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Abstract 

Forty-six chromosome territories (CTs) are positioned uniquely in the human interphase 

nuclei, wherein each of their position can range from the center of the nucleus to its 

periphery. A non-empirical basis for their non-random arrangement remains unreported. 

Here, we derive a suprachromosomal basis of that overall arrangement (which we refer 

to as a CT constellation), and report a hierarchical nature of the same. Using matrix 

algebra, we unify intrinsic chromosomal parameters (e.g., chromosomal length, gene 

density, the number of genes per chromosome), to derive an extrinsic effective gene 

density matrix, the hierarchy of which is dominated by the extrinsic mathematical 

coupling of HSA19, followed by HSA17 (human chromosome 19 and 17, both 

preferentially interior CTs) with all CTs. We corroborate predicted constellations and the 

effective gene density hierarchy with published reports from fluorescent in situ 

hybridization based microscopy and Hi-C techniques, and delineate analogous hierarchy 

in disparate vertebrates. Our theory accurately predicts CTs localized to the nuclear 

interior, which interestingly share conserved synteny with HSA19 and/or HSA17. Finally, 

the effective gene density hierarchy dictates how inter-CT permutations represent 

plasticity within constellations and we suggest that a differential mix of coding with 

noncoding genome may modulate the same. 
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Introduction 

During interphase stage of cell cycle in human nuclei, chromosomes are confined to a 

restricted physical location that is referred to as chromosome territory (CT) (Cremer et 

al. 1982; Lanctot et al. 2007), which is a small fraction of the entire nuclear volume. 

Qualitative and quantitative microscopy studies have reported their anisotropic 

positioning, whose overall format is referred to as the radial arrangement (Cremer and 

Cremer 2010; Misteli 2010; Bickmore 2013). Interphase CTs not only occupy specific 

territories in the nucleus, but also intermingle at their borders (Branco and Pombo 2006), 

while their spatial position remains relatively stable (Zink et al. 1998; Tumbar and 

Belmont 2001; Gerlich et al. 2003; Walter et al. 2003). In any arrangement of forty-six 

CTs, which we call a constellation, territories may couple to their neighbors by loci-

mediated contacts (Branco and Pombo 2006; Zhao et al. 2006) and also via lamin and 

other nuclear-matrix mediated interactions (van Steensel and Henikoff 2000; Pickersgill 

et al. 2006; Guelen et al. 2008). Fluorescent in situ hybridization (FISH) based light 

microscopy mapping of a clonal population of normal human cells, have reported 

preferential locations of individual CTs (Croft et al. 1999; Sun et al. 2000; Boyle et al. 

2001), and cohorts of two or more CTs (Bridger et al. 2000; Cremer et al. 2001; Parada 

et al. 2004; Bolzer et al. 2005; Mehta et al. 2013b). However, significant diversity in 

preferential positions have been reported for chr5, chr14 and chr21 even in identical cell 

types (Boyle et al. 2001; Cremer et al. 2001; Parada et al. 2004; Bolzer et al. 2005; 

Mehta et al. 2013b), while the preferred positions are markedly different for CTs, such as 

chr1, chr5, chr11, chr21 and chrY, in diverse cell types (Boyle et al. 2001; Cremer et al. 

2001; Parada et al. 2004; Bolzer et al. 2005). Hi-C experiments (Lieberman-Aiden et al. 

2009) and Hi-C-based tethered chromosome capture experiments (Kalhor et al. 2012) 

have reported contact probability distributions of cross linked chromatin and computed a 

map of inter-CT neighborhoods, which represents the ensemble average of most likely 
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CT constellations. Most importantly, single-cell Hi-C studies have reported variability in 

the physical structure and spatial conformation of individual CTs (Nagano et al. 2013), 

again using a clonal population, suggesting that the discovery of rare CT constellations 

(from a clonal population) may be most challenging in a limited population of cells. 

Therefore, in the context of plasticity within a constellation, a physical basis for non-

random radial arrangement is essential. 

CTs are spatially and temporally regulated and it has been reported that normal 

chromosomal function significantly impacts their position and vice versa (reviewed in 

(Bickmore and van Steensel 2013; Cavalli and Misteli 2013; Dekker and Misteli 2015; 

Pombo and Dillon 2015; Sexton and Cavalli 2015). For example, it has been shown that 

four distinct CTs undergo statistically significant displacement in the nucleus (relocate 

from their original position to a new one) after inducing DNA double strand breaks by 

cisplatin (DNA damaging agent) treatment (Mehta et al. 2013b) in an asynchronous 

population of human dermal fibroblasts. In a significant population of those nuclei, chr17 

and chr19 relocated from the interior of the nucleus to the periphery, while chr12 and 

chr15 were displaced oppositely, from the periphery towards the interior (Mehta et al. 

2013b). Upon washing off cisplatin from the treated cells original ensemble average 

arrangement of individual CTs was restored following DNA repair (Mehta et al. 2013b). 

Independent studies, in cancers and genetic instability disorders, have reported that 

DNA double-strand breaks lead to translocations among closely located CTs (Roix et al. 

2003). Therefore, a spatially non-random CT constellation directly influence their 

functions and translocation propensities (Bickmore and Teague 2002). As CT 

constellations significantly differ in tumor versus normal cells, by virtue of their inter-CT 

distances (Nikiforova et al. 2000; Bickmore and Teague 2002; Parada et al. 2002; Roix 

et al. 2003), it is critical to investigate the fundamental basis of the same. An in vitro 

study has been demonstrated that the position of a human chromosome may remain 
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conserved in human-mouse hybrid nuclei and its genes may also be actively transcribed, 

while sustaining an overall radial form of chromosomal arrangement (Sengupta et al. 

2008). Therefore, if a species-independent suprachromosomal basis for the non-random 

anisotropic CT arrangement exists, it must be tenable across disparate vertebrates. 

To understand the physical basis of a radial chromosomal arrangement of all forty-six 

CTs in human nuclei, traditional microscopy-based methods are complemented with in 

silico approaches using polymer-based models (reviewed in (Marti-Renom and Mirny 

2011; Fudenberg and Mirny 2012; Halverson et al. 2014; Vasquez and Bloom 2014)). It 

is established that polymers can faithfully represent of chromosomal topology and can 

reproduce clustered spatial arrangement (Rosa and Everaers 2008; Vettorel et al. 2009). 

In that context, it has been demonstrated that topological constraints govern territorial 

clustering, because polymers without excluded volume and negligible intermingling have 

also generated a radial form of arrangement (Dorier and Stasiak 2009; Blackstone et al. 

2011). Moreover, entropic (nonspecific) factors can lead to anisotropic constellations that 

may self-organize, as shown using models such as a beads on string model (Cook and 

Marenduzzo 2009) and a strings and binders model (Barbieri et al. 2012). More recently, 

the role of polymer loops and entropic factors have been used to model and describe CT 

arrangements in prokaryotes and eukaryotes (Heermann et al. 2012; Hofmann and 

Heermann 2015). These in silico methods have used impermeable polymers, and 

permeable (phantom) ones (Dorier and Stasiak 2009), to derive the theoretical basis of 

the clustered radial CT arrangement. Based on early investigations (Munkel and Mirny 

1998; Munkel et al. 1999; Kreth et al. 2004) that used intrinsic parameters of the human 

coding genome, a recent study has modeled radial-like CT clustering in human nuclei 

(“gene rich” CTs such as chr19 at the nuclear center) by incorporating coding, noncoding 

and pseudogenes (Ganai et al. 2014). More recently, it has been reported that 

topologically associating domains (TADs) (Dixon et al. 2012) are the minimal physical 
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entities of CTs that fold with invariant boundaries across different cell-types (Smith et al. 

2016), which in turn provide a physical basis for hierarchical folding that encompass 

domains-within-domains: metaTADs (Fraser et al. 2015). Therefore, the physical 

organization of the human chromosome (or for that matter any eukaryotic chromosome) 

is known. However, a non-empirical basis for the physical organization, which represents 

the plasticity and hierarchy of CT constellations, at the suprachromosomal-level has not 

been reported. Consequently, in silico methods have not reported the plethora of CT 

constellations that exist in vitro. 

In the context of an interactive chromosomal milieu of the human nuclei, we report a 

non-empirical suprachromosomal basis for CT constellations that describe their 

plasticity. We derive systems-level mathematical and physical constraints that are 

exclusively genome-based, and describe a theory for self-organized CT constellations. 

Using this theoretical basis for CT constellations, we corroborate their plasticity using 

inter-CT maps of human nuclei, as obtained using FISH (Croft et al. 1999; Sun et al. 

2000; Boyle et al. 2001; Cremer et al. 2001; Parada et al. 2004; Bolzer et al. 2005; 

Mehta et al. 2013b) and Hi-C techniques (Lieberman-Aiden et al. 2009; Kalhor et al. 

2012). As we represent a conglomerate of inter-CT entities, we do not incorporate 

polymer-based constraints or topology to model the compact non-random radial 

arrangement of forty-six CTs within the human nucleus. From an evolutionary 

perspective, we also corroborate the veracity of our predictions, using published FISH 

results from disparate vertebrates: chimpanzee (Tanabe et al. 2002b), mouse (Mayer et 

al. 2005), pig (Foster et al. 2012) and chicken (Habermann et al. 2001; Tanabe et al. 

2002a). Using these disparate genomes, we report the theoretical basis for the hierarchy 

and plasticity within each of their CT constellation, predict the inner CTs in their 

respective nuclei and subsequently corroborate their identity using previously published 

results.  
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The Theoretical Approach  

Intrinsic parameters of the human genome 

The total number of annotated genes per chromosome, and their respective lengths 

were obtained from National Center of Biotechnology Information (NCBI) Gene database 

and Mapviewer portal (release 107) for human genome (NCBI 2015). These are 

parameters are available in Table S4.  

A systems-level representation of intrinsic parameters of the human genome 

using matrix algebra   

For a systems-level theory, we represent the number of genes (coding and noncoding) 

and the length of chromosomes (traditional intrinsic parameters), for the � �� 24� 

distinct chromosomes of the human genome, as two �  dimensional column vectors 

denoted by |	
�, | 	�� and |	�, | 	�� for the in vitro and in vivo representations respectively. 

The coupling of these two vectors in the abstract vector space is via a � � � matrix. The 

theory describing the unitary transformation from the in vitro to the in vivo representation 

is described at length.  

Unification of intrinsic parameters in the human genome 

We denote the different chromosomes of the human genome (chr1, chr2… chr21, chr22, 

chrX and chrY) as �� (where 1 � � � � � 24). The gene density of ��� chromosome ���� 

is represented by a coupling term �� in a scalar equation �� � ���� , where �� is the total 

number of genes (that includes protein-coding and noncoding genes) and �� is the length 

of �� .  Traditionally, ��  is considered as a parameter that only involves the ��� 

chromosome, independent of any other �� , for example, the nearest neighbour of �� . 
Therefore, equations involving all intrinsic chromosomal couplings may be collectively 

represented as �� �  ∑ ����������� ,  where ���  is the Kronecker delta function (=1 for 

indices � � �, and =0 for � � �). This Kronecker delta formalism enables assignment of 
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null weight to gene density coupling terms for all different chromosomes except ��. As 

we shall show later, the formalism provides us with the scope for the intrinsic parameters 

of �� to be influenced by another ��, thereby providing systemic-level constraints, which 

is otherwise not apparent. Using this mathematics, we formulate a theory that couples 

intrinsic parameters of different chromosomes to derive their systems-level crosstalk. For 

now, to facilitate this systems-level approach in an in vitro setting, we posit �  as a 

diagonal � � � matrix with intrinsic gene density ���� as the diagonal elements (real 

eigenvalues of � ). It must be noted that intrinsic parameters are experimentally obtained 

from cytogenetic as well as sequencing efforts under laboratory conditions and they 

represent an in vitro milieu. Therefore, these parameters may not accurately represent 

typical systems biology of the in vivo milieu that nuclei manifest. For brevity, we denote 

the set of basis vectors for the in vitro or diagonal representation as 

!	|��, ���, 	|�	, �	� … , |	�� , ���#, labeled by the intrinsic parameters: total gene count per 

chromosome ���, its length ��� in megabase pair (Mbp) and a subscript � for referencing 

�� . (Intrinsic chromosomal parameters are provided in Table S4). A systems-level 

formalism in a �  dimensional vector space using a � � �  in vitro coupling matrix is 

presented as a matrix equation: 

 	|
� � � |	��, 
where, � � ()��, ��*� *��, ��+ … 0… … …0 … )�� , ��*� *�� , ��+-, 

(1) 

such that the intrinsic gene density  �� �  )�� , ��*� *�� , ��+ (megabase pair Mbp-1 units). 

Here �  is a diagonal matrix and |	
�  and |	��  are � � 1  matrices (or column vectors) 

whose components represent the in vitro intrinsic parameters, namely the number of 

coding genes and chromosome length. As the in vitro gene density space does not 
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describe inter-chromosomal couplings, the hierarchical nature of extrinsic gene density 

remains implicit.  

Extrinsic parameters of the human genome 

Now, we mathematically describe extrinsic chromosomal parameters in an in vivo 

context. We used the intrinsic parameters from all the unique � �� 24�  human 

chromosomes (22 autosomes and X, Y chromosomes) to quantify the crosstalk among 

the 46 CTs (diploid genome) within the human nucleus. Systems-level coupling among 

them may be represented in a � dimensional in vivo vector space defined by a � � � 

Hermitian matrix ..  This space is defined by a set of �  basis vectors 

!	|��
 , ��
 �, 	|�	
 , �	
 � … , |	��
 , ��
 �#,  labeled by extrinsic systems-level parameters: effective 

gene count ��
� and effective length ��
� in Mbp, along with subscripts that denote labels 

from column and row vectors. Next, analogous to the in vitro model (Equation 1), we 

represent an abstract effective gene count and effective length as vectors denoted by 

|	� and | 	�� respectively. We posit: 

 |	� � . |	�� 
or, ��|���� , 	�� 
…�|���� , 	�� 
�  ����� , 	�� ������� , 	�� � … ���� , 	�� ������� , 	�� �. . . … . . .���� , 	�� ������� , 	�� � . . . ���� , 	�� ������� , 	�� ����|���� , 	�� 
…�|���� , 	�� 
�. 

 

(2) 

We hypothesize that the systems-level coupling of CTs is commutative and associative, 

such that it may be represented by a matrix . , which is a real, symmetric Hermitian 

matrix. We hypothesize that this coupling matrix is due to the nearest-neighbour inter-CT 

coupling of �� with ��, hence in Equation 2 the original generic coupling matrix .  may be 

approximated to the first-order, using / , where 

 . 0 / � ( )��
 , ��
 */ *��
 , ��
 + … )��
 , ��
 */ *��
 , ��
 +. . . … . . .)��
 , ��
 */ *��
 , ��
 + . . . )��
 , ��
 */ *��
 , ��
 +-. 
(3) 
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The elements of /  are the extrinsic coupling coefficients, and physically they virtually 

represent the spatial inter-CT crosstalk. Next, we derive these extrinsic couplings using 

intrinsic chromosomal parameters: number of genes ����, chromosomal length ���� , 

gene density ���� , along with �  scalar equations �� � ∑ �������� , with  �� 1 0, �� 1 0 , 

where ���  is the Kronecker delta function. To explicitly derive the obscure inter-CT 

“mixing” (which we refer to as biological crosstalk), we represent �  in the in vivo vector 

space. This deconstruction is obtained, using the Spectral Theorem, as a symmetric 

� � � matrix /  such that: 

 / � 23�� 23 

or, � ���� , ��� ������� , ��� � … ���� , ��� ������� , ��� �. . . … . . .���� , ��� ������� , ��� � . . . ���� , ��� ������� , ��� �� � �� � ���, ����� ���, ��� … ���, �������� , ���. . . … . . .��� , ��������, ��� . . . ��� , �������� , ���� �. 
(4) 

Here, the � row and � column element of /  is denoted as 4��
 , in megabase pair (Mbp) 

units, (where 4��
 � )��
 , ��
 */ *��
 , ��
 + ), and 23  is a � � �  orthogonal matrix ( 23�23 � 5 � 

unitary matrix). 

Hierarchical clustering of effective gene density 

To deconstruct the hierarchy of effective gene density matrix, we used five different 

hierarchical clustering algorithms implemented in R software-package (hclust function 

that is based on Fortran code contributed to STATLIB by Murtagh). The different 

algorithms used were (A) complete linkage, (B) single linkage, (C) centroid linkage, (D) 

average linkage and (E) Mcquity implementation. 
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Results 

The traditional schematic of the human genome is the linear DNA sequence of 

nucleotides, which includes the twenty-four different chromosomes in sequential order 

(chr1, chr2, …, chr21, chr22, chrX, and chrY). In this report, we consolidate the intrinsic 

parameters of all chromosomes in an abstract 24D vector space and mathematically 

derive extrinsic inter-CT parameters (representative of inter-CT biological crosstalk or 

the mathematical coupling among different CTs). This abstract formalism is used to 

identify systemic extrinsic constraints among the forty-six CTs in an interactive milieu, 

which constitute a CT constellation that is non-random. Moreover, we also show that the 

inter-CT coupling supports an identical hierarchical arrangement within every unique 

constellation, which arises along with permissible degeneracy (ambiguity due to CT 

permutations), as in a classical statistical ensemble of accessible CT constellations. This 

report builds upon our original work (Fatakia et al. 2015) and extends the formalism to 

other disparate eukaryotic species. 

Systems-level inter-CT coupling coefficient represents effective gene density 

Here, we report the mathematical formalism to depict all unique inter-CT pairs in an in 

vivo context, which is distinct from the in vitro context, where individual CTs are 

accessed without the influence of other CTs (Materials and Method). For notational 

brevity for in vitro representation, we denote the different chromosomes of the human 

genome (chr1, chr2… chr21, chr22, chrX and chrY) as �� (where 1 � � � � � 24). In 

theory, any CT may pair with any other CT as in a CT constellation, so we derive all 

extrinsic inter-CT parameters that characterize constellations in an in vivo 

representation. We hypothesize that for each nearest-neighbour pair ���
  (�� and �� CT 

pair) the composite effective gene count (���
 ) or paired chromosome’s gene count 
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(PCGC) is mathematically coupled to an effective length ���
  via an effective genome 

gene density (4��
 ) as: 

 ���
 � 4��
 ���
 . (5) 

We define the dimensionless PCGC parameter ���
  as the harmonic mean of the total 

number of annotated genes, from coding and noncoding parts, in ���
 . The harmonic 

mean (as opposed to geometric mean or arithmetic mean) is an ideal statistic that 

represents very diverse number of genes per chromosome, as it gives lower weightage 

to very high values. Therefore, the effective gene count for a given ���
  is represented in 

terms of its intrinsic parameters �� and �� as: 

 ���
 � 2������� 6 ���. (6) 

Similarly, to best represent the size or length of ���
 , we define the effective length ���
  as 

the harmonic mean of intrinsic parameters �� and ��: 

 ���
 �  2������� 6 ���. (7) 

Representing ���
  as a harmonic mean of intrinsic average gene densities: 

 ���
 � 2������� 6 ���, (8) 

and using Equations 5 – 8, we derive the extrinsic inter-CT coupling coefficient as: 

 4��
 � ���
2 71 6  ���� 6 �������� 6 ����8 � 4��
 . (9) 

This inter-CT spatial coupling coefficient parameter 4��′ has the physical dimensions of 

gene density and is henceforth referred to as the effective gene density. It represents the 

extrinsic coupling within paired nearest-neighbor ���′, an inter-CT in vivo unit with an 

effective length ����′�. To access the contributions of all inter-CT pairs in a genome, we 

normalize ���
  in Equation 5 with two genome-specific normalization constants: 9 :�
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�	 ��� 6 1�;  and <����  �� ∑ ∑ ���
�������� � . When expressed as a percentage, the 

normalized Equation 5 is: 

 =>�� �  ���!"���� 100% � #��� $���!"���� 100%. 
(10) 

 
Sum total of all the extrinsic effective gene density parameters in human genome 

greatly exceed intrinsic ones 

Our minimalistic �dimensional (24D) vector model invokes abstract unified entities ���
  

instead of solitary CTs. In Equation 9, the derived effective gene density for ���
  has the 

conventional term ������  and an unconventional “mixed” term ������,  representing a 

systems-level coupling of CTs. All effective gene density �4��′ �  parameters are 

represented using the effective gene density matrix – a � � � real symmetric matrix /  

(Materials and Methods), with 
�	��� 6 1�  unique elements. Each of those elements 

(parameters) is derived using the genomic information. Of those 
�	 ��� 6 1�  unique 

parameters, � are intrinsic (diagonal elements) and 
�	 ��� @ 1� are extrinsic (off-diagonal 

elements). Hence, in human nucleus, where � � 24, the maximum possible number of 

extrinsic systems-level parameters is nearly an order of magnitude grater (twelve times) 

than that from the more familiar in vitro model. The theory presented here involves the 

couplings among homologous CTs (modeled by conventional term) and non-

homologous pairs (modeled by “mixed” term). Therefore, this matrix method models the 

biological crosstalk, and as the sum total of extrinsic parameters far exceed the intrinsic 

ones, we have identified a larger number of mathematically derived genomic parameters 

that pair up (mathematically couple) chromosomal length with gene density for 

homologous and non-homologous chromosome partners within the nucleus. 
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Effective gene density matrix constrains human CT arrangement  

We represent extrinsic inter-CT coupling coefficient, 4��
 , as off-diagonal ��, �� elements 

of the systems-level coupling matrix �/ � (Materials and Methods). Using Equations 8 and 

9, each matrix element 4��
 , for ���
 , is: 

 4��
 � ������� 6 ��� 71 6  ���� 6 �������� 6 ����8. (11) 

The large diversity in effective gene density matrix is represented as a histogram (Figure 

1A) and hierarchically clustered heatmap (Figure 1B). The histogram for effective gene 

density is asymmetric, skewed toward higher values. The highest effective gene density 

for �%&'�(,%&'�(
  is statistically significant from the histogram mean (its difference from the 

mean value is 4.7 times the root-mean-square deviation of the histogram). Effective 

gene density heat map substantiates that for a given CT; there may be variability in its 

extrinsic gene density that is contingent on the neighborhood of CTs (left-most column 

and lower-most row in Figure 1B). For example, effective gene density couplings for 

�%&'�(,%&')
  are much lower (less than fifty percent) than the effective gene density 

couplings for �%&'�(,%&'�*′ . This implies that if extrinsic (effective) gene density constraints 

were to dictate the preferential positioning of CTs, then the co-occurrence of chr17 and 

chr19 as pair would be strongly biased, and therefore more likely, in contrast to the 

chr19 and chrY inter-CT pair. 

Using the genome-specific normalized PCGC values (=��
 ); we wanted to determine if 

neighborhood CT effects could be used to delineate spatial CT arrangements. The in 

vitro spatial positions of individual CTs were already known from a high volume 

microscopy study performed using dermal fibroblast nuclei (Mehta et al. 2013b). Hence, 

we sought to identify patterns of hypothetical extrinsic couplings among all inter-CTs. 

Using the microscopy-based data from fibroblast nuclei (Table S1), we computed =��
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versus ���
  (effective length) for cases in which �� and �� were both exclusive to (i) the 

nuclear interior, (ii) the periphery, and (iii) spatially intermediate to (i) and (ii). Such a 

scatter-plot of =��
  versus ���
  (Figure 2A), whose composition is fibroblast cell-type 

specific, confirms the segregation among paired CTs that are in the inner core versus 

the periphery of the nucleus, suggesting a hierarchy in PCGG versus effective length for 

���
 . The scatter-plot retrieved for fibroblast also describes an intermediate category, 

which depends on whether ��and �� is interior or peripheral. However, it is important to 

note that the cluster of interior versus periphery is different in lymphocytes (Table S1), 

leading to commensurate changes in the intermediate category (Figure 2B). 

Interestingly, ���′ that do not overlap with instances where both CTs are confined to the 

interior / intermediate / periphery of the nucleus are also represented in the scatter-plot. 

A CT from any one of the above three spatial zones coupled with another CT from a 

different zone constitutes the non-overlapping category (Figure 2). Therefore, we 

hypothesize that a systematic hierarchy and degeneracy in spatial CT arrangement is 

obtained when inter-chromosomal coupling via effective gene density is computed. We 

surmise, while the scatter-plot in Figure 2 is representative of the overall allowable 

pattern, the cell-type specificity dictates the details of CT positioning between the 

nuclear interior versus intermediate versus peripheral zones. 

Hierarchy of effective gene density from the human genome supports CT 

constellations 

As normalized PCGC (=>��) and effective length (���
 ) terms are coupled via the effective 

gene density 4��
  (Equation 10), we investigate its hierarchy in the context of CT 

arrangements in human interphase nuclei. We collate pairs of CTs with similar average 

effective gene density to compute a binary tree in effective gene density space. As 

effective gene density is a mathematical function of the CT length and gene density, 
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such a binary tree hierarchically clusters CTs based on their extrinsic systems-level 

attributes. Hence, we used the complete-linkage algorithm (Materials and Method) to 

compute the hierarchical clustering within the abstract effective gene density space. Our 

analysis of the human genome led to a segregation of effective gene density from CTs 

into two primary clusters, Groups A and B (Figure 1B, Figure 3). We represent Group A 

with chr11, chr16, chr17, chr19, chr20, chr22 and Group B with the remaining 18 CTs 

(Figure 3).  

HSA19 dominates hierarchy of inter-CT effective gene density and dictates spatial 

CT position in human interphase nuclei 

The inter-CT effective gene density of HSA19 (chr19) with every other CT represents the 

entire range of permissible effective gene density values (Figure 1A). Therefore, chr19 

represents the primary hierarchy of all inter-CT effective gene density parameters. 

Interestingly, if we consider a hypothetical pruning of chr19 (from Group A), then the 

hierarchy of Group A changes completely with respect to Group B. To avoid any 

algorithmic bias, which may be introduced as an artifact of the clustering method, we re-

computed the effective gene density matrix hierarchy using single-linkage (Figure S1B), 

centroid-linkage (Figure S1C), average-linkage (Figure S1D), and Mcquity (Figure S1E) 

algorithms. We report chr19 consistently maintains the primary hierarchy as obtained 

from each of these different algorithms. As chr19 occupies a unique and primary 

hierarchy among all ��,�′ , one could represent it at the origin of an abstract effective gene 

density space, or consign it to the interior of the nuclear volume in the context of a 

particular CT constellation. Once the physical location of the CT(s) with primary 

hierarchy is known within the nucleus, our mathematical formulation describes the 

subsequent hierarchical basis for self-organization of the other CTs with respect to that. 

It has already been established that chr19 is at the interior of the human nucleus using 
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fibroblasts (Croft et al. 1999; Sun et al. 2000; Boyle et al. 2001; Cremer et al. 2001; 

Bolzer et al. 2005; Mehta et al. 2013b), lymphocytes (Croft et al. 1999; Boyle et al. 2001; 

Cremer et al. 2001; Bolzer et al. 2005) and lymphoblastoids (Lieberman-Aiden et al. 

2009; Kalhor et al. 2012) cells. Therefore, this localized one-to-one mapping of CTs in 

an abstract effective gene density space with the real spatial nuclear volume facilitated 

subsequent spatial arrangement of the other CTs with respect to each other as well as 

with chr19, such that a CT constellation may be conceived (from the interior towards the 

periphery). Our results imply that the primary hierarchy of chr19 in effective gene density 

space is essential for the overall non-random and hierarchical spatial arrangement of 

other CTs in the human nucleus. Therefore, Group A was subdivided into Subgroup A’ 

(chr19) and Subgroup A’’ (chr11, chr16, chr17, chr20 and chr22) (Figure 3).  

We report that the hierarchy of Subgroup A’’ was juxtaposed intermediate to chr19 and 

Group B (Figure 3), which implies that CTs of Subgroup A’’ (chr11, chr16, chr17, chr20 

and chr22) were constrained to be adjacent to Subgroup A’ (chr19) in a non-random 

anisotropic constellation. In addition, the hierarchical clustering supports degenerate 

representations of CTs 11 and chr16 in the neighborhood of other CTs (Figure 3). The 

remaining eighteen CTs (Group B), which constituted a dominant fraction, were 

segregated from Group A’, except for chrY. The dendrogram leaf representing chrY 

stands out juxtaposed between the six Group A CTs and seventeen Group B CTs 

(Figure 3). Noticeably, on the heat map of Figure 1B, diversity in effective gene density 

among �%&'),�
  pairs are relatively lower (low variability) compared to corresponding 

results from �%&'�(,�
  (greater variability). Clearly, in contrast with that of chr19, if chrY 

were pruned from the dendrogram, the hierarchy of Group A with respect to Group B 

does not alter (Figure 3). These results support three important consequences of CT 

arrangements in human nuclei. Firstly, it demonstrates that our theoretical basis for 
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suprachromosomal CT constellation is identical in diploid 46,XX female nuclei (Figure 4) 

and 46,XY male nuclei (Figure 1). Secondly, contingent on near-neighbor effective gene 

density couplings, the cell-type, and the poised state of genes on CTs, we predict that 

the spatial position of chrY with respect to chr19 can lead to great variability: they can be 

interior CTs as in fibroblasts (Figure 3A) (Mehta et al. 2013b), or distantly placed toward 

the periphery as in lymphocytes (Figure 3B-F) (Boyle et al. 2001). Thirdly, and most 

importantly, the “orphan” nature of chrY, for example, with no homologous partner for 

crossing over (except with the pseudo-autosomal region in chrX), and its functional 

specialization for spermatogenesis is also consistent with our systems-level effective 

gene density hierarchy analyses. The spatially “delocalized” nature of chrY predicted 

here is indicative of special evolutionary trajectory of Homo sapiens chrY (HSAY), which 

is very distinct from chrY in Pan troglodytes (PTRY) (Hughes et al. 2010; Cortez et al. 

2014). 

Corroboration of theoretical results 

Next, we corroborate all our theoretical results in three independent ways. First, these 

results are corroborated using FISH-based microscopy results of reported CT 

arrangements in human interphase nuclei (Croft et al. 1999; Bridger et al. 2000; Sun et 

al. 2000; Boyle et al. 2001; Cremer et al. 2001; Parada et al. 2004; Bolzer et al. 2005; 

Mehta et al. 2013b). 

(i) Corroborating plasticity of CT constellations using FISH results 

There is plasticity (ambiguity in preferential positioning) in CT position of chr1, chr14 and 

chr21 from FISH studies (Boyle et al. 2001; Cremer et al. 2001; Bolzer et al. 2005; 

Mehta et al. 2013b), even within a clonal population. Using published reports (Boyle et 

al. 2001; Mehta et al. 2013b), we have compiled the inherent variability in preferential CT 

locations for nine CTs: chr1, chr5, chr6, chr8, chr15, chr16, chr20, chr21 and chrY, in 

lymphocytes and fibroblasts (Table 1). A physical basis for ambiguity and variability is 
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rationalized here using our PCGC model. We delineated seventeen CTs from Group B 

(excluding chrY) as largely equidistant en masse from Group A, (primarily in the context 

of chr19) in effective gene density space. However, due to degenerate configurations, it 

is plausible that cohorts of CTs in Groups A and B will have an effective gene density-

based altered spatial arrangement (for example with respect to chr19) and still maintain 

effective gene density hierarchy (Figure 3). Such a hierarchical and degenerate 

representation has enabled ambiguous yet non-random chromosomal spatial 

arrangement, which has been experimentally discerned but not rationalized so far. As 

shown earlier in Figure 3A, the position of chrY in the dendrogram facilitates its spatial 

locations in the neighborhood of six CTs from Group A (largely gene rich CTs) as well as 

the other seventeen CTs from Group B (largely gene poor CTs) as represented in the 

two equivalent dendrogram representations. Similarly, it can also be argued that near-

neighbor effects will give rise to dissimilar CT neighborhoods or constellations that 

represent chr21 in effective gene density space (Figure 3A and 3C), the outcome of 

which can give rise to contrasting spatial positions (interior versus periphery) in 

fibroblasts and lymphocytes (Boyle et al. 2001; Mehta et al. 2013b) (Figure 2). 

Consider another CT constellation that includes chr11 (Figure 3B), where we can justify 

the formalism for neighborhood CT effects by positioning it with chr1 and chr14 as 

intermediate to peripheral (Figure 3C).  For example, chr11 in the vicinity of chr1 or 

chr14 (Figure 3C) has lower effective gene density, as opposed to chr11 in the vicinity of 

chr16 or chr20 (Figure 3A) as CTs couple differently among themselves in these two 

scenarios (a lower effective gene density neighborhood occurs if the gene density 

disparity among them is large and vice versa). Using the same physical basis that 

justifies various CT constellations, we can represent chr18 or chr2 towards the nuclear 

interior (Figure 3D, 3E) and likewise the sub-cluster of chr12, chr14 and chr15 (Figure 

3F). Clearly spatial positioning of CTs can be very different, particularly when cell-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 30, 2016. ; https://doi.org/10.1101/052498doi: bioRxiv preprint 

https://doi.org/10.1101/052498


 20

specific instances and poised state of genes are considered. Permutations among CTs 

with degenerate effective gene density neighborhoods may have negligible 

consequence on a pan-nuclear scale. Hence, such degenerate CT permutations may be 

more feasible as opposed to those involving non-degenerate effective gene density CT 

neighborhoods. Therefore, our theory provides the physical basis for diverse anisotropic 

constellations of CTs at the suprachromosomal level. 

(ii) Corroborating hierarchy of effective gene density using Hi-C results  

Lieberman-Aiden et al. have computed inter-CT contact probabilities for normal human 

cell lines (Lieberman-Aiden et al. 2009). Specifically they have reported that the small 

gene-rich CTs: chr16, chr17, chr19, chr20, chr21 and chr22 preferentially interact with 

each other. From this group except for chr21, all other CTs match up with our results 

(Table S2). This cluster is represented in our analysis as Group A (Figure 1 and Figure 

3). We rationalize that near-neighbor effects in our PCGC theory, as illustrated in Figure 

3A, may lead to the omission of chr21 from the Group A and consigned to Group B in 

our analysis. In that scenario, chr21 is placed at the edge of Group B CTs, adjacent to 

Group A. In addition, our Group A also contained chr11, which was not supported by the 

Hi-C result. Interestingly, in the tethered chromosome capture (TCC) technique, which is 

a derivative of Hi-C experiment that sought to improve the signal to noise ratio, Kalhor et 

al. (Kalhor et al. 2012) have showed chr11 is part of an inner cluster of CTs, consistent 

with our Group A CTs (Table S2). So it is justifiable that the effects of neighborhood-CTs 

and cell-type specificity constellations, and the sensitivity of experimental method dictate 

how well we resolve the unique from rare constellations.  In that report, inter-CTs contact 

probabilities were used to compute two clusters, which they referred to as Cluster 1 and 

Cluster 2 (Kalhor et al. 2012). The reported Cluster 1 contained 10 CTs, which included 

chr11, chr16, chr17, chr19, chr20 and chr22 – all of which are Group A CTs. However, in 

addition chr1, chr14, chr15 and chr21 were also part of Cluster 1. In fact, chr1 (the 
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largest chromosome in the human genome) is represented as one that may be localized 

proximal to Group A CTs in our hierarchy analyses (Figure 3C), a result consistent with 

chr1 being part of inner core CTs (Kalhor et al. 2012). Therefore, we conclude most of 

our results of constellation plasticity and the hierarchical clustering of CTs have also 

been supported by these unbiased Hi-C experiments. 

(iii) Corroborating interior CTs using disparate mammalian genomes 

Next, we used four different model organisms, which have been shown to exhibit radial-

like CT arrangement, to compute primary hierarchy of CT(s) in the abstract effective 

gene density space. Using PCGC analysis, we predicted interior CTs in Pan troglodytes 

(Figure 5A), Mus musculus (Figure 5B), Sus scrofa (Figure 5C) and Gallus gallus (Figure 

5D) nuclei. We corroborated our predictions using previously reportedly FISH results for 

chimpanzee (Tanabe et al. 2002b), mouse (Mayer et al. 2005), pig (Foster et al. 2012) 

and chicken (Habermann et al. 2001; Tanabe et al. 2002a). We apply our theory to these 

vertebrates as their radial CT arrangement has been previously studied, and predict their 

inner core CTs. Without using any sequence information, we report that PTR17; PTR19 

(in chimpanzee), MMU7; MMU11 (in mouse), SSC12 (in pig), and GGA30, GGA32, 

GGA27, GGA28 (in chicken) have primary hierarchy. All of these CTs have been 

identified as interior CTs (Tanabe et al. 2002b; Mayer et al. 2005) (Table 1). However, 

as shown in Table 1, for two species the spatial position of CTs with primary hierarchy 

have not been mapped using FISH technique, but we report that they hierarchically 

cluster to other CTs that have been mapped as interior CTs: pig chromosome SSC12 

(Foster et al. 2012) and chicken microchromosomes GGA30, GGA32 (Habermann et al. 

2001; Tanabe et al. 2002a). Next, one can identify the human chromosomes, which 

have a dominant synteny with predicted inner CTs to map the evolution of chromosomes 

(Table 1). Here, in Table 1 we report that the predicted CT(s) with primary hierarchy is 

(are) largely syntenic to HSA19 (human chromosome 19, Group A’ – the CT with overall 
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primary hierarchy), and/or HSA17 (human chromosome 17 – the CT with primary 

hierarchy in Group A’’, and secondary to HSA19). Most interestingly, in each of these 

studies, the hierarchical clustering of CTs delineates at least two primary clusters. The 

first of which has relatively high and diverse effective gene density (off-white to yellow 

block diagonal feature), and the second has a much lower but relatively uniform effective 

gene density (uniformly red block diagonal feature). Such a hierarchical pattern is similar 

to the high effective gene density block diagonal feature (Group A, Figure 1B), and the 

low effective gene density block diagonal feature (Group B, Figure 1B). As a further 

corroborative approach, the hierarchical position of human chrY (HSAY) is compared 

across the vertebrates: a recent ancestral primate: Pan troglodytes (Kuroki et al. 2006; 

Perry et al. 2007) to an evolutionarily distant ancestral vertebrate: Gallus gallus 

(Consortium 2004). The position of HSAY (Figure 1B), is juxtaposed between two large 

CT clusters, but the position of PTRY (the chrY in Pan troglodytes) is embedded in a CT 

sub-cluster, that is subordinate along with PTR2B (chr2B), PTR13 (chr13) and PTR18 

(chr18) (Figure 5A), implying a significant difference in the inter-CT hierarchy. It is 

interesting that the orphan nature of chrY reported earlier for Homo sapiens (Figure 1A), 

is also embedded in the effective gene density matrix obtained from Mus musculus 

(Figure 5B), Sus scrofa (Figure 5C) and Gallus gallus (Figure 5D, with chromosome W) 

but definitely not in our more recent ancestor the Pan troglodytes (Figure 5A). 

Independent studies based on the genome sequence information have also reported 

that the HSAY significantly differs from PTRY, and also with the computed last common 

ancestral sequence (Hughes et al. 2010). Most interestingly, here we have identified this 

diversity between HSAY and PTRY without using nucleotide sequence information. 

Thus, the derived physical basis for a suprachromosomal ordering is applicable across 

diverse eukaryotic species, provided that their overall interphase CT arrangement is 

radial. We reiterate that our method succeeds in uncovering innate differences in chrY 
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hierarchy vis-à-vis the rest of CTs in a genome as a system-level consequence, without 

invoking the sequence of chrY. 

Gedanken experiments 

In a thought experiment, consider the nuclear volume to be divided in five shells of 

nearly equal projected 2D sub-nuclear annular regions, as traditionally used in unbiased 

high-throughput imaging studies for the human nuclei (Boyle et al. 2001; Cremer et al. 

2001; Bolzer et al. 2005; Mehta et al. 2013a; Mehta et al. 2013b). If we estimate the total 

number of ways we can progressively choose 46 CTs into those five shells, without 

considering any biological or stearic restrictions, then the total number of possible 

constellations is a tall order A �+,����-,( ��	*( ���.( �  0 1 � 10		 . For this simple-minded 

calculation, we sought to accommodate nearly equal number of CTs in each of the five 

hypothetical concentric shells: 10 in one and 9 in each of the others. As all CTs do not 

occupy identical volumes, this is not an exact value but a theoretical exercise to 

demonstrate that a very large number of CT constellations may exist, substantiating a 

very plastic nature of inter-CT constellations. 

Next, consider the reported probability distributions of individual CT. We estimate the 

fraction of the cell population, where each of the twenty-four distinct CTs is 

hypothetically localized at its most probable concentric shell. For simplicity, consider the 

marginal probability of individual CT occurrence as 40% (similar magnitude for gene-rich 

CTs), then a marginal probability for all CTs in their most preferred shell is a very small 

percentage � B +��C+, � 100% 0 5 � 10/�*% . Hypothetically, it is plausible that the 

experimentally determined joint probabilities (not marginal probabilities) of select inter-

CT pairs would be significantly larger compared to their marginal probabilities, our 

approximations suggests that there may be no unique constellation that can represent 

1%  from the same cell-type. However, we can rationalize that such highly likely 
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constellations can well be more than 5 @ 10  times the second most populous 

constellation. Therefore, there may exist subgroups of similar constellations that 

predominate (Figure 3), and yet demonstrate the notion of a very high degree of 

plasticity in CT constellations, which is an important issue that has remained largely 

unaddressed by the community. 

Now, we estimate the percentage of population that forty-five CTs occupying their most 

likely shell in various nuclei but with one of them occupying a least likely shell (say with 

hypothetical probability of 5%). The percentage of such nuclei will A 6 � 10/�.% of the 

entire population, which is an order of magnitude lower that the previous computation. 

Thus, a nontrivial fraction of nuclei may support CT constellations wherein one CT is in 

an unlikely location but all others occupy preferred positions (Figure 3A versus Figure 

3B). Therefore, an empirical basis, which actually predates the full sequencing and 

annotation of the noncoding human genome, that suggests (i) “gene-rich” CTs, or (ii) 

small sized CTs occupy the nuclear interior, falls short in rationalizing a physical basis 

for a constellation of forty-six CTs. To further strengthen our hypothesis, we show the 

trend in the marginal probability of finding two leading gene-rich CTs, chr19 and chr17, 

in the interior versus the periphery. We do this by computing marginal probability of two 

and four of gene rich CTs and comparing those results obtained from two CTs that are 

localized to the nuclear periphery, chr5 and chr18 (Figure S2). Clearly, the marginal 

probabilities may report a significantly lower probability of simultaneous positioning of all 

gene rich CTs, or all gene poor CTs in the interior or the periphery. 

HSA19 dominates effective gene density hierarchy of protein-coding / noncoding 

genome 

We wanted to contrast the exclusive inter-CT hierarchy from the protein-coding and 

noncoding genome. First, we re-derived effective (protein-coding) gene density matrix 

using the intrinsic parameters from the human protein-coding genome. Hence, the 
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effective number of genes and effective gene density expressed in Equations 5, 6 and 8 

at best represented 2% of the human genome. The heatmap representative of the inter-

CT crosstalk for the coding genome is shown in Figure 6A. Although, the hierarchical 

clustering differs with that from the one in Figure 1, there are notable common features: 

(1) The chr19 has primary hierarchy, followed by chr17 exactly as in Figure 3, (2) The 

chrY is juxtaposed between two large subgroups of CTs (identical to Groups A and B in 

Figure 3). The differences between the dendrograms from Figure 1 and Figure 6A are: 

(1) All tertiary sub-clusters differ, (2) chr1 and chr12 are clustered with chr19, chr17, 

chr20 and chr22 (Figure 6A).  

Following that, we computed an effective gene density matrix using the intrinsic 

parameters of the human noncoding genome. Its hierarchy (Figure 6B) in effective gene 

density is different to that from the coding genome (Figure 6A), or the full genome 

(Figure 1). The features differentiating dendrograms are: (1) The two most noncoding 

gene dense chromosomes: chr17 and chr19 cluster together, and the two sex 

chromosomes branch off from them, (2) The chrX and chrY cluster together, segregated 

from the autosomes (Figure 6B) and are most subordinate in the hierarchy – least 

effective noncoding gene density with all other CTs. Our overall results, suggest that 

within an effective gene density space, a differential mix of coding and noncoding parts 

of the genome might significantly alter effective gene density based inter-CT hierarchy. 

Saliency of hierarchy as obtained from effective gene density  

In a given biological context, differential levels of activated and inactivated genes exist 

per chromosome, which may clearly influence both the intrinsic properties of a CT as 

well neighboring CTs via extrinsic couplings. During chromosomal translocations, the 

physical values of intrinsic parameters of affected CTs are also altered. An in silico 

analysis was implemented to estimate the incremental change in intrinsic parameters, 

which altered the original hierarchy and degeneracy in effective gene density. To assess 
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the saliency and sensitivity in changing intrinsic parameters of this complex system, we 

only tuned one parameter at a time keeping others constant, generating hypothetical 

surrogate genomes. We computed the minimum decrement in the number of genes for 

each chromosome that led to an altered dendrogram in Figure 3. The change could be a 

reorganization of the hierarchy within at least one subgroup. The results of such 

sensitivity analysis for all chromosomes are presented in the Table S3. We observed 

that the decrement of genes required for a change in dendrogram for each chromosome 

was variable. In summary, a sensitivity analysis substantiates that primarily small 

changes (~1%) and few large changes (~10%) in the number of genes within a 

chromosome adversely affect the original hierarchy and degeneracy of CTs in effective 

gene density space. However, in any case, the decrement computed as a percent 

change in the genome was rather small (0.1-1.0%), which demonstrates that hierarchy 

dendrogram is a sensitive construct representative of the whole human genome 

organization, with regard to a CT constellation in the nucleus. Our saliency analysis also 

supports the inherent plasticity among constellations. Clearly, omission of a hundred 

genes is not feasible in a biological context, but this in silico experiment helps uncover 

the level of sensitivity of effective gene density hierarchy in a pan-nuclear setting. 
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Discussion  

At an empirical level, barring exceptions, intrinsic parameters coding gene density or/and 

chromosome size have been implicated to predict CT arrangement from FISH studies 

(Croft et al. 1999; Sun et al. 2000; Boyle et al. 2001; Cremer et al. 2001; Bolzer et al. 

2005). It has also been reported that relatively small-sized CTs, independent of their 

protein-coding gene density, are localized to the nuclear interior, but larger ones are at 

the periphery (Sun et al. 2000; Cremer et al. 2001; Bolzer et al. 2005), again barring 

exceptions. As a specific example, inconsistent CT locations between two widely studied 

cell-types, fibroblasts and lymphocytes are considered (Table S1) (Boyle et al. 2001; 

Mehta et al. 2013b). Here, we instantiate how intrinsic parameters do not completely 

represent the physical basis of spatial CT arrangement in a densely packed milieu of 

human nuclei. (1) Spatial positions of chr21 and chrY, both small-size CTs with low gene 

density, are inconsistent in fibroblast and lymphocyte nuclei. Both CTs are largely at the 

nuclear interior in fibroblasts but also at the periphery in lymphocytes. (2) Inconsistency 

in the spatial locations of seven other CTs (chr1, chr5, chr6, chr8, chr15, chr16 and 

chr20) in fibroblasts versus lymphocytes. (3) Consistent (or weakly consistent) 

consensus locations obtained for chr10, chr11 and chr14 in these two cell-types. 

Interestingly, unlike most other CTs, these do not have a preferred spatial territory in the 

nuclei (interior versus intermediate versus periphery). (4) Most importantly, in the realm 

of protein-coding gene density or size-based segregation, the threshold of high versus 

low intrinsic parameter(s) that segregates interior versus peripheral CTs is qualitative or 

at best empirical, and lacks mathematical rigor because individual CT constellations 

have not been mapped. On the other hand, our theory supports an overall unique non-

random hierarchical arrangement of CTs (a CT constellation), which arises along with 

permissible degeneracy and positional anisotropy, a result that has been experimentally 

confirmed using Hi-C techniques (Lieberman-Aiden et al. 2009; Kalhor et al. 2012; 
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Nagano et al. 2013). Moreover, our theoretical formalism derived at the systems-level 

suprachromosomal scale, provides the mathematical basis for a self-organized CT 

arrangement due to nearest-neighbor CT effects within the nucleus, substantiating a 

previously proposed hypothesis (Misteli 2001; Misteli 2009). 

Matrix algebra have been extensively used to describe systems-level information that 

may be innocuous at times, such as in molecular phylogenetics, involving sequence 

evolution as illustrated via phylogenetic trees (Felsenstein 2004). In an unrelated study, 

systems-level approach has computed differential gene expressions obtained from 

microarray data by deriving “eigengenes” and “eigenarrays” via vectors and matrices to 

identify coexpressed over-active and under-active regulatory genes in genome-wide 

studies (Alter et al. 2000). While in the cited study, matrix formalism has been used to 

decompose the expression data; a converse approach has been used here since we 

unify the intrinsic chromosomal parameters with one another to uncover the systems-

level crosstalk among CTs. 

We have demonstrated that the extrinsic inter-CT couplings (effective gene density) 

derived using our systems-level theory substantiates the hierarchy, degeneracy, and 

constrains spatial CT arrangement. We surmise that such biological hierarchy ensures a 

self-organization in human nuclei with forty-six CTs. In fact for a self-organizing nucleus 

with forty-six CTs, the multiplicity of inter-CT coupling emphasizes that such systems are 

dynamic and require coupling and decoupling among themselves to sustain radial 

arrangement. Moreover, there is compelling evidence from Hi-C studies to suggest cell-

to-cell variations in topological conformation of CTs (Nagano et al. 2013), and that CTs 

may also have preferential orientation with respect to landmarks such as the nuclear 

envelop (Schmalter et al. 2014), supporting neighborhood influence (mathematically 

demonstrated here in our paired chromosome’s gene count formalism). Here, as a 

mathematical exercise, we have investigated three paradigms that involved (i) the whole 
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genome, protein-coding and noncoding parts of the genome (Figure 1 and 4), (ii) protein-

coding part of the genome exclusively (Figure 6A), and (iii) noncoding part of the 

genome exclusively (Figure 6B). All three paradigms support the hierarchy of extrinsic 

effective gene density matrix, which led us to unravel the physical principle of a self-

organized assembly of CTs. We have approximated the inter-CT crosstalk by using the 

first-order interactions or nearest-neighbor CTs (Materials and Methods). Interestingly, 

chrY has the most subordinate hierarchy in each of these three paradigms, reinforcing 

that the physical basis for CT constellations at the suprachromosomal level is identical 

for the 46,XY and 46,XX diploid genome. Although we identified patterns of similarity 

and dissimilarity in the extrinsic inter-CT couplings for these three paradigms, we 

obtained results that support an overall hierarchy and plasticity of inter-CT 

constellations. The uniqueness in the results of the three paradigms discussed above 

suggests instances when the three paradigms may coexist to varying degrees as 

dictated by the biology of the nucleus, whose detailed analysis is beyond the scope of 

our current study. We reiterate that the abstract effective gene density space defined by 

the differential mix of coding versus noncoding human genome might significantly alter 

inter-CT coupling hierarchy. In theory, if one was to extend this model to incorporate 

three nearest-neighbor CT interactions, additional genomic constraints will be described, 

implying much tighter constraints among genomic parameters. 

In conclusion, the effective gene density matrix of the human genome unifies intrinsic 

parameters of CTs and mathematically constraints their spatial arrangement. The 

anisotropy associated with effective gene density, in our in vivo representation, provides 

a physical basis for a non-random and self-organized radial CT arrangement in a 

densely packed nuclear milieu. We have corroborated and rationalized our findings with 

available experimental data, and substantiated our hypothesis in disparate mammalian 

species that extrinsic effective gene density matrix constrains spatial CT arrangement in 
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interphase nuclei. We surmise that the effective gene density based anisotropy in the 

nuclear milieu largely dictates spatial hierarchy and associated plasticity of CT 

constellations. We also hypothesize that a high plasticity of CT constellations, within a 

given clonal population of cells, might set up cellular heterogeneity, as reported in single 

cell Hi-C studies (Nagano et al. 2013). However, the cell-type specific nuclear 

architectural components, via lamin and other nuclear-matrix mediated interactions, (van 

Steensel and Henikoff 2000; Pickersgill et al. 2006; Guelen et al. 2008) contribute 

towards the maintenance of CT arrangement across cell divisions. Finally, we also 

applied this systems-level theory across disparate mammalian species with annotated 

genomes, and identified the interior core CTs in their nuclei. Our results provide a novel 

perspective on the inter-CT arrangement (in vivo evolution of CT constellations in 3D) 

within vertebrate nuclei in the broader evolutionary context, analogous to the in vitro 

evolution of individual human chromosomes in a 1D framework. Therefore, an identical 

suprachromosomal physical basis, which constrains a self-organized spatial CT 

arrangement in human nuclei, is also conceptualized across disparate vertebrate 

species in the context of a radial CT arrangement. 
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Symbols and mathematical representations in vector space 

In this report, F  denotes a matrix, 	|G� denotes a column vector, and HI|	 denotes a row 

vector, such that F 	|G�, HI|	F , and HI|		G� denote inner products and 	|G�HI|	 denotes an 

outer product. The labels G  and I  are parameters (either intrinsic or extrinsic 

parameters) that represent those vectors. Notations used herein are similar to that in 

Alter O., Brown P.O. and Botstein D. (Proc. Nat. Acad. Sci., USA 2000). 
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Figure Legends 

Figure 1. Effective gene density obtained from extrinsic inter-CT pairs of the 

human genome. A histogram of effective gene density from all unique chromosome 

pairs ���
  is represented in A. The color key for the histogram (red to yellow to off-white) 

corresponds to increasing effective gene density values on the x-axis. A hierarchically 

clustered heatmap of effective gene density matrix from all ���
  chromosome pairs, and is 

indexed by labels � and � on the y- and x-axes respectively, is shown in B. Values of 

effective gene density from ���
  and ���
  are identical, indicated by a dashed diagonal line, 

and the horizontal and vertical dashed lines segregate inter-CT pairs where both �� and 

�� are from Group A, with those from Group B, or their admixture. Here, HSAY (human 

chrY), a Group B CT is highlighted by two vertical dashed lines, which represent its 

unique position in the overall hierarchy. The color key for effective gene density values in 

panels A and B are consistent. 

 

Figure 2. Normalized effective number of genes versus effective length for inter-

CT pairs. The graph of normalized effective number of genes �=>��� for every ���
  pair 

versus their effective length ��>��� for all ���
  is shown as a circle (open circle). Panel A 

represents the preferential CT location data from fibroblast nuclei and B represents 

lymphocyte data.  The coordinates representing ���
  pairs, wherein both CTs are from 

nuclear interior (triangle), periphery (box), and spatially intermediate region (star) are 

superimposed over those representing all pairs (open circle). The ones shown in open 

circle that do not overlap with either a triangle, box, or star, represent those pairs where 

CTs belong to different mix of spatial categories. Only unambiguous spatial CT positions 

are represented using Table S1. 
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Figure 3. Equivalent hierarchically clustered dendrograms derived from effective 

gene density matrix. The inter-CT coupling dendrograms derived from effective gene 

density matrix for Homo sapiens (using coding and noncoding genome) represent 

unique CT constellations in A-F. These six unique CT constellations can be perceived 

on an abstract 2D plane by consigning HSA19 (human chr19) to the nuclear interior, as 

in A-F. The vertical lines connote hierarchy in evolutionary distance or evolutionary 

diversity suggesting CTs with diverse effective gene density are evolutionary distant. 

The length of horizontal branch does not represent any hierarchical information. Interior 

and peripheral CTs are denoted as Groups A and B respectively. Although chr21 and 

chrY are Group B CTs and relatively gene poor, the theory supports a constellation with 

them as interior chromosomes due to neighbourhood CT effects (A). A hierarchical and 

degenerate representation enables the rationalization of chr21 and chrY as interior CTs 

(A) such as in fibroblasts versus peripheral CTs such as in lymphocytes (B). Similarly, 

chr11, chr1, and chr14 are rationalized as intermediate to peripheral CTs (B versus C). 

Constellations with chr18, and chr2 towards the nuclear interior are illustrated in (D) and 

(E) respectively. Although, chr2 and chr18 are primarily located at the nuclear periphery, 

(D) and (E) are instances when they are located differently. The constellation (F) 

illustrates a sub-cluster of chr12, chr14 and chr15 in the neighbourhood of Group A CTs. 

 

Figure 4. Effective gene density matrix obtained from the (46,XX) diploid female 

genome. The hierarchy of extrinsic inter-CT effective gene density matrix obtained using 

the intrinsic parameters of all the twenty-three unique chromosomes that represent the 

46,XX human female genome. Inset histograms for these panels represent effective 

gene density color key. 
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Figure 5. Heatmap and dendrogram obtained using effective gene density matrix 

from disparate vertebrate genomes. A heatmap and dendrogram represents the 

mathematical hierarchy of effective gene density matrix in diverse genomes that have 

radial chromosomal arrangement: (A) Pan troglodytes, (B) Mus musculus, (C) Sus 

scrofa and (D) Gallus gallus. Panel (D) represents the currently available annotated 

genes from NCBI Gene database and LGE64 is abbreviated as L64. The CT(s) with 

primary hierarchy in effective gene density space, and capturing the maximum diversity 

in inter-CT effective gene density having all colours: off-white (highest effective gene 

density) to red (least effective gene density) representing interior CT(s), and are marked 

(*). The chrY is delineated using a pair of dashed vertical lines in each instance. Inset 

histograms represent color keys. 

 

Figure 6. Hierarchical clustering of extrinsic inter-CT matrix derived from the 

coding / noncoding human genome. The hierarchy of extrinsic inter-CT effective gene 

density matrix as derived from the exclusive protein-coding genome (A), and the 

exclusive noncoding genome (B). Inset histograms represent color keys. 
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Table 

Table 1. Interior CTs predicted using hierarchical clustering of effective gene 

density matrix. CT(s) with primary hierarchy in effective gene density are located in the 

nuclear interior and influence CT neighborhoods forming a non-random CT constellation. 

HSA, PTR, MMU, SSC and GGA are standard identifiers used to represent the human 

(Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus), pig (Sus 

scrofa), and chicken (Gallus gallus) chromosomes respectively. 

Species 
(Abbreviation) 

Reference 
corroborating CT 
position  

Predicted interior 
CT(s) 

Dominant synteny with 
HSA chromosome 

Pan 
troglodytes 
(PTR) 

(Tanabe et al. 2002b) PTR17,  
PTR19 

HSA17 §, 
HSA19 § 
(Tanabe et al. 2002b) 

Mus 
musculus 
(MMU) 

(Mayer et al. 2005) MMU7,  
MMU11 

HSA19 §, 
HSA17 § 
Mouse Genome 
Sequencing Consortium 
(Waterston et al. 2002)  

Sus scrofa  
(SSC) 

(Foster et al. 2012) $ SSC12 $ HSA17 § 
(Federico et al. 2004) 

Gallus gallus 
(GGA) 

(Habermann et al. 
2001)¶ 
(Tanabe et al. 2002a) 

GGA30 ¶,  
GGA32 ¶, 
 
GGA27 ¶, 
GGA28 ¶ 

NA¶¶ International Chicken 
Genome Consortium 
(Consortium 2004) 
HSA17 §, 
HSA19 § 

 

§ HSA19 and HSA17 are both inner CTs in human nuclei. HSA19 has primary hierarchy in 
effective gene density matrix and HSA17 has secondary hierarchy (Figure 1). 
$  Foster et al.; 2012 (Foster et al. 2012) did not specifically report the location of SSC12. 
However, they have reported that porcine chromosomes: SSC2, SSC3, SSC4, SSC5, SSC6 and 
SSC7 as interior CTs, all of which hierarchically cluster to SSC12 (Figure 5C). 
¶ Habermann et al. (Habermann et al. 2001) have shown that microchromosomes (such as 
GGA30, GGA32, GGA27, GGA28) are at the nuclear interior and macrochromosomes are at the 
periphery in Gallus gallus fibroblast cells. 
¶¶ The predicted CT with primary hierarchy (GGA30) currently has than ten annotated coding and 
noncoding genes and synteny information is not available. However, as microchromosomes 
GGA27 and GGA28 are within the same hierarchy cluster as GGA30 and GGA32 and their 
synteny information is available (International Chicken Genome Sequencing Consortium, 2004), 
we report them. 
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