensive review of methods in population genetics was performed 10 years ago 126 

(Excoffier and Heckel, 2006). Since then there has been increasing drive to translate these 127 

methods into approaches applicable to genomic data and non-model species. This drive has 128 

confirmed the value of population genomics on non-model species in understanding 129 

biological diversity at various scales (Mandoli and Olmstead, 2000; Jenner and Wills, 2007; 130 

Abzhanov et al., 2008; White et al., 2010; Ellegren et al., 2012; Weber et al., 2013; Poelstra 131 

et al., 2014). Such advances are needed to broaden our view about the evolutionary process 132 

and improve sampling of distant clades.  Ultimately, this process should provide a more 133 

balanced picture than the one brought by the study of a few model species (Abzhanov et al., 134 

2008). Genomic approaches also have the potential to improve conservation genetic inference 135 

by scaling up the amount of data available (Shafer et al., 2015). Much effort has recently been 136 

made in facilitating the diffusion of sometimes complex, state-of-the-art methods. Their 137 

application to species with little background data has become more accessible, bringing the 138 

potential to add much valuable information. 139 

 140 

In this paper, we propose possible pipelines (Figures 1, 2 and 3) to help choose appropriate 141 

methods dealing with current questions in population genomics and genetics of adaptation in 142 

natural populations. We begin with a succinct review of methods available to obtain genome-143 

wide polymorphism data (Box 1) before focusing on i) methods devoted to the study of 144 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2017. ; https://doi.org/10.1101/052761doi: bioRxiv preprint 

https://doi.org/10.1101/052761
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

population structure and quantitative characterization of population history (Table 1 and 2) 145 

and ii) methods aimed at identifying selected loci (Table 3). We end this review by detailing 146 

how these analyses can be combined, and present future directions that may be taken by the 147 

field of population genomics. The tables and a summary of the methods discussed in this 148 

paper will be kept updated to follow improvements, and are available at 149 

www.methodspopgen.com. 150 

 151 

Box 1. Common sequencing methods 152 

RAD-seq: Reduced representation allows broad sampling of variants across the genome by 153 

sequencing DNA fragments flanking restriction sites. Such sampling is not specific to any 154 

particular kind of region (e.g. coding or non-coding). Some of the best-known reduced 155 

representation techniques include RAD-sequencing (Baird et al., 2008) and Genotyping by 156 

Sequencing (GBS; Elshire et al., 2011). Their main interest is their low cost and that they do 157 

not require any reference genome (see Davey et al., 2011 for details), although a reference can 158 

be useful to identify outlier genomic regions and retrieve linkage disequilibrium information 159 

between markers. Use of a reference genome also limits the bias due to paralogy and mapping 160 

errors (Hand et al., 2015). Reduced representation allows many individuals to be genotyped at 161 

once, and so is widely used for the study of population structure, demography and selection. It 162 

does not cover all mutations in the genome and the choice of the restriction enzyme is crucial 163 

to control for the density of markers. This choice further controls the mean sequencing depth, 164 

the number of mutations close to genes under selection, and the accurate calling of genotypes. 165 

The number of SNPs ranges from thousands to millions, which is usually enough to retrieve 166 

substantial information about demography and sometimes selection (see Puritz et al., 2014 for 167 

a detailed summary of reduced-representation techniques). As a general word of caution, note 168 

that RAD-sequencing and related methods display specific properties that can bias genome-169 
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wide estimates of diversity, e.g. allelic dropout (Arnold et al., 2013, Puritz et al. 2014). 170 

However, this type of marker remains valuable for phylogenetic estimation, even for distantly 171 

related species (Cariou et al., 2013), and allelic dropout can be compensated for by focusing 172 

only on markers sequenced in all individuals. Variations on the original RADseq protocol 173 

have been developed to overcome some of these caveats (ddRAD, Peterson et al., 2012; 174 

ezRAD, Toonen et al., 2013; 2b-RAD, Wang et al., 2012). Many pipelines have been 175 

specifically designed to account for RAD-seq specificities, including Stacks (Catchen et al., 176 

2011), TASSEL-UNEAK (Lu et al., 2013) or TASSEL-GBS for GBS data (Glaubitz et al., 177 

2014).  178 

 179 

Targeted sequencing: This class of methods allows sequencing and genotyping the same set 180 

of genomic fragments or single nucleotide polymorphisms (SNP arrays) across individuals, 181 

and has been recently promoted to study non-model species (Jones and Good, 2016). Since 182 

the specificity of the probe does not have to be very high, the same probe can be used among 183 

closely related species (Nicholls et al., 2015). Conservation of the target genomic region 184 

under study is important. High conservation may lead to higher efficiency of capture but can 185 

artificially reduce representation of polymorphic regions. Different technologies allow for 186 

targeted sequence capture that can be classified by enrichment methods (hybridization-based; 187 

PCR-based; molecular inversion probe-based; see Mamanova et al., 2010). Commercial 188 

products, such as Agilent’s SureSelect, MYcroarray’s MYbaits or Roche NimbleGen’s 189 

SeqCap offer these methods or a derivation (Grover et al., 2012). 190 

Targeted sequencing reduces the genomic representation compared to whole genome 191 

sequencing and it allows for multiple individuals to be multiplexed, lowering the cost of 192 

sequencing per sample. In addition, the complexity of analysis is reduced compared to whole 193 

genome sequencing (WGS), since only a subset of genomic regions is sequenced. By allowing 194 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2017. ; https://doi.org/10.1101/052761doi: bioRxiv preprint 

https://doi.org/10.1101/052761
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

an improvement in spatial and temporal sampling, targeted sequencing can reconstruct 195 

dispersal routes and migration between varieties and subspecies (Nadeau et al., 2012; da 196 

Fonseca et al., 2016). Another commonly used technique includes Single nucleotide 197 

polymorphism (SNP) genotyping arrays have frequently been used in studies aimed at 198 

detecting phenotype/genotype associations or to study population struc ture (Gautier et al., 199 

2010; Johnston et al., 2011). However, regenotyping of ascertained SNPs in a new population 200 

can lead to bias which can be problematic for demographic inference (Albrechtsen et al., 201 

2010; Lachance and Tishkoff, 2013). 202 

 203 

RNAseq: RNAseq can be used with and without a reference genome. In the latter case, like 204 

any other reduced representation method, it does not provide information of linkage among 205 

genes. It has applications on many different evolutionary time scales. Since it mostly 206 

sequences coding regions, a deep phylogeny can be constructed with conserved orthologs. 207 

Depth of coverage is gene expression dependent, so calling genotypes varies across genes and 208 

which must be taken into consideration (Gayral et al., 2013). If a reference genome is 209 

available, it is possible to call variants (Piskol et al., 2013). This method is cost-effective and 210 

an alternative to whole genome sequencing. However, common variant callers do not behave 211 

well with RNAseq due to reads encompassing intronic regions as well as bias introduced 212 

during the sequencing library preparation. One of the common variant calling pipelines 213 

available is GATK which suggests best practices for calling variants on RNAseq 214 

(https://software.broadinstitute.org/gatk/best-practices/). Another variant calling protocol 215 

specifically designed for RNAseq is Opossum (Oikkonen and Lise, 2017), which can be used 216 

with haplotype-based callers such as Platypus and GATK haplotypeCaller. This software 217 

maintains precision and improves the sensitivity of SNP calling compared to the GATK best 218 

practice pipeline. RVboost (Wang, Davila, et al., 2014) was developed using the method of 219 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2017. ; https://doi.org/10.1101/052761doi: bioRxiv preprint 

https://doi.org/10.1101/052761
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

variant prioritization, using a so-called boosting method that uses a set of high-confidence 220 

variants to set a model of good quality variants. All RNA variants are then prioritized and 221 

called based on this model. It outperforms Variant Quality Score Recalibration (VQSR) from 222 

the Genome Analysis Tool Kit (GATK) and the RNA-Seq variant calling pipeline SNPiR 223 

(Piskol et al., 2013). RVboost can indentify false variants introduced by random hexamer 224 

priming during library preparation. 225 

 226 

Whole genome resequencing: Whole-genome resequencing requires a well assembled 227 

reference and is more expensive than RAD-seq or targeted sequencing, especially for species 228 

with long and complex genomes. Some methods do not actually require any reference 229 

sequence to call SNPs from raw reads, like kSNP2 (Gardner and Hall, 2013) or DiscoSNP 230 

(Uricaru et al., 2015).  However, this limits the main interest of this approach, since mapping 231 

back on a reference has the potential to provide a complete overview of structural and coding 232 

variation. It also allows the use of powerful methods to track signatures of selection (see 233 

below). Pooled sequencing (Futschik and Schlötterer, 2010) can be an option to reduce costs, 234 

but generally restricts analyses to methods focusing on allele frequencies. Since individual 235 

information is not available, variation in Linkage Disequilibrium across individuals (LD) 236 

cannot be exploited. Shallow sequencing (1-5X per individual) may be a way to partly 237 

overpass this last issue for a similar cost (Buerkle and Gompert, 2013), but should not be used 238 

for methods requiring phasing and unbiased individual genotypes.  239 

Shallow shotgun sequencing also allows retrieving complete plastomes, due to the 240 

representation bias of mitochondrial or chloroplast sequences. Plastome sequences can 241 

provide insightful information into the evolutionary history of populations or species, and 242 

recent work has successfully used shallow sequencing to reconstruct mitochondrial or 243 

chloroplast sequences in plants (Malé et al., 2014), animals (Hahn et al., 2013) or old and 244 
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altered museum samples (Besnard et al., 2016). Methods such as MITObim (Hahn et al., 245 

2013) provide an automated and relatively user-friendly way to reconstitute plastome 246 

sequences, which can then be analyzed as a single non-recombining marker for phylogeny or 247 

population genetics.  248 

 249 

Population structure and data description 250 

Population structure and diversity  251 

Description of the data is essential to assess the proportion of loci displaying a consistent 252 

pattern, and characterize how genetic diversity is partitioned within species. Genetic diversity 253 

and its genome-wide variance are directly impacted by variation in many factors including 254 

effective population sizes, population structure, inbreeding, migration, and recombination 255 

rates. Their characterization must be performed prior to any analysis to get insights into the 256 

forces and constraints acting on populations.  257 

 258 

A key aspect when describing a new dataset is the assessment of relatedness between 259 

individuals or localities. Neglecting population structure can dramatically bias demographic 260 

inference, especially when gene flow is not accounted for or panmixia is assumed (Chikhi et 261 

al., 2010; Heller et al., 2013). It also biases the detection of loci under selection (e.g. Nielsen 262 

et al., 2007). Cryptic population structure is typically a confounding effect in studies of 263 

phenotype-genotype association studies, when a given feature or trait is disproportionally 264 

found in a population or a set of related individuals (Balding, 2006). Fortunately, the 265 

abundance of SNP data produced by typical genomic studies is often enough to thoroughly 266 

assess relatedness between individuals. 267 
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 268 

Many tools currently exist to infer population structure (Table 1, Figure 2). An elegant and 269 

efficient class of methods relies on using multivariate approaches such as principal component 270 

analysis (PCA) to infer relatedness between individuals and populations without a priori 271 

knowledge. Since these methods do not have underlying assumptions based on population 272 

genetics, they are suitable for analyzing species displaying polyploidy or mixed-ploidy 273 

(Dufresne et al., 2014). A detailed review of these methods has been already performed 274 

(Jombart et al., 2009) and an exhaustive list of their applications is beyond the scope of this 275 

review. These approaches have been especially useful to study the consistency between 276 

geographical and genetic structure in human populations of Europe (Novembre et al., 2008). 277 

They were also recently applied to RAD-sequenced populations of a freshwater crustacean 278 

(Daphnia magna). Procrustes rotation (Novembre et al., 2008) was used to match 279 

geographical coordinates with PCA axes, showing how isolation by distance has shaped 280 

genetic structure (Fields et al. 2015).  281 

 282 

Methods for estimating the relatedness of individuals are suited to studies relying on pedigree 283 

information, or if there are reasons to suspect that familial relationships can play a major role 284 

in shaping genetic structure of the population(s) considered. When each individual in a study 285 

is sampled from a different location or environment, estimating relatedness also provides a 286 

way to assess the genetic distance between individuals. Genetic distance can then be 287 

compared with geographical or ecological distance. For example, in a recent study using more 288 

than 1000 Arabidopsis thaliana genomes, estimates of relatedness have allowed the 289 

identification of putatively relictual populations that may have persisted in Europe since the 290 

last Ice Age (Alonso-Blanco et al., 2016).  291 
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 292 

Approaches such as Structure (Pritchard et al., 2000) and fastSTRUCTURE (Raj et al., 2014) 293 

have been widely used to determine hierarchical population structure and admixed 294 

populations by grouping individuals in clusters. The optimal number of clusters (K) can then 295 

be determined based on likelihood, although examining population structure for a range of K 296 

can allow substructure to be better identified. The main interest of these approaches is that 297 

they provide a measure of coancestry coefficients, which are the proportions of an individual 298 

genome originating from multiple ancestral gene pools. Such information is more difficult to 299 

retrieve with approaches such as PCA. There have been criticisms however about whether 300 

ambiguous assignment could be actually interpreted as a signal of admixture, and detailed 301 

inference requires thorough model testing and estimating the goodness of fit of a model with 302 

admixture (see Falush et al., 2016).  303 

 304 

Heterogenous patterns of divergence between species along their genomes 305 

Advantageous alleles can migrate from one population to another, resist introgression from 306 

other populations, reach fixation and erase diversity around them. This is one scenario leading 307 

to heterogenous patterns of divergence along the genome, the so-called islands of divergence 308 

(Wolf and Ellegren, 2016). Alternative scenarios leading to similar patterns were recently 309 

highlighted (Cruickshank and Hahn, 2014). Understanding the origin of genomic regions 310 

under selection highlights the evolutionary history of adaptive alleles (e.g. Abi-Rached et al., 311 

2011) and contributes to our understanding of the origin and maintenance of reproductive 312 

isolation. Studies focusing on hybrid zones and introgression have provided inspiring 313 

examples (Hedrick, 2013), as demonstrated by recent work focusing on patterns of 314 

heterogenous gene flow in Mytilus mussels (Roux et al., 2014), localized introgression and 315 
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inversions at a color locus in Heliconius butterflies (The Heliconius Genome Consortium et 316 

al., 2012) and  adaptive introgression of anticoagulant resistance alleles in mice (Song et al., 317 

2011). Descriptive statistics computed along genomes provide valuable information in this 318 

context. One may for example plot the distribution of a differentiation measure such as FST 319 

(Weir and Cockerham, 1984) between populations, mean linkage disequilibrium or nucleotide 320 

diversity. Such an approach has been used in Ficedula flycatchers, which uncovered clear 321 

genomic islands of divergence and the higher differentiation on sexual chromosomes due to 322 

ongoing reproductive isolation (Ellegren et al., 2012). Other approaches, such as chromosome 323 

painting (Table 1), extend PCA and Structure-like methods by incorporating information 324 

about the relative order of markers in the genome, allowing identification of regions for which 325 

ancestry differs from the rest of the genome. 326 

 327 

Heterogeneous structure in space: landscape genomics 328 

Landscape (as well as seascape and lakescape) genetics has widely contributed to our 329 

understanding of how ecological and geographical variation affects species history and 330 

adaptation (Manel and Holderegger, 2013). Of central importance in this field is the 331 

identification of how populations are connected and how organisms move in the landscape 332 

matrix. Environmental heterogeneity has a strong impact on how genetic diversity is shaped 333 

by migration success between populations, for example after a range expansion (Wegmann et 334 

al., 2006). A spatially explicit perspective provides context to understand the evolution of 335 

locally adapted genes. Moreover, identifying how and where populations (or closely related 336 

species, see Roux et al. 2016) hybridize is crucial when it comes to characterizing 337 

colonization trajectories, tension zones and secondary contacts (Gay et al., 2008; Bierne et al., 338 

2011).   339 
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 340 

Some methods can explicitly use spatial information to inform clustering, allowing improved 341 

consideration of the effect of landscape heterogeneity on selection against migrants and drift. 342 

This spatial perspective can be useful to visualize the location and shape of hybrid zones 343 

(Guedj and Guillot, 2011).  Landscape genetics has valuable application in management and 344 

conservation, where it is useful to identify the relevant evolutionary significant units 345 

displaying spatial and ecological divergence. Furthermore, researchers are often interested in 346 

testing the impact of ecological variation on genetic structure. Mantel tests have been popular 347 

to investigate relationships between ecological variables and genetic differentiation while 348 

accounting for geographical distances. However, these tests are biased by spatial 349 

autocorrelation, assume linear dependence between variables, and do not allow testing the 350 

relative contribution of each variable (Legendre and Fortin, 2010; Guillot and Rousset, 2013). 351 

Methods such as BEDASSLE (Bradburd et al., 2013) can be used to complement these 352 

approaches, and identify which combination of geographical and ecological distance limits 353 

dispersal. However, disentangling these effects has proved to be complex and a deeper 354 

analysis of genes more strongly impacted by either geography or ecology may be more 355 

informative when it comes to the proximate causes of reduced dispersion and differentiation, 356 

such as biased dispersal (Edelaar and Bolnick, 2012; Bolnick and Otto, 2013) or selection 357 

against migrants (Hendry, 2004). Landscape genomics now extends its focus to adaptive 358 

genetic variation, and benefits from new methods targeting signatures of selection (Figure 2 359 

and below).  360 

 361 

Population history 362 
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Phylogeny 363 

Phylogenetics has a long history that is linked to the broader topic of systematics (Moritz & 364 

Hillis 1996; Baum & Smith 2013). Since their inception in the 1980s, molecular phylogenetic 365 

methods have been used to address a wide range of problems at different taxonomic scales, 366 

including intraspecific population history. Recent advances in molecular phylogenetic 367 

methods, and the employment of different types of NGS data is well beyond the scope of this 368 

review (see e.g. Moriarty Lemmon & Lemmon 2013; Cruaud et al. 2014; Wen et al. 2015). 369 

Rather we focus on the use of phylogeny within the context of studies of intra-specific 370 

population history and selection. In this respect, both Maximum Likelihood and Bayesian 371 

approaches have become popular to investigate evolutionary relationships between individuals 372 

from different populations, even when divergence is very recent (e.g. Wagner et al., 2013). 373 

These methods are implemented in softwares such as RAxML (Stamatakis, 2014) and 374 

BEAST2 (Drummond and Rambaut, 2007). Ultimately, all molecular phylogenies reconstruct 375 

the geneaology of the genes with which they have been constructed. Therefore, a basic 376 

assumption when using them to infer lineage history at any taxonomic level (populations, 377 

species, and higher taxonomic units) is that the gene tree is representative of lineage history. 378 

This assumption is likely to be particularly weak at the population level, since the influences 379 

of gene flow, selection, and incomplete lineage sorting are strong at this scale, and may cause 380 

gene trees to deviate from population history. Nonetheless, such phylogenies can provide a 381 

useful starting point for inferences that are complemented with other methods. 382 

 383 

When using genome-wide data at the population level, methods specifically dedicated to 384 

reconstructing multiple species coalescent models (MSC) such as *BEAST (STAR-BEAST) 385 

should be preferred over concatenation (Edwards et al. 2016), since they allow discordance 386 

between species trees and individual gene trees to be identified. Note that these methods can 387 
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be strongly biased when it comes to estimate divergence times and effective population sizes 388 

(Leaché et al., 2014). The impact of gene flow and recombination on phylogenetic methods is 389 

however an alley of research that will allow better integration between phylogeny and 390 

population genetics (Edwards et al., 2016). Such integration is particularly needed for species 391 

and populations that are in the “grey zone of speciation” (Roux et al., 2016). Recent advances 392 

in MSC methods handling extremely short, non-recombining fragments (see Chou et al., 2015 393 

for a comparison) are promising, especially for datasets such as those produced by GBS.  394 

While useful to infer topologies, caution is advised when using branches lengths obtained 395 

from SNP-only datasets, e.g. to calculate divergence times between different groups or species 396 

(Leaché et al., 2015). For this purpose, it might therefore be easier to extract from the data 397 

both variant and invariant sites at several genes or RAD contigs, and analyze the whole 398 

sequences in a software like BEAST2. Network methods implemented in Splitstree (Huson 399 

and Bryant, 2006), make less assumptions and account for potentially conflicting signals due 400 

to high gene flow. Unfortunately, such methods remain mostly descriptive.  401 

 402 

Approximate Bayesian Computation 403 

Phylogenetic methods tend to be slow for large datasets, and generally do not attempt to 404 

account for many effects that are crucial in population genetic interpretation, such as gene 405 

flow and recent demographic events within species. A more suitable framework for 406 

microevolutionary studies relies on coalescence theory. Population geneticists first developed 407 

coalescent theory as a way of modeling the genealogy of alleles from a sample of a large 408 

population. Going backward in time, alleles merge (coalesce) in a stochastic way until 409 

reaching their most recent common ancestor (Kingman, 1982). Obtaining demographic 410 

estimates (e.g. time in years) for parameters usually requires that mutation rate and generation 411 
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time be known or at least reasonably well estimated, for example from closely-related species 412 

with similar life history.  413 

 414 

Computationally fast approaches include Approximate Bayesian Computation (ABC), which 415 

compares the empirical data with a set of simulated data produced by coalescent simulations 416 

under scenarios predefined by the user (Table 2). By measuring the distance between carefully 417 

chosen summary statistics describing each simulation with those from the observed dataset, it 418 

is possible to infer which scenario explains the data the best. More information on how to 419 

perform ABC analyses are described  by Csilléry et al. (2010). The main advantage of ABC is 420 

that it allows handling any type of marker and arbitrarily complex models, contrary to 421 

methods like IMa where the model is predefined. However, using summary statistics leads to 422 

the loss of potentially useful information (Robert et al., 2011).  423 

 424 

Likelihood methods based on the allele frequency spectrum (AFS) 425 

Recently, new likelihood methods based on the AFS emerged to facilitate and speed up the 426 

analysis of large SNP datasets. Different patterns of gene flow and demographic events all 427 

shape the AFS in specific ways (e.g. alleles are likely to occur at more similar frequencies if 428 

divergence is recent or if populations are highly connected). These approaches quickly 429 

estimate parameters using composite likelihoods, and do not explicitly take into account 430 

correlations induced by LD between physically linked markers (but see ABLE, Table 2). This 431 

might limit power to detect recent demographic events (e.g. migration, Jenkins et al., 2012). 432 

Including SNPs that are physically close together should not strongly bias parameter 433 

estimation. However, such an approach prevents direct comparisons of likelihoods from 434 

different models. Therefore, physically independent SNPs should be used to consider 435 
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composite likelihoods as quasi likelihoods for model comparison (Excoffier et al., 2013). 436 

Note that the AFS can also be used as a set of summary statistics for ABC inference. Using 437 

allele frequencies estimated from pooled datasets is also feasible, as illustrated by a recent 438 

study on hybridization in Populus species where AFS was estimated from pooled whole 439 

genome resequencing data (Christe et al., 2016).  440 

 441 

The number of mutations found in a given length of DNA sequence directly depends on the 442 

mutation rate. One drawback when using SNP data without considering monomorphic sites is 443 

that the mutation rate per generation can not be used to convert parameters into demographic 444 

estimates (Excoffier et al., 2013). Another possibility consists of calibrating parameter 445 

estimates by including a fixed parameter in the analysis, such as population size or divergence 446 

time. An issue specific to SNP arrays is ascertainment bias, which is the systematic deviation 447 

of allele frequencies from theoretical expectations due to the choice of individuals used at the 448 

step of SNP discovery. For example, if SNPs found in one population are the only ones 449 

genotyped in another population, a whole set of markers polymorphic in the second 450 

population but not in the first will be missed, biasing the AFS (Lachance and Tishkoff, 2013). 451 

 452 

Reaching a high level of precision when estimating demographic parameters can be 453 

challenging when information is lacking about the evolutionary history of the species 454 

considered. However, even when such information is lacking it is possible to compare the 455 

likelihoods of different demographic scenarios, a procedure that has been successfully applied 456 

to many species to shed light on the process of speciation (Roux et al., 2016).  457 

 458 

Methods using whole-genome resequencing 459 
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Recently, methods have been developed to infer variation in population sizes with time using 460 

the whole genome of just one diploid individual. This began with the Pairwise Sequentially 461 

Markovian Coalescent (PSMC, Li and Durbin, 2011), and extensions have been made to this 462 

model to allow for several genomes. Such methods have the advantage of requiring only a few 463 

individuals, and no a priori knowledge of population history. One general drawback, 464 

however, is that they are limited to rather simple scenarios, and do not handle more than two 465 

populations as yet (but see diCal2, Table 2). While powerful, they are sensitive to 466 

confounding factors such as population structure (Orozco-terWengel, 2016) that lead to false 467 

signatures of expansion or bottleneck. They also do not allow extremely recent demographic 468 

events to be investigated, since the coalescence of two alleles from a single individual in the 469 

recent past (a few tens to hundreds generations) is infrequent. Moreover, most of these 470 

methods require the data to be phased (but see SMC++, Table 2), for example with fastPhase 471 

(Scheet and Stephens, 2006) or BEAGLE (Browning and Browning, 2011). In addition, 472 

phasing errors can lead to strong biases in parameters estimates for recent times (Terhorst et 473 

al., 2016). An extension of these methods takes into account population structure and aims to 474 

identify the number of islands contributing to a single genome, assuming it is sampled from a 475 

Wright n-island meta-population (Mazet et al., 2015). Such developments should improve the 476 

amount of information retrieved from only a few genomes. However, natural populations are 477 

structured and connected in complex ways, which can bias demographic inferences, even for 478 

popular markers such as mitochondrial sequences (Heller et al., 2013). 479 

 480 

Methods based on tracts of identity-by-descent (IBD, Palamara and Pe’er, 2013) constitute an 481 

interesting alternative for more complex model testing when whole genome or densely 482 

genotyped datasets are available in large number. Such methods allow recent demographic 483 

events to be inferred with relative precision. They are used to predict the length of haplotypes 484 
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shared by two individuals that are inherited from a common ancestor without recombination. 485 

However, IBD detection requires large cohorts and accurate phasing, and therefore application 486 

of these methods has been largely restricted to human populations so far (Browning and 487 

Browning, 2011; Palamara and Pe’er, 2013). Another approach has used tracts of identity-by-488 

state to perform demographic inference over a range of time-scales (IBS, Harris and Nielsen, 489 

2013). IBS tracts are directly observable since they are simply the intervals between pairwise 490 

differences in an alignment of sequences and do not require any assumption about coancestry 491 

to be defined. The method predicts the length distribution of IBS tracts for pairs of haplotypes 492 

under a range of demographic parameters. These predicted spectra are then compared to 493 

empirical data under a likelihood framework, as with methods based on the AFS. 494 

 495 

There is currently a tradeoff to be made between methods allowing for arbitrarily complex 496 

models that are defined a priori by the user (e.g. ABC), and methods that allow population 497 

history to be inferred agnostically (e.g. PSMC). While the first category of methods are 498 

typically the highest performers at inferring complex population history from a moderate 499 

number of markers, it is currently only the second category of methods that are able to make 500 

use of the full information provided by whole genome data. Using both methods can therefore 501 

help in accurately retrieving the evolutionary history of a given species. For example, a recent 502 

study on maize demographic and selective history used both ∂a∂i and and Markovian 503 

Coalescent methods to characterize the bottleneck and expansion associated with 504 

domestication (Beissinger et al., 2016). 505 

 506 

Screening for selection and association 507 

Selection and its impact on sequence variation 508 
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While demographic forces such as drift and migration will affect the whole genome, selection 509 

is expected to be specific to particular portions of the genome, and therefore yield 510 

discrepancies with genome-wide polymorphism (Lewontin and Krakauer, 1973). Selection 511 

affects allele frequencies and polymorphism in predictable ways at the scale of single 512 

populations (Charlesworth, 2006; Charlesworth and Charlesworth, 2010). Several statistics 513 

summarize them, such as π, the nucleotide diversity (Nei and Li, 1979), Tajima’s D (Tajima, 514 

1989), and Fay and Wu’s H (Fay and Wu, 2000). Using a combination of these statistics 515 

allows targets of selection to be identified with greater precision, and minimizes the 516 

confounding effects of demography (Nielsen et al., 2005). This approach has been used to 517 

develop composite tests, such as the composite likelihood ratio (CLR) test (Nielsen et al., 518 

2005) that aim to detect recent selective sweeps.  519 

 520 

Methods based on population subdivision 521 

When an allele is under positive selection in a population, its frequency tends to rise to 522 

fixation, unless gene flow from other populations or strong drift prevents this from happening 523 

(Charlesworth et al., 1997). It is therefore possible to contrast patterns of differentiation 524 

between populations adapted to their local environment to detect loci under divergent 525 

selection (e.g. displaying a high Fst). However, it is essential to control for population 526 

structure, as it may strongly affect the distribution of differentiation measures and produce 527 

high rates of false positives. First attempts to take into account population structure and 528 

variation in gene flow included FDIST2 (Beaumont and Nichols, 1996). This method models 529 

populations as islands and is aimed at detecting loci under selection by contrasting 530 

heterozygosity to Fst between populations. More sophisticated methods are now available 531 

(Table 3), dedicated to the detection of outliers in large genomic datasets. Most of them 532 

correct for relatedness across samples, and can test association between allele frequencies and 533 
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environmental features (see the extensive review by François et al., 2015). These methods are 534 

particularly well suited for the study of RAD-sequencing data, for which allele frequencies are 535 

often the only information available in the absence of any reference genome. 536 

Detecting association between environment and allele frequencies does not necessarily imply 537 

a role for local adaptation. For example, in the case of secondary contact, intrinsic genetic 538 

incompatibilities can lead to the emergence of tension zones that may shift until they reach an 539 

environmental barrier where they can be trapped (Bierne et al., 2011). Characterizing 540 

population history is required to draw conclusions about the possible involvement of a 541 

genomic region in adaptation to environment. The sampling strategy must take into account 542 

the particular historical and demographic features of the species investigated to gain power 543 

(Nielsen et al., 2007). The sequencing strategy must also be carefully considered to control for 544 

spatial autocorrelation of genotypes due to isolation by distance and shared demographic 545 

history. 546 

 547 

Genome-wide association 548 

The methods described above focus on allele frequencies at the population scale, but do not 549 

test association with traits that vary between individuals within populations (e.g. resistance to 550 

a pathogen, symbiotic association, individual size or flowering time). For this task, methods 551 

performing Genome-wide association analysis (GWAS) are better suited. The recent 552 

development of multivariate methods such as PCAdapt (Duforet-Frebourg et al., 2016) also 553 

allow loci putatively under selection to be identified in admixed or continuous populations 554 

without requiring information about individual phenotype. 555 

 556 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2017. ; https://doi.org/10.1101/052761doi: bioRxiv preprint 

https://doi.org/10.1101/052761
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Uncovering the genetic basis of complex, polygenic traits remains challenging, even in model 557 

species (Pritchard and Di Rienzo, 2010; Rockman, 2012). It may be unavoidable as a first step 558 

to focus only on traits that are under relatively simple genetic determinism. This can, 559 

however, lead to the overrepresentation of loci of major phenotypic effect, a fact that should 560 

be acknowledged when discussing the impact of selection on genome variation. The fact that 561 

loci of major effect are the easiest to target does not imply that they are necessarily the main 562 

substrate of selection (Rockman, 2012). Association methods may help targeting variants 563 

undergoing soft sweeps, weak selection or those involved in polygenic control of traits 564 

(Pritchard et al., 2010). In such cases, signatures of selection may be subtle and sometimes 565 

difficult to retrieve from allele frequency data.  566 

 567 

Detecting selection with methods focusing on LD 568 

LD is increased and diversity is decreased near a selected allele, especially after recent 569 

selection. A class of methods are aimed at targeting those regions that display an excess of 570 

long homozygous haplotypes, such as the extended haplotype homozygosity (EHH) test 571 

(Sabeti et al., 2002). It is also possible to compare haplotype extension across populations, 572 

with the Cross Population Extended Haplotype Homozygosity test (XP-EHH (McCarroll et 573 

al., 2007)) or Rsb (the standardized ratio of EHH at a given SNP site (Tang et al., 2007)). 574 

Individuals included in the analysis should be as distantly related as possible to improve 575 

precision and avoid an excess of false positives. These methods require data to be phased in 576 

order to reconstruct haplotypes. Statistics dedicated to the detection of selection on standing 577 

variation or on multiple alleles (so called soft sweeps) are also available, like the nSL 578 

statistics (Ferrer-Admetlla et al., 2014) in selscan or the H2/H1 statistics (Garud et al., 2015), 579 

although further studies are still needed to understand to what extent hard and soft sweeps can 580 
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actually be distinguished (Schrider et al., 2015), as well as their relative importance (Messer 581 

and Petrov, 2013; Jensen, 2014).  582 

 583 

Even hard selective sweeps can be challenging to detect with LD-based statistics (Jensen, 584 

2014). It is advisable to combine several approaches to improve confidence when pinpointing 585 

candidate genes for selection. Methods based on LD alone can sometimes miss the actual 586 

variants under selection due to the impact of recombination on local polymorphism that can 587 

mimic soft or ongoing hard sweeps (Schrider et al., 2015).  588 

 589 

All LD-based approaches are more powerful with a relatively high density of markers, such as 590 

the ones obtained from whole-genome sequencing, SNP-arrays or high-density RAD-seq, and 591 

benefit from using statistics focusing on polymorphism and allele sharing. In a recent study of 592 

local adaptation in sticklebacks (Roesti et al., 2015), these statistics have been used on dense 593 

RAD-sequencing data to look for recent selection at loci displaying high differentiation (FST). 594 

This approach has allowed new candidate loci to be pinpointed, and has confirmed the 595 

involvement of those implicated previously (e.g. the Ectodysplasin gene). In addition, the 596 

identification of large regions displaying high divergence and LD has revealed the importance 597 

of large-scale structural variation in shaping genome structure, such as inversions (Roesti et 598 

al., 2015). 599 

 600 

Detecting and characterizing selection with the coalescent 601 

If a candidate locus or genomic region has been identified, it is possible to use coalescent 602 

simulations to evaluate the strength of selection and estimate the age of alleles. A software 603 

such as msms (Ewing and Hermisson, 2010), which is also available in PopGenome, can then 604 
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be used. However, this requires that population history is known in order to control for other 605 

phenomena such as population structure and gene flow. An advantage of full coalescent 606 

methods is that they provide a relatively complete picture of the history of individual loci. 607 

This can be achieved by modeling coalescence and recombination, and considering variation 608 

in mutation rate. However, such methods have long been computationally intensive, and thus 609 

difficult to apply to whole genomes. Fortunately, recent computational improvements make 610 

their application to whole genomes feasible. A good example is ARGWeaver (Rasmussen et 611 

al., 2014), which has allowed candidate genes for long-term balancing selection to be 612 

recovered from human data. This method uses ancestral recombination graphs to model the 613 

genealogy of each non-recombining block in the genome. Ancestral recombination graphs 614 

(ARG) are a generalization of the coalescent and describe the sequence of genealogies along a 615 

sample of recombining sequence. Genealogies are estimated for each non-recombining block, 616 

and recombination between adjacent blocks is described by breaking the branch leading to the 617 

recombining haplotype and allowing it to re-coalesce to the rest of the tree. This succession of 618 

local trees joined by recombination events provides a full description of the genealogical 619 

history of the data and is therefore a promising approach to characterize positive, purifying or 620 

balancing selection while taking into account variation in recombination and mutation rate. 621 

 622 

Identifying variants of functional interest 623 

Characterizing the number of synonymous versus non-synonymous mutations is another 624 

approach to detect whether a specific gene is undergoing purifying or positive selection. 625 

However, this approach requires an annotated genome. An excess of non-synonymous 626 

mutations can signal positive or balancing selection, or a relaxation of selective constraints on 627 

a given gene. Annotation of mutations can be done with SNPdat (Doran and Creevey, 2013), 628 

or directly in PopGenome, which can also perform tests of selection such as the MK test at the 629 
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genome scale (McDonald and Kreitman, 1991). Another popular test of selection is the 630 

comparison of non-synonymous and synonymous mutations between orthologs from different 631 

species, and can be performed in packages such as PAML (Yang, 2007). To recover 632 

information about the putative function of a gene or a genomic region, it may be useful to 633 

perform a genome ontology (GO) enrichment analysis, using tools such as BLAST2GO 634 

(Conesa et al., 2005).  635 

While suggestive, genome scans for selection and association in natural populations cannot be 636 

considered as conclusive evidence for the function of a given gene, and need to be combined 637 

with functional evidence (Vitti et al., 2013). Such evidence can sometimes be provided by 638 

variation in the expression of a candidate gene highlighted by RNA-sequencing data. More 639 

often, developmental studies are required, a step that is not always possible for non-model 640 

organisms. Pinpointing the exact genetic mutation leading to a change in phenotype is 641 

challenging even when combining several tests for selection, and requires whole-genome 642 

sequencing data to obtain a near-exhaustive list of mutations. It has been proposed to combine 643 

QTL analyses with population genomics to facilitate identification of candidate loci 644 

(Stinchcombe and Hoekstra, 2008). Essentially, controlled crosses allow genomic regions 645 

associated with a selected phenotype to be identified, while the study of variation in natural 646 

populations facilitates the fine-mapping of selected variants in natural populations. However, 647 

this requires that the species of interest can be raised in a laboratory or greenhouse, which is 648 

unpractical for many research teams. An alternative is the study of candidate genes, for which 649 

an extensive description of functional variation is available. For example, in a recent study on 650 

passerines (bananaquits), GBS data have been used to obtain a neutral distribution to which 651 

patterns of substitution and differentiation were compared at candidate genes for color 652 

variation (Uy et al., 2016). Another study on color polymorphism in Peromyscus mice used a 653 

combination of field experiments, targeted sequencing of candidate genes and neutral regions, 654 
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and genome-scans for selection. Tests for association between these data were able to show 655 

how selection on many mutations at the same locus drive adaptive phenotypic divergence 656 

(Linnen et al., 2013). 657 

 658 

The combination of tests aimed at different signatures of selection can allow the size of 659 

candidate regions to be reduced. For example, combining results from environmental 660 

association mapping and genomic scans for selection allows the identification of candidate 661 

genes for which a function can be proposed (François et al., 2015). Another common 662 

approach relies on the combination of different tests targeting signatures of selection, typically 663 

those using the allele frequency spectrum and those using haplotype length. A test of this type 664 

has been proposed in human genetics (Grossman et al., 2013), and is called the composite of 665 

multiple signals (CMS) test. Nevertheless, signatures of selection can be elusive, and 666 

obtaining an exhaustive list of genes under positive selection is unlikely. Further advances 667 

will require that methods targeting selection be able to better take into account epistatic 668 

interaction and weak selection. 669 

 670 

Suggestions and perspectives 671 

Estimating selection and demography jointly along a heterogeneous genome 672 

As stated by Lewontin and Krakauer in 1973, "while natural selection will operate differently 673 

for each locus and each allele at a locus, the effect of breeding structure is uniform over all 674 

loci and all alleles". Since then, traditional studies on selection have mostly considered that 675 

demographic processes act on all loci in the same way across a genome, and that positive 676 

selection is mostly rare. This traditional approach has thus tended to disconnect the study of 677 

selection from the study of demography (Li et al., 2012).  678 
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 679 

However, this assumption may be incorrect, and a joint understanding of demography and 680 

selection is crucial from this perspective (Figure 3). For example, the large effective 681 

population sizes of Drosophila have been hypothesized to facilitate a widespread effect of 682 

selection across the genome (Sattath et al., 2011; discussion in Li et al., 2012), making both 683 

demographic inference and detection of outliers difficult. Other counfounding factors include 684 

variation in recombination and mutation rates, and background selection (Ewing and Jensen, 685 

2016), which are difficult to assess with precision in non-model species. Moreover, it has 686 

been shown in the last few years that loci involved in reproductive isolation are often also 687 

involved in local adaptation. This, combined with variation in introgression rates along the 688 

genome, can bias inference about selection and demography (Bierne et al., 2011; Roux et al., 689 

2014). Genomic regions with low recombination rates can lead to reduced polymorphism, and 690 

be mistaken for signatures of purifying selection. 691 

 692 

These issues can only be addressed by going beyond categorization between methods 693 

assigned to either the study of selection or demography, and using the results obtained by one 694 

method to inform the other. Such an approach was taken by Tine et al. 2014 in investigating 695 

the two different lineages of the European Sea Bass, using a RAD-sequencing approach. Tine 696 

et al. took into account variation in recombination rate along the genome to interpret 697 

signatures of reduced polymorphism as possibly being the result of selection, low 698 

recombination, or a combination of the two (Tine et al., 2014). Since differentiation along the 699 

genome seemed to reveal islands resisting gene flow, they could fit a model incorporating 700 

variation in introgression rates. This provided improved fit to the data and suggested that 701 

islands of differentiation are most likely to be due to locally reduced gene flow after 702 

secondary contact. This example illustrates how a combination of descriptive statistics and 703 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2017. ; https://doi.org/10.1101/052761doi: bioRxiv preprint 

https://doi.org/10.1101/052761
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

coalescent analyses can be used to retrieve information from genomic data about both 704 

selection and demography.  705 

 706 

Most methods do not actually estimate demography and selection jointly, but rather rely on a 707 

process where neutral expectations are first drawn from a set of SNPs presumed to be neutral 708 

(e.g. intergenic SNPs), followed by a step where the likelihood of a marker being under 709 

selection is evaluated. Methods such as BAYPASS or PCAdapt (Table 3) are convenient in 710 

both describing population structure and providing preliminary insights into the proportion of 711 

loci that do not follow neutral expectations. If this proportion is high, it would suggest recent 712 

introgression or an excess of markers displaying high LD (e.g. due to large inversions). 713 

However, when this proportion is not too high, outliers can be removed to avoid bias 714 

(Schrider et al., 2016) and the remaining loci used to compare neutral models and estimate 715 

demographic parameters (e.g. using an ABC framework). These estimated parameters can 716 

then be used to simulate sequences or independent SNPs and generate a neutral expectation. 717 

Loci that are more likely to be neutral can be used to further calibrate tests for selection such 718 

as FLK or BAYPASS (Lotterhos and Whitlock, 2014). 719 

 720 

Some recent methods are especially relevant to study both demography and selection at once, 721 

while taking into account variation in recombination and mutation rates. For whole-genome 722 

data, methods reconstructing ancestral recombination graphs (such as ARGWeaver) have high 723 

potential. They allow genealogies to be retrieved along the genome as well as the timing of 724 

coalescence events. Such information is ultimately useful for making inferences regarding 725 

selection and migration. Recently this method was used in human paleogenomics to 726 

quantitatively characterize introgression between modern humans, Neandertals and 727 
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Denisovans using only a few whole genomes (Kuhlwilm et al., 2016). However, the approach 728 

has a high computing and sequencing cost, and is therefore not suitable for studies requiring 729 

sampling of many individuals.  730 

 731 

Caution must prevail when attempting to apply sophisticated methods to disentangle selection 732 

and demography. In a recent review, Cruickshank & Hahn suggest that IMa2, which is 733 

commonly used to estimate migration rates, is not able to reliably distinguish between loci 734 

resisting gene flow, and those under selection in the absence of gene flow (Cruickshank and 735 

Hahn, 2014). In the specific case they highlight (Oryctolagus cuniculus rabbits, Sousa et al., 736 

2013), a descriptive statistic that should have captured introgression signatures (dxy) did not 737 

reveal any evidence for differential gene flow between loci categorized by IMa2. This 738 

controversy illustrates that basic description of the data is needed prior using more 739 

sophisticated methods. Note however that Cruickshank & Hahn did not address the case of 740 

secondary contact, and other methods such as ABC may better detect interruption in gene 741 

flow (Sup. Text in Roux et al., 2016). 742 

 743 

To sum up, the field of population genomics is now moving towards both better integrating 744 

the demographic framework in inferences of selection, and, conversely, taking into account 745 

selection when reconstructing demographic history. The joint inference of loci under selection 746 

and quantification of demographic dynamics is of crucial importance in fields such as 747 

landscape genomics or the study of ongoing speciation. It should provide insights into the role 748 

of selection, recombination and gene flow in promoting or impairing local adaptation to new 749 

habitats. The growing availability of genome-wide data for non-model species is therefore 750 

promising, but requires caution and high stringency in our interpretation of observed patterns. 751 
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With the decreasing cost of sequencing, it has been suggested that NGS will rapidly broaden 752 

our perspective on complex evolutionary processes, from biogeography (Lexer et al., 2013) to 753 

the genetic basis of traits (Hohenlohe, 2014) and the maintenance of polymorphisms (Hedrick, 754 

2006). While genome heterogeneity in migration, mutation and recombination rates do not 755 

necessarily make impossible any conclusion about evolutionary dynamics, they have the 756 

potential to blur inferences. The study of DNA sequence variation is already challenging in its 757 

own right. Nonetheless, in order to be informative about processes such as selection and 758 

demography it should ultimately be combined with other disciplines such as ecology and 759 

functional analyses (Habel et al., 2015). This can be done for example by assessing the 760 

function of selected genes, the consistency of demographic history with information retrieved 761 

from the fossil record or geological history, and the broader integration of population 762 

genomics with other fields and methods whenever possible, such as niche modeling, common 763 

garden experiments or the study of macro-evolutionary patterns of selection and 764 

diversification. 765 

 766 

Beyond SNPs: studying structural variation, transposable elements and epigenetic 767 

modifications 768 

Most genome-scale studies of selection and demography have so far focused on SNPs, since 769 

they are relatively easy to detect with current technology and their mutation mechanism 770 

produces mostly biallelic alleles, making them easier to use for statistical tests. However, 771 

many other heritable genetic alterations can affect genomes, including insertions of 772 

transposable elements (Villanueva-Cañas et al., 2017), epigenetics modifications such as 773 

methylation (Danchin et al., 2011), duplications, inversions, deletions and translocations 774 

(Iskow et al., 2012). One of the main issues with this type of variation is that their diversity 775 

and their impact on the genome can make them difficult to detect in a systematic way (Iskow 776 
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et al., 2012), especially for species for which only a draft genome is available. It is however 777 

possible to use variation in such genetic alternations to study selection, for example by using 778 

differentiation statistics, association to environment or extension of haplotypes. Combining 779 

information about variant position and SNP variation in flanking regions is also a powerful 780 

way to detect variants under selection (Villanueva-Cañas et al., 2017) as highlighted by a 781 

recent study of transposable element insertions in Drosophila (Kofler et al., 2012). Recent 782 

work also shows that classical summary statistics such as Tajima’s D can be adapted to non-783 

SNP datasets, such as methylations (Wang and Fan, 2014).  784 

Sets of neutral SNPs can be used to control for demography and relatedness between samples 785 

when inferring selection. For example, this type of approach has recently been adopted in 786 

studies of selection on methylation patterns. In a recent Molecular Ecology issue (Verhoeven 787 

et al., 2016), a study using bisulfite precipitation in Valley Oak trees (Gugger et al. 2016) was 788 

able to place methylated variants associated to climatic variables near to genes known to be 789 

involved in response to environment. Another study could show a stronger pattern of Isolation 790 

by Distance for methylation-sensitive AFLPs than for regular AFLPs and microsatellites, 791 

suggesting a stronger impact of environment on methylation patterns than expected under 792 

neutrality (Herrera et al., 2016). 793 

 794 

Another potential issue with this type of variation is that there is currently a lack of tools able 795 

to simulate their models of mutation, complicating any comparison with neutral models built 796 

from SNPs. This is particularly true for transposable elements, for which the assumption of 797 

mutation-drift equilibrium is challenging, making comparisons of their allele frequency 798 

spectrum with neutral SNPs potentially difficult. For example, a recent burst of transposition 799 

can lead to an excess of low frequency elements and recent insertions compared to the 800 

expectation under equilibrium, even if transposable elements are not under purifying selection 801 
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(Bergman and Bensasson, 2007; Blumenstiel et al., 2014). More generally, neutral models 802 

would benefit from new ways to model the appearance of genomic variation through time for 803 

non-SNP data. This would provide even more conservative assessments of negative and 804 

positive selection. 805 
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Tables 

Table 1. Summary of methods dedicated to data description and assessing population structure. Methods highlighted in bold can be 

combined in a pipeline within the R software.  

 

 

 

 

 

 

 

 

Software Class of method Purpose Specifics Issues and warnings Link Reference 

Arlequin 
AMOVA (Analysis of 

Molecular Variance) 

Characterizing 

hierarchical 

population structure 

Arlequin allows for a 

variety of analyses of 

diversity (see below) 

Requires a priori 

assignment of 

individuals to 

populations, data 

formatting is required 

prior analysis 

http://cmpg.unibe.ch

/software/arlequin35

/Arl35Downloads.ht

ml 

(Excoffier and Lischer, 

2010) 

ADMIXTURE 

Clustering and 

characterizing 

admixture 

Grouping individuals 

in clusters maximizing 

HW equilibrium and 

Maximum Likelihood, 

claimed to be faster 

than Structure 

Often slower than its 

counterparts 

https://www.genetics

.ucla.edu/software/a

dmixture/index.html 

(Alexander and 

Novembre, 2009) 
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LD between loci 

FastSTRUCTURE 

Clustering and 

characterizing 

admixture 

Grouping individuals 

in clusters maximizing 

HW equilibrium and 

LD between loci 

~100X faster than 

Structure 

Approximate 

inference of the 

original Structure 

model 

http://rajanil.github.i

o/fastStructure/ 
(Raj et al., 2014) 

FineStructure/GlobeT

rotter 

Clustering and 

characterizing 

admixture 

Chromosome 

painting, admixture 

and clustering 

Estimates time since 

admixture, fast, 

specific tools for RAD-

seq, set of scripts to 

facilitate analysis 

Relies on Structure 

and fastStructure 

assumptions. 

Requires phased 

data. 

http://paintmychrom

osomes.com/ 

(Hellenthal et al., 

2014) 

GENELAND 

Clustering and 

characterizing 

admixture 

Grouping individuals 

in spatially 

consistent clusters 

maximizing HW 

equilibrium 

Takes into account 

spatial variation, 

supposed to detect 

weak structure, 

framed in R 

Immigrant alleles are 

assumed to be found 

only in new 

immigrants 

https://cran.r-

project.org/web/pac

kages/Geneland/ 

(Guillot et al., 2012) 

PCAdmix 

Clustering and 

characterizing 

admixture 

Chromosome 

painting 

Fast, uses HMM to 

smooth out windows 

and limit noise due to 

low confidence 

ancestry 

Requires a priori 

definition of ancestral 

populations and 

phased haplotypes 

https://sites.google.c

om/site/pcadmix/ 
(Brisbin et al., 2012) 

sNMF 

Clustering and 

characterizing 

admixture 

Grouping individuals 

in clusters 

maximizing HW 

equilibrium and LD 

between loci 

Fast (30X than 

ADMIXTURE) 

Still slow 

computation time for 

large datasets 

http://membres-

timc.imag.fr/Olivier.

Francois/snmf/index.

htm 

(Frichot et al., 2014) 

STRUCTURE 

Clustering and 

characterizing 

admixture 

Grouping individuals 

in clusters maximizing 

HW equilibrium and 

LD between loci 

User friendly 

interface. Bayesian 

inference. 

Slow for large 

datasets. Requires 

specific input format 

http://pritchardlab.st

anford.edu/structure.

html 

(Pritchard et al., 

2000) 

TREEMIX 

Clustering and 

characterizing 

admixture 

Admixture graph, 

infers most likely 

admixture events in a 

tree 

Based on allele 

frequencies and can 

be used for pooled 

data.  

Requires multiple 

runs to properly 

assess the likelihood 

of each model 

https://bitbucket.org

/nygcresearch/treemi

x/src 

(Pickrell and 

Pritchard, 2012) 

BEDASSLE 
Differentiation and 

MCMC model testing 

Identifies 

contribution of 

environment and 

geographical 

distance to 

populations 

differentiation 

Less biased than 

Mantel tests, 

provides tools for 

model testing 

Uses population-

level data. 

https://cran.r-

project.org/web/pac

kages/BEDASSLE/ind

ex.html 

(Bradburd et al., 

2013) 

npstat 
Differentiation/Divers

ity 

Extracting summary 

statistics from pooled 

data 

Explicitely corrects 

for sampling bias in 

pooled data. Allows 

computing tests using 

an outgroup (MK 

Mostly limited to 

summary statistics, 

but more complete 

than Popoolation. 

https://github.com/lu

caferretti/npstat 
(Ferretti et al., 2013) 
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test, Fay and Wu's H) 

and characterizing 

coding mutations.  

Stacks 
Differentiation/Divers

ity/Phylogeny 

Processing RAD-seq 

data and facilitate 

their analysis 

Designed for RAD-seq 

data, variety of 

output formats for 

downstream 

analyses. Allows to 

retrieve DNA 

sequences for each 

locus 

NA 
http://catchenlab.life

.illinois.edu/stacks/ 
(Catchen et al., 2011) 

ANGSD 
Differentiation/Divers

ity/Recombination 

Computing summary 

statistics based on 

AFS and LD along 

genomes 

Able to process BAM 

files, built-in 

procedures for data 

filtering, admixture 

analysis 

Mostly limited to 

summary statistics 

https://github.com/A

NGSD/angsd 

(Korneliussen et al., 

2014) 

Arlequin 
Differentiation/Divers

ity/Recombination 

Computing summary 

statistics based on 

AFS and LD along 

genomes 

Can output AFS for 

further analysis in 

fastsimcoal2 

Slower than 

PopGenome, requires 

a private format 

http://cmpg.unibe.ch

/software/arlequin35

/Arl35Downloads.ht

ml 

(Excoffier and Lischer, 

2010) 

POPGenome 
Differentiation/Diver

sity/Recombination 

Computing summary 

statistics based on 

AFS and LD along 

genomes 

Accepts VCF and 

GFF/GFT files, 

efficient and fast. 

Tests for admixture 

available (ABBA  

BABA test). Includes 

basic coalescence 

simulations (ms and 

msms) 

Mostly limited to 

summary statistics 

(but coalescent 

simulations are 

possible). No built-in 

SNP calling module 

http://catchenlab.lif

e.illinois.edu/stacks/ 
(Pfeifer et al., 2014) 

Popoolation/Popoola

tion2/Popoolation TE 

Differentiation/Divers

ity/Recombination 

Extracting summary 

statistics from pooled 

data 

Explicitely corrects 

for sampling bias in 

pooled data 

Mostly limited to a 

few summary 

statistics. A pipeline 

dedicated to TE 

detection is also 

available 

https://sourceforge.n

et/p/popoolation/wik

i/Main/ 

(Kofler, Orozco-

terWengel, et al., 

2011; Kofler, Pandey, 

et al., 2011) 

VCFTOOLS 
Differentiation/Divers

ity/Recombination 

Computing summary 

statistics based on 

AFS and LD along 

genomes 

Fast. VCFTOOLS can 

also be used for SNP 

filtering 

Less summary 

statistics than 

POPGenome 

https://vcftools.githu

b.io/man_latest.html 
(Danecek et al., 2011) 

POPTREE2 
Genetic 

differentiation 

Visualizing a matrix of 

pairwise 

differentiation 

statistics as a tree 

Can be used for 

pooled datasets, 

several statistics can 

be used 

Differentiation 

measures alone do 

not necessarily 

retrieve the actual 

history of populations 

http://www.med.kag

awa-

u.ac.jp/~genomelb/ta

kezaki/poptree2/inde

x.html 

(Takezaki et al., 2010) 

Kimtree Genetic distance 

Estimating 

divergence time 

between populations 

The method is 

conditional on a prior 

topology provided by 

Times are given in 

diffusion time scale, 

and can be converted 

http://www1.montpe

llier.inra.fr/CBGP/soft

ware/kimtree/index.

(Gautier and Vitalis, 

2013) 
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and testing for 

topologies 

the user. It computes 

DIC for a given 

topology, allowing to 

test for the best one. 

in demographic times 

using independent 

estimates of Ne. 

html 

Eigenstrat/smartpca Multivariate analysis 

Summarizing variance 

across loci and 

visualizing inter-

individual genetic 

distance 

Fast. Can use VCF 

files as an input 

Requires careful 

interpretation 

(Jombard et al. 2009) 

https://github.com/D

ReichLab/EIG/tree/m

aster/EIGENSTRAT 

(Price et al., 2006) 

SPRelate Multivariate analysis 

Summarizing 

variance across loci 

and visualizing inter-

individual genetic 

distance 

Fast. Can use VCF 

files as an input 

Requires careful 

interpretation 

(Jombard et al. 2009) 

https://bioconductor

.org/packages/releas

e/bioc/html/SNPRela

te.html 

(Zheng et al., 2012) 

 

DAPC (adegenet) 
Multivariate 

analysis/Clustering 

Maximizes 

divergence between 

groups identified by 

PCA 

Fast. Less sensitive to 

HWE assumptions. 

Claims to be more 

efficient than 

Structure 

Requires careful 

interpretation 

(Jombard et al. 2009) 

http://adegenet.r-

forge.r-project.org/ 
(Jombart et al., 2010) 

sPCA (adegenet) 
Multivariate 

analysis/Clustering 

Spatially explicit 

model to assess 

population structure 

Spatially explicit and 

able to detect cryptic 

structure. Fast. 

Does not take into 

account HW 

equilibrium or LD 

http://adegenet.r-

forge.r-project.org/ 
(Jombart et al., 2008) 

KING 
Pedigree, Identity by 

descent/state 

Estimating inbreeding 

and relatedness, 

multivariate analysis 

Mendelian error 

checking, testing 

family structure, 

highly accurate 

kinship coefficient, 

association analysis, 

population structure 

inference 

Kinship coefficient 

also computed in 

VCFTOOLS 

http://people.virginia

.edu/~wc9c/KING/Do

wnload.htm 

(Manichaikul et al., 

2010) 

LAMP 
Pedigree, Identity by 

descent/state 

Chromosome 

painting, relatedness 

LAMP also allows for 

association and 

pedigree analyses 

Identifies local 

ancestry in windows 

(source of noise), 

requires phased data 

http://lamp.icsi.berke

ley.edu/lamp/ 
(Baran et al., 2012) 

PLINK 
Pedigree, Identity by 

descent/state 

Estimating inbreeding 

and relatedness 

Allows studying 

identity by descent 

and by state. PLINK is 

a multi-purpose tool, 

facilitating data 

analysis within the 

same software 

NA 

http://pngu.mgh.harv

ard.edu/~purcell/plin

k/ 

(Purcell et al., 2007) 

VCFTOOLS 
Pedigree, Identity by 

descent/state 

Estimating inbreeding 

and relatedness 

Computes unadjusted 

Ajk and kinship 

coefficient 

NA 
https://vcftools.githu

b.io/man_latest.html 
(Danecek et al., 2011) 

ASTRAL-2 Phylogeny 

Builds species trees 

using short non-

recombining 

Coalescence-based. 

Suitable for short loci 

(e.g. RAD-seq and 

More reliable under 

high incomplete 

lineage sorting that 

https://github.com/s

mirarab/ASTRAL 

(Mirarab and 

Warnow, 2015) 
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sequences GBS) SVDQuartets and NJst 

(Chou et al. 2015) 

BEAST2 Phylogeny 

Network 

reconstruction and 

phylogenetic 

relationships 

User friendly. Can be 

used to track changes 

in effective 

population sizes 

(Bayesian Skyline 

Plots). Possible to 

estimate divergence 

times 

Slow for large 

datasets. Requires 

sequence data that 

can be produced by , 

e.g., Stacks for RAD-

seq data 

http://beast2.org/ 

(Drummond and 

Rambaut, 2007; 

Bouckaert et al., 

2014) 

NJst (in phybase) Phylogeny 

Builds species trees 

using short non-

recombining 

sequences 

Coalescence-based. 

Suitable for short loci 

(e.g. RAD-seq and 

GBS) 

See ASTRAL-2 and 

Chou et al. 2015 

https://code.google.

com/archive/p/phyb

ase/downloads 

(Liu and Yu, 2011) 

 

PhyML Phylogeny 
Phylogenetic 

relationships 

Maximum Likelihood 

inference of 

phylogenetic 

relationships. An 

online version is 

available 

Should be used on 

complex of species or 

divergent populations 

with little migration 

http://www.atgc-

montpellier.fr/phyml

/binaries.php 

(Guindon et al., 2010) 

RAxML Phylogeny 

Network 

reconstruction and 

phylogenetic 

relationships 

Maximum Likelihood 

inference of 

phylogenetic 

relationships 

Should be used on 

complex of species or 

divergent populations 

with little migration 

http://sco.h-

its.org/exelixis/web/s

oftware/raxml/index.

html 

(Stamatakis, 2014) 

SNAPP Phylogeny 
Phylogenetic 

relationships 
Handles SNP data 

Remains slow for 

medium to large 

datasets 

(>1,000SNPs) 

http://beast2.org/sna

pp/ 
(Bryant et al., 2012) 

SNPhylo Phylogeny 

Network 

reconstruction and 

phylogenetic 

relationships 

Complete pipeline 

from SNP filtering to 

tree reconstruction 

Should be used on 

complex of species or 

divergent populations 

with little migration 

http://chibba.pgml.u

ga.edu/snphylo/ 
(Lee et al., 2014) 

SVDQuartets Phylogeny 

Builds species trees 

using short non-

recombining 

sequences 

Coalescence-based. 

Suitable for short loci 

(e.g. RAD-seq and 

GBS) 

See ASTRAL-2 and 

Chou et al. 2015 

http://www.stat.osu.

edu/~lkubatko/softw

are/SVDquartets/ 

(Chifman and 

Kubatko, 2014) 

 

*BEAST 
Phylogeny and 

species tree inference 

Divergence time 

estimation and 

phylogenetic 

relationships 

Outputs a species 

tree instead of 

concatenated gene 

tree. Allows for 

testing consistency 

between 

phylogenetic signals 

at different loci 

Slow for large 

datasets. Requires 

sequence data. Not 

suited for situations 

where gene 

flow/admixture 

occurrs 

http://beast2.org/ 
(Heled and 

Drummond, 2010) 
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Splitstree Phylogeny/Network 

Network 

reconstruction and 

phylogenetic 

relationships 

User friendly 

interface, proposes a 

variety of methods 

for networks 

reconstruction 

Mostly descriptive 
http://www.splitstree

.org/ 

(Huson and Bryant, 

2006) 

LDHat Recombination 

Estimating variation 

in recombination 

rates along a genome 

Handles unphased 

and missing data, 

underlying model can 

be used for 

organisms such as 

viruses or bacteria 

Limited to 300 

sequences, private 

format, model for 

recombination 

hotspots based on 

human data 

http://ldhat.sourcefo

rge.net/ 
(McVean et al., 2002) 

LDHot Recombination 

Identifying 

recombination 

hotspots 

Specifically designed 

for detecting 

recombination 

hotspots 

Requires data to be 

phased, working with 

LDHat 

https://github.com/a

uton1/LDhot 
(Myers, 2005) 

TWISST Topology weighting 

Chromosome 

painting, clustering 

and branching 

between populations 

Retrieves the most 

likely coalescence 

pattern between 

several taxa along the 

genome. Can be seen 

as an extension of the 

ABBA/BABA test 

Needs a priori 

grouping of 

individuals into taxa. 

Requires at least 4 

taxa. Impractical for 

more than 6 taxa. 

Windows size must 

include enough SNPs 

to retrieve the 

correct topology but 

at the risk that 

regions with different 

histories are included 

https://github.com/si

monhmartin/twisst 

(Martin and Van 

Belleghem, 2016) 

BAYPASS/Bayenv 
Variance/covariance 

matrix 

Building a population 

covariance matrix 

across population 

allele frequencies, 

similar to TREEMIX 

Can handle pooled 

data 

Matrices are mostly 

designed to provide a 

neutral model for 

assessing selection, 

but can be used to 

infer population 

structure 

http://www1.montpe

llier.inra.fr/CBGP/soft

ware/baypass/  ; 

https://bitbucket.org

/tguenther/bayenv2_

public/src  

(Günther and Coop, 

2013; Gautier, 2015) 
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Table 2. Summary of methods for demographic inference, simulations and scenarios comparisons. Methods available in R are 

highlighted in bold. 

 

 

 

Software Class of method Purpose Specifics Issues and warnings Link Reference 

abc ABC 

Performs all steps for 

model-checking and 

parameters estimation 

for ABC analyses 

Informative vignette, 

allows graphical 

representation, 

complete and robust 

Does not perform 

coalescent simulations 

(but can be used in 

combination with coala) 

https://cran.r-

project.org/web/packag

es/abc/index.html 

(Csilléry et al., 2012) 
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ABCToolbox ABC 

Complete ABC analysis, 

from simulations to 

model checking and 

parameters estimation 

Modular, facilitates the 

computation of summary 

statistics 

Current version is Beta 

(15/01/2016) 

https://bitbucket.org/ph

aentu/abctoolbox-

public/ 

(Wegmann et al., 2010) 

DIYABC ABC 

Complete ABC analysis, 

from simulations to 

model checking and 

parameters estimation 

User-friendly 
Does not allow to model 

continuous gene flow 

http://www1.montpellier

.inra.fr/CBGP/diyabc/ 
(Cornuet et al., 2008) 

PopSizeABC ABC 

Inferring change in Ne 

using whole-genome 

data 

Supposed to better 

assess recent events. 

Uses a set of summary 

statistics for the AFS and 

LD between markers. 

Handles multiple 

individuals 

Approximate bayesian 

approaches do not 

retrieve the whole 

information 

https://forge-

dga.jouy.inra.fr/projects/

popsizeabc/ 

(Boistard et al., 2016) 

coala 
ABC/coalescent 

simulations 

Combining coalescent 

simulators within a 

single framework 

Facilitates the building 

of scenarios and 

computes summary 

statistics for simulations 

Includes so far ms, msms 

and scrm 

https://cran.r-

project.org/web/packag

es/coala/index.html 

(Staab and Metzler, 

2016) 

fastsimcoal2 ABC/Likelihood 
Model comparison and 

parameters estimation 

Performs coalescent 

simulations, parameter 

estimation and model 

testing using a fast 

likelihood method. Can 

handle arbitrarily 

complex scenarios for 

any type of marker 

Summary statistics need 

to be calculated through 

Arlequin, slowing down 

their computation 

http://cmpg.unibe.ch/sof

tware/fastsimcoal2/ 
(Excoffier et al., 2013) 

ARGWeaver 
Ancestral Recombination 

Graphs/coalescence 

Retracing the whole 

process of recombination 

and coalescence along a 

genome 

Provides quantitative 

estimates for TMRCA and 

topologies at each locus. 

Estimates effective 

population size. Provides 

tools to extract summary 

statistics for the 

topologies retrieved. 

High computing cost. 

Requires phased whole-

genome data. 

https://github.com/mdra

smus/argweaver 
(Rasmussen et al., 2014) 

G-PhoCS Bayesian 

Estimating population 

divergence and migration 

parameters using a 

coalescent framework 

Bayesian + MCMC, 

handles ancient samples 

Parameters scaled by 

mutation rate, no 

admixture 

http://compgen.cshl.edu

/GPhoCS/ 
(Gronau et al., 2011) 

IMa2 Bayesian 

Inferring parameters 

from an isolation with 

migration model 

Fully bayesian approach, 

can perform joint 

estimates of parameters 

in L-mode and test for 

nested models 

IM model is the only one 

available. Discrete 

admixture cannot be 

tested. Long 

computation times. 

Recent splits lead to 

overestimate migration 

rates 

https://bio.cst.temple.ed

u/~hey/software/softwar

e.htm#IMa2 

(Hey and Nielsen, 2007) 
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Migrate-n Bayesian Inferring migration rates 

Both ML and bayesian 

methods can be used to 

estimate parameters 

Only estimates 

population sizes and 

migration rates. Not 

suited for large datasets. 

Private input format 

http://popgen.sc.fsu.edu

/Migrate/Migrate-n.html 

(Beerli and Palczewski, 

2010) 

ABLE 
Coalescence/Composite 

Likelihood 

Model comparison and 

parameters estimation 

Uses both allele 

frequency spectrum and 

linkage disequilibrium 

within blocks of a pre-

specified size. Handles 

whole-genome data and 

RAD-seq. 

Relies on ms syntax. 

Determining the most 

informative size for 

blocks requires 

performing pilot runs. 

https://github.com/cham

post/ABLE 
(Beeravolu et al., 2016)) 

fastsimcoal2 coalescent simulations 

Building any arbitrary 

scenario using a 

coalescent framework 

Any arbitrary scenario 

can be implemented. 

Handles SNP, 

microsatellites and 

sequence data.  

Does not handle 

selection. Slower than ms 

with no recombination, 

much faster with 

recombination (see 

manual) 

http://cmpg.unibe.ch/sof

tware/fastsimcoal2/ 
(Excoffier and Foll, 2011) 

ms, msms, msABC coalescent simulations 

Building any arbitrary 

scenario using a 

coalescent framework 

Any arbitrary scenario 

can be implemented. 

Handles SNP, 

microsatellites and 

sequence data. msms 

can include selection in 

the model. 

Can be difficult to handle 

for the naive user (but 

see coala) 

http://www.bio.lmu.de/~

pavlidis/home/?Software

:msABC  

(Hudson, 2002; Ewing 

and Hermisson, 2010; 

Pavlidis et al., 2010) 

scrm coalescent simulations 

Fast simulation of 

chromosome-scale 

sequences 

Syntax similar to ms, 

handles any arbitrary 

scenario 

Does not handle gene 

conversion and fixed 

number of segregating 

sites (unlike ms) 

https://scrm.github.io/ (Staab et al., 2015) 

∂a∂i  
Diffusion approximation 

of the AFS 

Model comparison and 

parameters estimation 

Run time does not 

depend on the number 

of SNPs included, does 

not require coalescent 

simulations, handles 

arbitrarily complex 

scenarios 

Requires some 

knowledge of Python. 

Limited to 3 populations 

https://bitbucket.org/gut

enkunstlab/dadi 
(Gutenkunst et al., 2009) 

DoRIS IBD tract 
Testing various 

demographic scenario 

Uses variation in IBD 

tracts length to test for 

various demographic 

models.   

IBD must be inferred first 

with, e.g., BEAGLE. 

Handles a limited set of 

demographic scenarios. 

Modification in the code 

is required for more 

complex scenarios 

https://github.com/pierp

al/DoRIS 

(Palamara and Pe’er, 

2013) 
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Table 3. Summary of common methods for identifying loci under selection. Methods available in R are highlighted in bold. 

 

Software Class of method Purpose Specifics Issues and warnings Link Reference 

       

Unnamed Identity by state tract 

Predict observed 

patterns of Identity by 

state along a genome by 

fittingan appropriate, 

arbitrary complex 

demographic model 

Allows bootstrapping and 

estimating confidence 

over parameter 

estimates with ms 

Specific input format 

(similar to MSMC or 

ARGWeaver) 

https://github.com/kelle

yharris/Inferring-

demography-from-IBS 

(Harris and Nielsen, 

2013) 

diCal2 
Sequentially Markovian 

coalescent 

Testing any arbitrary 

demographic scenario 

Works with smaller, 

more fragmented 

datasets than PSMC. 

Handles more complex 

demographic models 

than MSMC (including 

admixture). 

Requires phased whole 

genome data and a 

model to be defined 

https://sourceforge.net/

projects/dical2/ 

(Sheehan et al., 2013) 

MSMC 
Sequentially Markovian 

coalescent 

Inferring change in Ne 

and migration rates with 

time between two 

populations 

Allows to track 

population size changes 

in time without a priori. 

Allows estimating 

variation in cross-

coalescence rate 

between two 

populations 

Limited to the study of 8 

diploid individuals from 2 

populations at once. 

Requires whole genome 

phased data and masking 

regions with insufficient 

sequencing depth 

https://github.com/stsch

iff/msmc 

(Schiffels and Durbin, 

2014) 

 

PSMC 
Sequentially Markovian 

coalescent 

Inferring change in Ne 

with time using a single 

diploid genome 

Allows to track 

population size changes 

in time without a priori. 

Limited to one 

population and one 

diploid individual. Better 

used within MSMC. 

Requires phased whole 

genome data and 

masking regions with 

insufficient sequencing 

depth 

https://github.com/lh3/p

smc 
(Li and Durbin, 2011) 

SMC++ 
Sequentially Markovian 

coalescent 

Inferring change in Ne 

with time and splitting 

time between two 

populations 

Can analyze hundreds 

of individuals at a time 

and does not require 

phasing 

The ancestral allele is 

assumed to be the 

reference allele by 

default. Assumes a 

clean split for 

populations divergence 
 

https://github.com/po

pgenmethods/smcpp 
(Terhorst et al., 2016) 
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ARGWeaver 
Ancestral recombination 

graphs 

Detecting selection by 

screening for variation in 

topology and age of 

alleles 

Provides quantitative 

estimates for TMRCA and 

topologies at each locus. 

Can be used to infer 

demographic history. 

Especially useful to 

identify signature of 

long-term balancing 

selection (older 

coalescence times) 

High computing cost. 

Requires phased whole-

genome data. 

https://github.com/mdra

smus/argweaver 
(Rasmussen et al., 2014) 

GEMMA Association 

Detecting association 

with 

environmental/phenotyp

ical features 

Computationnally 

efficient for large scale 

datasets 

Imports data from PLINK 

format 

http://www.xzlab.org/so

ftware.html 

(Zhou and Stephens, 

2012) 

GENABEL Association 

Detecting association 

with 

environmental/phenoty

pic features 

Modularity, facilitates 

correction for 

population 

structure/relatedness. 

Imports data from PLINK 

format 

http://www.genabel.org

/ 
(Aulchenko et al., 2007) 

PLINK Association 

Detecting association 

with 

environmental/phenotyp

ical features 

Handles a variety of tests 

for population structure 

and relatedness 

Population 

structure/kinship need to 

be assessed prior 

association analysis 

http://pngu.mgh.harvard

.edu/~purcell/plink/ 
(Purcell et al., 2007) 

Trinculo Association 

Detecting association 

with 

environmental/phenotyp

ical features 

Specifically designed to 

handle categorical 

variables with more than 

2 categories. Performs 

multinomial logistic 

regression and provides 

frequentist and bayesian 

frameworks. 

Requires lapack library in 

Unix. Allows fine-

mapping by testing for 

corrrelations between 

adjacent markers. 

https://sourceforge.net/

projects/trinculo/ 

(Jostins and McVean, 

2016) 

SAMBADA 
Association/Environment

al association 

Detecting association 

with 

environmental/phenotyp

ical features 

Designed to be fast, 

underlying models have 

been kept simple. Allows 

conversion from PLINK 

format. Takes into 

account spatial 

autocorrelation of 

individual genotypes. 

Allows correction for 

population structure 

Does not work with 

pooled data. Possibly 

high levels of false 

positives. Relatedness 

between samples should 

be assessed 

independently. Should be 

used in combination with 

LFMM or BayPass. 

http://lasig.epfl.ch/samb

ada 
(Stucki et al., 2016) 

discoal Coalescence 

Simulate selective 

sweeps under arbitrary 

demographic scenarios 

More specifically 

designed for studying 

soft and hard sweeps 

Redundant with msms 
https://github.com/kern-

lab/discoal 

Publication embargoed 

(Kern and Schrider, 2016) 

msms Coalescence 

Simulate demographic 

scenarios including 

selection 

Flexible, syntax similar to 

ms, handles arbitratily 

complex models. Can be 

used in an ABC 

Syntax can be difficult to 

handle for the naive user 

(but see coala) 

http://www.mabs.at/ewi

ng/msms/index.shtml 

(Ewing and Hermisson, 

2010) 
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framework to include 

selection as a parameter 

to be estimated 

diCal-IBD 
Coalescent with 

recombination/IBD 

Predicting IBD tracts 

from demographic 

models 

High IBD sharing suggests 

recent positive selection.  

Uses diCal output to 

obtain expectations 

based on demographic 

scenarios 

https://sourceforge.net/

projects/dical-ibd/ 

https://www.ncbi.nlm.ni

h.gov/pmc/articles/PMC

4296155/ 

SweeD 
Composite Likelihood 

test 

Designed for whole 

genome data (or large 

continuous regions) 

Supports Fasta and VCF 

formats. Estimates for 

selection coefficients. 

Better suited for whole 

genome datasets 

http://pop-

gen.eu/wordpress/softw

are/sweed 

(Degiorgio et al., 2016) 

SCCT 
Conditional coalescent 

tree 

Detecting positive 

selection 

Designed for detecting 

recent positive selection. 

Clains to be more precise 

at identifying selected 

sites 

Requires whole-genome 

data. The ancestral state 

of alleles must be 

obtained through an 

outgroup 

https://github.com/wave

fancy/scct 

(Wang, Huang, et al., 

2014) 

LFMM 
Environmental 

association 

Detecting adaptation to 

environmental features 

Corrects for population 

structure using latent 

factors, faster than 

BAYENV for large 

datasets 

Only performs 

association with 

environment 

http://membres-

timc.imag.fr/Olivier.Fran

cois/lfmm/software.htm 

(Frichot et al., 2013) 

H12 test LD 
Detecting selection using 

signatures of high LD 

Does not require phased 

data. Designed for 

detecting soft sweeps 

Coalescent simulations 

are recommended to 

evaluate the likelihood of 

selection 

https://github.com/ngar

ud/SelectionHapStats/ 
(Garud et al., 2015) 

LDna LD 
Detecting selection using 

signatures of high LD 

Can be used to address 

population structure or 

detect large inversions 

or indel polymorphism 

through LD 

The user needs to play 

with parameters to 

ensure robustness of 

SNPs significantly linked 

https://github.com/petr

ikemppainen/LDna 

(Kemppainen et al., 

2015) 

rehh LD 
Detecting selection using 

signatures of high LD 

Can compute both XP-

EHH and Rsb. Handles 

several input formats 

Requires phased data 

and high density of 

markers 

https://cran.r-

project.org/web/packag

es/rehh/index.html 

(Gautier and Vitalis, 

2012) 

Selscan LD 
Detecting selection using 

signatures of high LD 

Includes the nSL statistics 

dedicated to soft sweep 

detection 

Does not include utilities 

to specify the ancestral 

state of alleles. Requires 

phased data and high 

density of markers 

https://github.com/szpie

ch/selscan 

(Szpiech and Hernandez, 

2014) 

BALLET 
Likelihood test for 

balancing selection 

Detecting balancing 

selection 

Designed for detecting 

ancient balancing 

selection. Does not 

require phasing 

Requires whole-genome 

data and recombination 

map. The ancestral state 

of alleles must be 

obtained through an 

outgroup 

http://www.personal.psu

.edu/mxd60/ballet.html 
(DeGiorgio et al., 2014) 
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Bayescan 
Population 

differentiation 

Detecting positive 

selection and local 

adaptation 

Incorporates uncertainty 

on allele frequencies due 

to low sample sizes 

Sensitive to priors on the 

ratio of selected/neutral 

sites. False positive rates 

can be high under 

scenarios of 

demographic expansion, 

admixture and isolation 

by distance 

http://cmpg.unibe.ch/sof

tware/BayeScan/ 
(Foll and Gaggiotti, 2008) 

FDIST2 
Population 

differentiation 

Detecting positive 

selection and local 

adaptation 

Allows to control for 

hierarchical population 

structure 

False positive rate is 

high when an island 

model cannot be 

assumed 

http://datadryad.org/re

source/doi:10.5061/drya

d.v8d05 

(Beaumont and Balding, 

2004) 

PCAdapt 
Population 

differentiation 

Detecting positive 

selection and local 

adaptation 

Does not require to 

define populations. 

Handles admixed 

populations and pooled 

datasets 

False positive rate can 

be high 

http://membres-

timc.imag.fr/Michael.Bl

um/PCAdapt.html 

(Duforet-Frebourg et al., 

2016) 

SelEstim 
Population 

differentiation 

Detecting positive 

selection and local 

adaptation 

Can estimate the 

coefficients of selection. 

Calibration using a 

pseudo-observed dataset 

to obtain (can be used in 

combination with the R 

function 

simulate.baypass() in 

BayPass). 

Assumes an island 

model. 

http://www1.montpellier

.inra.fr/CBGP/software/s

elestim/ 

(Vitalis et al., 2014) 

Bayenv, BayPass 

Population 

differentiation/Associatio

n 

Detecting positive 

selection and adaptation 

to environmental 

features 

Less sensitive to 

population demographic 

history than previous 

methods. Handle pooled 

datasets 

Significance thresholds 

need to be determined 

from pseudo-observed 

datasets. Calibration with 

neutral SNPs is 

recommended. BayPass 

better estimates the 

kinship matrix 

http://www1.montpellier

.inra.fr/CBGP/software/b

aypass/  ; 

https://bitbucket.org/tgu

enther/bayenv2_public/s

rc 

(Günther and Coop, 

2013; Gautier, 2015) 

FLK 

Population 

differentiation/Associati

on 

Detecting positive 

selection and local 

adaptation 

Less sensitive to 

population demographic 

history than previous 

methods 

Requires an outgroup 

population 

https://qgsp.jouy.inra.fr

/index.php?option=com

_content&view=article&

id=50&Itemid=55 

(Bonhomme et al., 2010) 

POPBAM Summary statistics 
Detecting selection using 

AFS, differentiation 

Extracts summary 

statistics directly from 

BAM files 

Does not allow for 

sophisticated filtering 

and SNP calling 

http://popbam.sourcefor

ge.net/ 
(Garrigan, 2013) 

POPGenome Summary statistics 
Detecting selection using 

AFS, differentiation 

Fast, embedded in R, 

allows using annotation 

files (GFF/GTF format). 

Does not perform 

association, but can be 

used in combination 

with GENABEL within R 

https://cran.r-

project.org/web/packag

es/PopGenome/index.ht

ml 

(Pfeifer et al., 2014) 
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VCFTOOLS Summary statistics 
Detecting selection using 

AFS, differentiation 

Extracts summary 

statistics from VCF files. 

Also allows VCF filtering 

and conversion 

Set of summary statistics 

not as extensive as 

PopGenome 

http://vcftools.sourcefor

ge.net/ 
(Danecek et al., 2011) 

ANGSD 
Summary 

statistics/Association 

Detecting selection using 

AFS, differentiation, 

association with 

functional traits 

Allows for association 

using generalized linear 

models 

Descriptive statistics. P-

values need to be 

evaluated through 

coalescent simulations. 

http://www.popgen.dk/a

ngsd/index.php/ANGSD 

(Korneliussen et al., 

2014) 

TASSEL 
Summary 

statistics/Association 

Detecting association 

with phenotype 

User friendly (Java 

interface), corrects for 

relatedness, allows 

computing summary 

statistics (LD, diversity) 

Requires relatedness to 

be assessed externally 

(with e.g. STRUCTURE) 

http://www.maizegeneti

cs.net/tassel 

(Korneliussen et al., 

2014) 

selectionTools Summary statistics/LD 

Detecting selection using 

AFS, differentiation and 

LD statistics 

Allows combining several 

tools in a single pipeline. 

Includes phasing tools. 

Set of available summary 

statistics remains limited 

(same as VCFtools + Fay 

and Wu's H) 

https://github.com/Merr

imanLab/selectionTools 
(Cadzow et al., 2014) 

 

 

 

 

 

 

 

  

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 18, 2017. 
; 

https://doi.org/10.1101/052761
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/052761
http://creativecommons.org/licenses/by-nc-nd/4.0/


69 

 

Figures 

Figure 1. A possible general pipeline for analysing population genomics data using methods 

described in this paper. In red are indicated options that are generally not suited for pool-seq 

data. In green are indicated steps that require genome-wide datasets. ARG: Ancestral 

Recombination Graph (see main text). 

 
Figure 2. Set of questions and relevant methods to characterize population structure and local 

adaptation. Proposed methods mostly use common data formats for input files, facilitating their 

integration in a single pipeline. PGDSpider (Lischer and Excoffier, 2012) can be used to 

automate file conversion for methods requiring private input format. The proposed methods are 

not exhaustive, see tables for a more detailed list. 

 
Figure 3: Set of questions and relevant methods to characterize demography and selection. *: 

requires reference genome; ** requires reference genome and whole genome resequencing.  
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Sequence data: whole genome, SNP-array,
RNAsequencing, target enrichment,  RAD-seq

Align on reference 

Is there a closely related reference genome?

Yes

No

Assembly by locus then BLAST on the closest reference (optional)

Extract individual genotypes or allele frequencies (Pool-sequencing)

Checking population structure and admixture 

Checking variation in polymorphism genome-wide 
(e.g. Fst, LD, Tajima’s D, ABBA/BABA tests)

Many tools assume diploid species.

Mutation rate, recombination rate, generation time 
are needed to recover demographic estimates for parameters

Most methods for whole genomes are limited by computation time 
and do not always allow for complex models

Demographic inference (Sequential Markov Coalescent)
Quantify local admixture, introgression, selection: ARG

Selection, recombination, admixture, demography all impact polymorphism

Is there more than a single admixed population?

Yes No

Detect selection using variation 
in genotypes and allele frequencies 
across populations and individuals
(Fst outliers methods, association)

Detect selection using variation 
in genotypes across individuals

(association)

Is there a high density of markers 
replaced along the genome?

Yes

Perform LD-based tests (soft and hard sweeps)

Cross the results of all analyses
Which regions are under balancing selection?

Is there any sign of adaptive introgression?
Which set of SNPs is found in all or most analyses?
How does demographic history a�ect selection?

Identify a set of neutral markers and use it for model testing and estimate demographic history.
Consider allowing for various introgression rates between populations.

Background selection can produce higher Fst,
like positive selection. Check diversity in each population 

and their connectivity.
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Question

Is the dataset structured ?
Is there inbreeding ? 

Characterizing hybridization

How does environment impact 
this structure  and historical dispersal ?

Is there any  association
of speci�c loci with environment / 

a relevant phenotype ?

Software

STACKS. Outputs F-statistics and estimators of e�ective population size (π).

VCFTOOLS/POPGENOME: relatedness between individuals, FST between populations, Hardy-Weinberg equilibrium.
Nucleotide diversity and estimates of e�ective population sizes. Signatures of population size change.

PCA methods (SNPRelate in R)

fastSTRUCTURE, sNMF, ADMIXTURE. Provide coe�cients of coancestry for each individual.
Familial relationships: KING, PLINK.

Arlequin/Genepop: testing hierarchical structure of populations (AMOVA), FIS,  FST.

adegenet and LEA packages in R. Highlight barriers to gene �ow in the landscape.

BEDASSLE. Identi�es environmental features limiting gene �ow.
GENELAND. Highlight barriers to gene �ow in the landscape.

GENABEL, TRINCULO (individual phenotypes)
LFMM (LEA package)

SAMBADA

BAYENV

Data format

FASTQ (RAD-sequencing)

VCF

PLINK PED/BED �le

Private format 
(convertible from VCF 

with PGDspider)

VCF, PLINK PED/BED format

Private format

VCF, PLINK PED/BED format

PLINK PED/BED format

Private format
(convertible from VCF 

with PGDspider)

in
fo

rm
s
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Question

How does selection
shape genome variation?

Does population history 
shape potential for adaptation 

(e.g. admixture bringing new alleles,
 bottleneck reducing genetic diversity) ?

Origin of genomic islands
 of di�erentiation.

Characterizing adaptive introgression.

Software

VCFTOOLS, POPGENOME. Output diversity and LD statistics 

R package rehh. LD-based tests of haplotype extension *

BAYENV. FST-outlier method

PCAdapt. List loci atypically related to population structure

ARGWeaver. Returns coalescence times and other statistics 
for non-recombining blocks along the genome. **

TreeMix. Identi�es admixture events, their magnitude and direction between populations

Fastsimcoal and R package abc. ABC and Likelihood methods for comparing arbitrarily complex demographic 
models

SMC methods. SMC++ (no phasing). **
Variation in e�ective population sizes and divergence times between populations

VCFTOOLS, POPGENOME. Output divergence statistics.

FineStructure. Identi�es introgressed blocks along the genome and estimates times since admixture *

PCAdmix. Identi�es introgressed blocks along the genome *

ARGWeaver. Returns coalescence times and other statistics 
for non-recombining blocks along the genome. **

Data format

VCF

Modi�ed IMPUTE format 
(can be obtained from VCFTOOLS)

Private format (PGDSpider from VCF)

VCF and PLINK PED/BED �les

Private format

PLINK PED/BED �le

Private format (Arlequin, PGDSpider from VCF)

VCF

VCF

PLINK

BEAGLE (after phasing from VCF)

Private format

in
fo

rm
s
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