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In natural settings, microbes tend to grow in dense pop-
ulations [1–4] where they need to push against their sur-
roundings to accommodate space for new cells. The as-
sociated contact forces play a critical role in a variety of
population-level processes, including biofilm formation [5–
7], the colonization of porous media [8, 9], and the invasion
of biological tissues [10–12]. Although mechanical forces
have been characterized at the single cell level [13–16], it
remains elusive how collective pushing forces result from
the combination of single cell forces. Here, we reveal a
collective mechanism of confinement, which we call self-
driven jamming, that promotes the build-up of large me-
chanical pressures in microbial populations. Microfluidic
experiments on budding yeast populations in space-limited
environments show that self-driven jamming arises from
the gradual formation and sudden collapse of force chains
driven by microbial proliferation, extending the framework
of driven granular matter [17–20]. The resulting con-
tact pressures can become large enough to slow down cell
growth by delaying the cell cycle in the G1 phase and to
strain or even destroy the microenvironment through crack
propagation. Our results suggest that self-driven jamming
and build-up of large mechanical pressures is a natural ten-
dency of microbes growing in confined spaces, contributing
to microbial pathogenesis and biofouling [21–26].

The simulataneous measurement of the physiology and me-

chanics of microbes is enabled by a microfluidic bioreac-

tor [27–30] that we have designed to culture microbes under

tightly controlled chemical and mechanical conditions. The

setup, shown in Fig. 1A, is optimized for budding yeast (S.
cerevisiae). We use this device to measure mechanical forces

generated by partially-confined growing populations and the

impact of those forces on both the population itself and its

micro-environment.

At the beginning of each experiment, we trap a single yeast

cell in the growth chamber of the device, which can hold up

to about 100 cells. The cells are fed by a continuous flow of

culture medium, provided by a narrow set of channels that are

impassable for cells.

While cells first proliferate exponentially as in liquid cul-

ture, growth dynamics change dramatically once the chamber

is filled. At high density, cells move in a stop-and-go manner

and increasingly push against the chamber walls. The popula-

tion develops a contact pressure∗ that increases over time until

it reaches steady state, subject to large fluctuations. Depend-

ing on the geometry of the device (Fig. 1B and C), the mean

steady-state pressure can reach up to 1 MPa. This pressure is

larger than the ≈ 0.2 MPa turgor pressure measured in budding

yeast (stationary phase [31]) and much larger than the ≈ 1 mPa

needed for the cells to overcome viscous friction (supplemen-

tary text).

Both the intermittent flow and pressure build-up are counter-

intuitive because the outlet channel is wide enough for cells to

pass. In principle, excess cells could flow like a liquid out of

the chamber. Time lapse movies (here) reveal that blockages

in the device stabilize the cell packing and prevent flow. Cells

proliferate until a sudden avalanche flushes them through the

outlet (Fig. 1D and E). Another jamming event occurs, and the

process repeats. These dynamics generate characteristic slow

pressure increases followed by sudden pressure drops (Fig. 1C).

Jamming, intermittency and avalanches are familiar aspects

of flowing sand, grains or even jelly beans [24]. To test whether

the interplay of growth, collective rearrangement, and outflow

of cells from the chamber can be explained by the mechan-

ics of granular materials, we set up coarse-grained computer

simulations with cells represented as elastic particles that grow

exponentially and reproduce by budding. In our simulations,

cells move via frictionless overdamped dynamics with repul-

sive contact interactions between neighbors.

Our simulations indeed reproduce the intermittent dynam-

ics observed in the experiments (Fig. 2A–C). We find that the

pressure drops are roughly exponentially-distributed for both

experiments and simulations (Fig. 2D) for P > 〈P〉, consistent

with hopper flows [32].

Highly intermittent cell flows might reflect spatially hetero-

geneous mechanical stresses, a hallmark of driven granular ma-

terials [17–20]. Assuming that cell shape deformation is indica-

tive of the forces between cells, we developed a non-invasive

method to infer these forces (Fig. 2F, supplementary text, and

fig. S1). Using this approach, we analyzed microscopy images

to determine stress distributions of crowded populations. Both

S. cerevisiae experiments and our coarse-grained simulations

∗Note that, because water can flow in and out of cells, hydrostatic pressures

are conceptually very different from contact pressures studied here.
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Figure 1 Self-driven jamming of microbes enables collective pressure build-up in microfluidic environments. (A) Budding yeast cells

are grown in a growth chamber threaded by narrow nutrient channels (inset). (B) The jamming of excess microbes produced by proliferation

in the device leads to a partial confinement of the population and a gradual build-up of a contact pressure of up to 0.65±0.1 MPa (in the

shown experiment), which strongly deforms the device (white line represents the undeformed layout). The steady-state pressure generated in a

given device depends on the geometry of the outlets (B, right), which effectively act as leaky one-way valves. The resulting time-dependent

pressure curves are shown in (C) for different outlets. The pressure measurements were enabled by an automatic feedback system that actively

controls the deformation of a thin membrane separating the growth chamber and a control channel (see A and Supplementary Text). The bold

curves correspond to one realization of the experiment, which is characterized by large pressure fluctuations due to gradual jamming and

sudden unjamming. The shaded region represents the envelope of the replicates: all replicates are binned together, and within each bin, the

minimum and the maximum define the shading. The cellular flows exhibits collective features known from physics of jamming in granular

media: The outflow of cells is not steady but consists of periods of stasis, accompanied by pressure-build up, and sudden cell avalanches and

pressure drops. This can be seen in time lapse movies ( here) as well as Kimographs: (D) shows the random zig-zag motion of the chamber

membrane and (E) shows the flow through the outlet before, during and after an avalanche with one snapshot every 20 minutes. Note that,

depending on the local stresses, cells can assume shapes from nearly spherical (F, low stress) to nearly polyhedral (G, high stress).
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exhibit disordered cell packings that are stabilized by heteroge-

neous force networks (Fig. 2F and G). Stress is highly localized

along branching “force chains” [17, 18] while adjacent “spec-

tator cells” [33] experience very little mechanical stress.

We find that jamming-induced contact forces can become so

large that they feed back on the cell physiology. Indeed, a feed-

back on both cell shape and the dynamics of cell growth is ev-

ident in experiments where we place two devices of different

steady state pressures next to one another, as seen in the time

lapse movie (here). To quantify the feedback on growth, we

estimate the net growth rate, which is the difference between

birth and death rate, in our microfluidic bioreactors by measur-

ing mean cell outflow rate at steady state (supplementary text).

We find that the growth rate decays roughly exponentially with

pressure until growth is undetectable at a stalling pressure of

about 1 MPa (Fig. 3C). The stalling pressure, or homeostatic

pressure [34], is obtained by using a special device with a “self-

closing valve”, in which yeast populations fully confine them-

selves by the pressure they build up, as seen in Fig. 3A. In this

device, the rate of pressure increase gradually decays with pres-

sure until saturation (Fig. 3B). This diminishing return is due to

smaller growth rates at higher pressures, and serves as another,

dynamical measure for the feedback between contact pressure

and growth rate.

Control experiments supported by finite element simulations

show that cells are well-fed and viable even at the highest den-

sities suggesting a mechanobiological origin for the reduced

growth rates (supplementary text and figs. S3 and S4). As a

first step to uncover the mechanistic basis for the feedback, we

have found that contact pressure acts to slow down the cell cy-

cle in the G1 phase (Fig. 3D). Specifically the fraction of cells

in G1, indicated by subcellular localization of the protein Whi5,

increases with decreasing growth rate (fig. S5). This result con-

sistent with a recent study showing a cell cycle arrest in G1 in

compressed mammalian cells [35].

Perhaps the most salient consequence of growth-induced

pressure is cell shape deformations. While budding yeast cells

grown in the absence of mechanical stresses are nearly spher-

ical, we observe that they morph into convex polyhedra as

the population pressure becomes growth-limiting (Fig. 1F and

G). Close to the stalling pressure, the packing resembles the

structure of a dry foam [36], consisting of cells with only

flat faces and sharp edges in between, shown in Fig. 2F. The

pressure-induced cell shape deformation can be best visualized

at the interface between coverslip and cell population: the cell-

coverslip contact area increases as the growth-induced pressure

increases (Fig. S6). Our simulations further suggest that the cell

turgor pressure in the experiments may increase as a function

of the growth-induced pressure.

Most microbial cells are sticky [37, 38]. Indeed, while

our lab strains of budding yeast have been domesticated to be-

come non-sticky, wild strains can have strong, velcro-like in-

tercellular fiber connections [39]. We find that while these

sticky strains develop a very similar maximal pressure as the

lab strains do (Fig. 3B), they develop growth-induced pressures

under much weaker confinement (Fig. 4A). Our coarse-grained

simulations further suggest that attraction between cells can

lead to a build up of pressure much larger than expected under

a null model of a liquid droplet with surface tension (Fig. 4C

and D).

Bacteria and fungi have the ability to colonize a wide range

of porous media, including tiny cavities barely larger than their

cell size [3, 4]. Our work suggests that self-driven jamming

of growing microbes can emerge in these microenvironments

as it does in our microfluidic devices if chemical resources are

sufficiently abundant. The mechanism underlying self-driven

jamming is cell proliferation, thus extending the notion of jam-

ming, which usually result from external sources of driving,

such as shear, compression, or gravity [17–20].

The resulting growth-induced forces endow biofilms with the

potential to remodel, or even destroy, their micro-environment.

This could aid microbes in penetrating the soft tissues of host

organisms [10–12], or to invade soil, where most microbes

grow in pores of several micro-meter in diameters [3, 4]. At

this length scale, it is possible that the growth-induced pres-

sures measured here contribute to straining of even stiff mate-

rials. Indeed, when we grow budding yeast populations inside

agar gels, we observe the formation and propagation of cracks

(Fig. 4D, fig. S8 and time lapse movie here). Thus, just

like jamming of granular media can threaten the mechanical

integrity of their confinements, which can lead to the bursting

of grain silos [32, 40], it could also be an important mechanical

aspect of host invasion [10–12] and biofouling [21].
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Figure 2 Pressure fluctuations and intermittent flows of partially confined budding yeast populations can be reproduced in
simulations of proliferating elastic particles. (A) Experimental pressure time series are characterized by periods of gradual pressure

build-up and sudden pressure drops. (B) Simulations show that such time series are the generic outcome of jammed elastic particles

proliferating in confined spaces. (C) A feedback of pressure onto growth, reported in Fig. 3C below, further improves our simulations. The

gradual pressure increases prior to avalanche events show diminishing return similar to the experimental time series in (A). Pressure drops

during avalanche events (D) are nearly exponentially distributed for drops larger than the mean pressure drop, 〈ΔP〉, in both experiments (E:

symbols) and coarse-grained simulations (E: lines). We can estimate inter-cell contact forces in our experiments by measuring the area of

contact between two cells through image analysis. (F) The resulting network of contact forces in packings of budding yeast cells shows a

heterogeneous distribution of mechanical stresses (pressure on the membrane: 0.5 MPa). (G) Force networks obtained from simulations of

exponentially growing budding cells. In both (F) and (G), large forces are clustered into chain-like structures. A movie illustrating the

dynamics of force networks in our experiments can be seen here, and a coarse-grained simulation movie can be seen here. For our

simulations, we used box and outlet sizes that match the microfludic chamber and parameterized the over-damped dynamics using the

experimental flow rate and pressure fluctuation data (supplementary text).
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Figure 3 Pressure-induced slow down of growth. (A) Budding yeast populations can be fully confined using a “self-closing” device that

takes advantage of the contact pressure developed by the population to close the inlet/outlet channel. The cells are fed through narrow nutrient

channels, as in 1A. The layout of the undeformed device is shown in white. (B) The time-dependent pressure curve in the self-closing devices

shows a diminishing return: The rate of increase of the growth-induced pressure in the fully confined region gradually slows until it stops at

the stalling pressure of 1±0.1 MPa (5 replicates). Inset: stalling pressure measured for the lab strain and the wild strain. (C) Growth rate as a

function of growth-induced pressure, estimated in two ways (supplementary text): The black points represent net growth rates determined

from the cell flow out of our leaky devices in the steady-state (black points; ≥ 5 replicates). The continous blue line, on the other hand, has

been inferred from the deminishing return in the dynamical data of (B) under a quasi-steady state assumption (supplementary text; shading

indicates ± SD). The dashed curves represents an exponential fit to the steady-state data (k = 0.41 (h−1) exp(-P/0.28 (MPa))). (D) Cells under

pressure spent a larger fraction of time in G1 phase, as inferred from the fraction of cells presenting a nuclear Whi5 signal.
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Figure 4 Self-driven jamming is promoted by stickiness and can remodel the microenvironment. (A) Wild strains of yeast stick together

via strong velcro-like connections between cells [39]. This stabilizes the spherical growth of the population against shear stresses. (B, C)

Simulations show that even weak attractive forces between cells can strongly promote jamming. (B) Packing of slightly sticky cells (right,

supplementary text) exhibit a force network with pronounced force chains in contrast to the non-sticky case for the shown device. (C) The

increase in growth-induced pressure (steady-state) with stickiness is much larger than expected from the continuum limit (red base line) over a

broad range of outlet sizes (supplementary text). (D) Gradual propagation of agar gel cracks by growing populations of budding yeast (lab

strain). Cells grow out of a pre-exisiting agar crack and, at the same time, propagate the crack tips inside the agar. A time-lapse movie of the

crack propagation is available here.
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Supplementary Material
Yeast strains and growth conditions: S. cerevisiae cells (haploid strain of mating type a, containing a GFP fused to Whi5 in a

S288C background, obtained from J. Thorner laboratory at UC Berkeley) and wild undomesticated cells (BR-103F strain from

the Palkova lab at Charles University in Czech Republic) are cultured in complete synthetic medium (CSM, 20 g/L glucose) at

30o C. Cells in exponential phase are loaded in the device.

Preparation of the micro-fluidic bioreactor (“Mechano-chemostat”): The master consists of 2 layers of different heights,

prepared using classical soft-lithography protocole, as in [1] for instance. The first layer is prepared using SU 2000.5 negative

photoresist (0.5 μm height), and the second using SU 2010 (10 μm height). Polydimethylsiloxane (PDMS, Sylgard 184, Dow

Corning, USA) is mixed with the curing agent (ratio 1:10 in mass), poured onto the master, and cured overnight in a 60o C oven.

It is bound to no1 thickness glass slides through an oxygen plasma generated by a reactive ion etcher (RIE) machine (P02 = 200

mTorr, exposure time = 20 sec). Prior to loading the device, the surface is treated with Pluronics 127 (VWR, USA) as in [2] to

decrease any non-specific adhesion that could result in cell-PDMS friction. This ensures that the build-up of pressure is not due

to adhesion or friction of the cells with the PDMS, but due to compressive forces between cells and the PDMS chamber.

Measuring the growth-induced pressure: We use the 4μm thick membrane separating the growth chamber and the control

channel, where the hydrostatic pressure can be imposed, to measure the contact pressure generated by the population. As

observed in Fig. 1, cell growth deforms the membrane. We monitor the position of the membrane every 30 seconds, and change

the hydrostatic pressure in the control channel to keep the membrane position constant, at all time. The membrane is thus in a

mechanical equilibrium, and the imposed hydrostatic pressure in the control channel is balancing the growth-induced pressure

in the growth chamber. The pressure can also be measured through the deformation of the membrane, finite element simulations

(Comsol) showing that the deformation is proportional to the pressure. However, this requires a calibration of the Young’s

modulus of the PDMS device. We measure an average PDMS elasticity of 2 MPa.

Visualizing cell deformations and the contact area between cells and coverslip: FITC-conjugated Dextran (3kDa, Invitro-

gen) is added to the culture medium, at a concentration of 0.1 mg/mL. Since Dextran is not internalized by single yeast cells [3],

it stains the extracellular space, and enables the imaging of cell deformation. The contact between cells and the coverslip (fig. )

is imaged by reflectometry. Briefly, we shine a 635nm laser on the sample through a pinhole closed to a minimum, to obtain an

optical slice of 0.3 μm. The reflected light is collected without filter, so that local changes in optical density can be measured at

the level of the glass slide. Typical images of cell deformations are shown in the main Letter (Fig. 1), and images obtained by

reflectometry are shown in fig. S6A.

Measuring the steady-state and instantaneous growth rate: Each outlet design shown in Fig. 1B leads to a different steady-

state pressure, and a different steady-state cell outflow rate. We measure the cell outflow rate, Jcell, using a custom-made particle

image velocimetry algorithm (Matlab), and define the growth rate in the chamber as k = Jcell/Vch, where Vch is the volume of

the growth chamber.

Alternatively, we can estimate the instantaneous growth rate from the pressure vs. time relationship measured for the self-

closing device. Since the cells are fully trapped in the growth chamber, the time-derivative of the pressure is directly proportional

to the growth rate. The proportionality depends on the packing fraction of the cells (φ ) and on the volume of the chamber (V ).

We define the instantaneous growth rate γ of the cells by

γ =
∂tVc

Vc

where Vc is the volume occupied by the cells. By definition, the packing fraction is the fraction of volume occupied by cells

divided by the volume of the chamber:

φ =
Vc

V
Hence,

γ = ∂t logφ +∂t logV

Now we assume that, at any time, the packing fraction and the chamber volume only depend on the pressure: V (t) =V (P(t))
and φ(t) = φ (P(t)). This quasi-steady state assumption is acceptable only if the cells can adapt their growth rates sufficiently

fast to the current pressure curve or, conversely, that the pressure changes sufficiently slowly.
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This enables us to rewrite the growth rate:

γ = ∂tP(∂Plogφ +∂PlogV )

In order to plot the growth rate γ as a function of growth-induced pressure, we need three pieces of information: the time-

derivative of the pressure, the packing fraction, and the pressure-dependency of the volume of the growth chamber. The packing

fraction is measured using exclusion fluorescence technique (see Supplementary figure S2A and S2C), and the dependency on

pressure of the volume of the chamber is calculated through finite element simulations (Comsol) (Supplementary Fig S2B).

We observe (fig. S2D) that the growth-rate vs pressure relationship obtained in this way is in good agreement with the more

direct steady-state measurements. This justifies our steady-state assumptions and suggests that the feedback on growth should

act as fast or faster than the typical division time.

Inferring force maps: The interface area between cells in contact is used to estimate the contact force between the cells.

To this end, we have modeled the mechanical response of budding yeast cells in the simplest possible way by assuming that

a cell responds to contact forces like a pressurized elastic shell, as illustrated in Fig. 2F. The force between cells in contact is

then given by F = PA ∝ Pl2, where A is the area of contact, P is the cell turgor pressure, and l is the projection of the contact

surface onto the measurement plane. This takes into account the effects of turgor pressure and the near-inextensibility of the cell

wall, but assumes that these effects dominate over elastic energies due to bending of the cell wall or cytoskeleton (the turgor

pressure of ≈ 0.2 MPa [4] is nearly two orders of magnitude larger than the elastic moduli of cytoskeletal networks). Single-cell

studies [5–8] have indeed found that compressed S. cerevisiae cells exert forces proportional to the area of contact, in agreement

with a model that incorporates only internal pressure and cell wall stretching even for large deformations. We further validate

our approach by performing simulations of deformable cells composed of spring networks, which show similar deformations as

S. cerevisiae cells at corresponding pressures. The simulations are described in the next paragraph and in fig. 1.

Description of Mass-Spring simulation: The mechanics of a budding yeast cell is primarily controlled by the mechanics

of the cell wall and the turgor pressure [8]. In our “mass-spring” (MS) simulations, the cell wall is represented as a spherical

meshwork of springs obtained from surface triangulation. The neighbor vertices, separated by a distance R, are held together

via Hookean spring interactions: F(R) = −kMSR(1−R/R0), where kMS is a spring constant. The overlap between two non-

bonded vertices (or a vertex and a box wall) is modeled by Hertzian repulsive force: F(R) = 4
3 h3/2E∗√R∗R̂, where: 1/E∗ =

(1−ν2
1 )/E1+(1−ν2

2 )/E2; E1 and E2 are Young’s moduli; ν1 and ν2 Poisson’s ratios; 1/R∗ = 1/R1+1/R2; R1 and R2 radii of the

vertices, here representing cell wall thickness t, (R2 = ∞ for the box wall); and h = R1+R2−R. The force due to the cell volume-

dependent turgor pressure Π(Vcell) on vertex i is calculated as FΠ(�ri) =∇�ri

(
Π(Vcell)Vcell

)
, where Vcell(�r1, ....,�rNvert) is a function of

the Nvert vertices triangulating the cell surface and the volume change for vertex i is calculated using tetrahedral volume defined

by vertex i and it’s neighboring 3 vertices. The equations of motion of over-damped dynamics have been solved using Heun’s

method (explicit second-order Runge-Kutta method). The compression simulations have been performed by successive reduction

of the size of the box with the rate 0.01−0.1μm s−1. The parameters used in the simulations are: cell wall (box wall) Young’s

modulus E=150 MPa (200 MPa); Poisson’s ratio ν = 1/2; turgor pressure Π = 1.0 MPa (unless stated otherwise), t = 0.1μm,

initial radius of the cell R0 = 2.5μm. The Hookean spring constants are taken to be the same and related to the Young’s modulus

by the following equation: k = 4 ·E · t A0

∑i L2
i
, where E is Young’s modulus, t is the cell wall thickness, A0 is the cell area, and Li is

the relaxed length of the ith spring [9].

Dependence of contact surface area on pressure: We measure the cell contact area at the interface between the coverslip

and cell population, and compare it to in-house simulations. Reflectometry reveals that the average fraction of the coverslip

that is in contact with cells increases as the population pressure increases, shown in fig. S6A. We find that the growth-induced

pressure increases super-linearly with surface coverage, contradicting a pressurized-shell null model and suggesting the the yeast

cell turgor pressure increases with growth induced pressure (fig. S6B).

Coarse-grained simulations of proliferating elastic particles: In our 2D coarse-grained simulations, illustrated in Supple-

mentary fig. S9, cells are modeled as two frictionless rigidly-attached spherical lobes [10] (mother and bud) that grow exponen-

tially at rate γi by bud expansion (Eq. 1), move according to over-damped dynamics with mobility μ (Eqs. 2 and 3), and interact

via repulsive spring forces with elastic modulus k (Eq. 4)
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ȧi = γiai (1)

�̇ri = μ�Fi (2)

θ̇i =
m
I

μTi (3)

V = ∑
ik jl

1

2
kCGδ 2

ik, jlΘ(δik, jl) (4)

where ai =
π
4 (σ

2
i,mother +σ2

i,bud) is the cell area, σi,mother (σi,bud) is the diameter of the mother (bud),�ri (θi) is the cell position

(orientation), mi (Ii =
1
8 Ma2

(
1+Δ4

1+Δ2 + 2
( (1+Δ)Δ

1+Δ2

)2)
where Δi = σi,bud/σi,mother) is the cell mass (inertia), V is the total potential

energy, �Fi = −∇�riV (Ti = −∂θiV ) is the force (torque) on cell i, and δik, jl =
1
2

(
σik +σ jl

)− ∣∣�rik −�r jl
∣∣ is the overlap between

lobes k of cell i and l of cell j, and Θ is the Heaviside Step function. This method is similar to studies performed with growing

spherocylinders [11, 12]. For simulations with attraction, we extend the potential in Eq. 4 beyond its repulsive core to have an

attractive range of width Δ [13, 14]

V = ∑
ik jl

(
1

2
kCGδ 2

ik, jlΘ(δim, jn +Δ)− 1

2
kΔ2

)
(5)

In this model, the mother lobe has the same size σi,mother = σ for all cells. Equations of motions are integrated using a 3rd

order Gear Predictor-Corrector algorithm. Growth progresses while σi,bud < σ and culminates in division where the daughter

cells retain the orientation of cell i.
Cells grow in a rectangular box of dimensions Lx ×Ly with an outlet of width a. For the simulations in this paper, we used

Lx = 6σ , Ly = 16σ , and a = 1.4σ to match experiments. Cells interact with the wall with the same force as other particles,

Vwall =
1
2 kCGδ 2Θ(δ ), where δ is the overlap between the cell and wall.

Without pressure feedback, γi = γ0
i where γ0

i is chosen from a uniform distribution of width 20% around a mean growth rate

γ . With pressure feedback, the growth rate depends on pressure as γi = γ0
i e−Pi/P0 where Pi = is the pressure on particle i.

The free parameters in this model are an effective friction coefficient μ/
(
γ
√

mkCG

)
and a characteristic pressure feedback

scale P0/k. In Fig. 3 of the main text, we use parameters that best matches the experimental pressure fluctuations in the case

of intermittent flow where the pressure slowly builds and then suddenly drops during avalanches. We choose values of μ =
8× 104γ

√
mkCG and μ = 2× 103γ

√
mkCG for simulations with (Fig. 2B) and without (Fig. 2C) feedback that best capture the

ratio of pressure increase (Ṗ↑) and drop (Ṗ↓) rates in the case as shown in fig. S10. To obtain an experimentally-motivated value

of feedback pressure P0 (Fig. 2C), we used a value of P0 that yields the same ratio of Pexp
0 = 0.28 MPa (Fig. 3C) to 〈P〉exp = 0.7

MPa (135◦ data in Fig. 1C), Pexp
0 /〈P〉exp = 0.4. Coarse-grained simulations without feedback yield 〈P〉sim = 0.19kCG, giving

Psim
0 = 〈P〉sim ×Pexp

0 /〈P〉exp = 0.07k.

Estimation of pressure due to viscous friction: Here we estimate the pressure arising from friction between cells in the

outlet and the surrounding medium. In a chamber of dimensions Lx ×Ly with an outlet of dimensions width×length= a×d, the

chamber holds Nc ≈ LxLyh/σ3 cells and the outlet holds No ≈ adh/σ3 cells, where σ is a typical cell diameter and h is the height

of the device. Assuming that the height h of the system and the width of the outlet a are both a = h = σ , so that Nc ≈ LxLy/σ2

and No ≈ ad/σ2. If the cells in the outlet are pushed out at velocity v, the total frictional force they feel is F = f vNo, where f is

a friction coefficient per cell, and therefore the pressure at the outlet is

P = F/(ah) = f vNo/σ2 (6)

Standard viscous friction of a sphere in a liquid yields f = 6πησ/2. We further estimate the flow velocity by v = Ncσk where

k is the growth rate for cells in the chamber, assuming that cells in the outlet are not growing. This gives:

P =
(
6πησ/2

)(
Ncσk

)
No/σ2 (7)

= 3πkηNoNc (8)
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Using η = 10−3Pa s, k ≈ 0.4h−1 ≈ 10−4s−1, Nc ≈ 100, and No ≈ 10, we get

P = 3πkηNoNc (9)

= 3π ×10−3Pas×10−4s−1 ×100×10 (10)

= 1×10−3Pa (11)

Thus, viscous friction gives a negligible contribution to the pressure generated in the outlet, which is in the MPa range.

Conversely, we can use the above estimate to define an effective viscosity of the cell packing of 1 MPa s needed to achieve a

pressure of 1 MPa. This effective viscosity is much larger than has been measured for mammalian cells [15].
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Figure S1 Testing our indirect force-inference method on simulated packings. In the main text, we reported mechanical stress

distributions in packings of yeast cells that we have inferred from the observed cell shape deformations. Our force-inference method consists

of the following steps: First, we used a custom Matlab image analysis code to process the time-lapse movies that we have obtained with the

fluorescence exclusion method (fig. S2). Each cell, is identified with a watershed algorithm and manually refined if necessary. For each

identified cell, the contour is defined as a set of spline functions. These splines are further used to calculate the length l of the contact line

between each pair of cells. As a first order approximation, we estimate the contact area as A ∝ l2, and we assume that the contact force is

proportional to the contact area F ∝ A (Materials and Methods: See Inferring force maps).

Here, we test our force-inference method on packings generated by our mass-spring simulation. To this end, we compare the inferred force

network with the actual force network in the simulations.

A. 80 cells of the same size (R0 = 1.5μm), turgor pressure (Π = 1.0 MPa), and E=100 MPa are randomly distributed and compressed in a slab

geometry. The cells are depicted as a semi-transparent blue meshwork, confined by the rigid box. The contact forces are evaluated numerically

and are represented as the red lines between neighbor cells. The thickness of the lines corresponds to the magnitude of the contact forces.

B. The final snapshot from the simulation is processed with the in-house Matlab code for image analysis, and contact forces have been

inferred. The numerical (in blue) and image analysis (in red) force networks are superimposed on top of each other for visual comparison. The

correlation coefficient calculated for these two sets of contact forces is 0.79.

C. Scatter plot of each contact force in B. Forces have been scaled by the average value. Measured are the forces obtained from the

mass-spring simulations, and compared against the one obtained from the image analysis procedure.
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Figure S2 Inferring the instantaneous growth rate as a function of pressure using the pressure curve obtained from the self-closing
valve.
A. A fluorescent dye, FITC-conjugated Dextran, added to the medium allows us to label the space between the cells. FITC-conjugated

Dextran does not penetrate inside the cells, such that its fluorescence is excluded from a cell. As a consequence, as the cells are filling the

chamber, the fluorescence intensity is, in first order, proportional to the void in between cells, like in the fluorescent exclusion method [16].

Denoting φ the packing fraction, and V the volume of the chamber, we assume that the intensity I of fluorophore is I ∝ (1−φ)V .

B. We use finite element simulations (Comsol) to estimate the change in volume of the growth chamber as a function of the pressure. We

define the PDMS as a hyperelastic material as in [17], with an estimated Young’s modulus E = 2MPa. We find that the change in volume is to

good approximation linear in the pressure.

C. We use the excluded fluorescence, as well as the finite element simulation, to estimate the cell packing fraction, φ , as a function of the

growth-induced pressure. We observe that the growth-induced pressure starts to rise in the chamber for a packing fraction of about 0.4. We fit

the resulting relationship by a forth order polynomial to obtain a continuously differentiable function.

D. We use the values extracted from B and C to calculate the instantaneous volumetric growth rate γ , using a quasi-steady state assumption as

described in the supplementary text. The dark blue line corresponds to the values calculated from the mean pressure, and the envelope

corresponds to the values calculated from the envelope of the pressure curve. Note that the inferred continuous relationship between growth

rate and contact pressure is in good agreement with the steady-state data obtained independently, from outflow rates in our leaky devices.
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Figure S3 The reduction of growth rate is not due to glucose depletion in the growth chamber. To estimate whether glucose depletion

could account for the observed reduction of growth rate, we assume that cells would locally consume glucose at the maximum rate. We

consider two cases: either glucose merely diffuses inside the growth chamber, or it is also advected by the imposed nutrient flow. In both

cases, we find that the reduction of glucose concentration in the chamber is not enough to stall cell growth.

A. We first measure the diffusion of 2-NDBG, a fluorescent glucose analog molecule. Here, we observe at the beginning of the experiment

that there is almost no glucose in the self closing valve, and that it progressively diffuses in the chamber. Notice the foam-like packing of the

cells, which results from the growth-induced pressure nearly balancing the turgor pressure.

B - C. We measure the diffusion constant of the glucose analog in 2 different ways. We measure either the local concentration at a fixed

position in the chamber (B) or the full width at half maximum (FWHM) as a function of time (C). Fitting of a simple diffusion model agrees

well with the experimental data, and enables us to extract values for the diffusion constant of the glucose analog (see figure).

D - E. The biomass yield of S. cerevisiae cells is 0.45 × gcells/gglucose [18]. With a minimum doubling time of 2 hours, this yields a glucose

consumption rate of 2.2×107 molecules/s. We simulate glucose consumption in the fully packed growth chamber using finite element

simulations (Comsol) and the measured glucose diffusion constant extracted in B and C. We consider two cases: either there is only

consumption and diffusion (D) or consumption, diffusion and convection (E). We find that in the case where there is only diffusion, the

glucose concentration drops at about 70% of its boundary value c0, which is about 14 g/L, and still above the concentration where depletion of

glucose affects growth [19]. In a finite element simulation set-up where we impose a convective flow of 0.2 nL/s, we observe that there is no

glucose gradient in the growth chamber. We conclude that the observed reduction of growth rate in figure 3C is not an effect of glucose

depletion in the growth chamber.
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Figure S4 Measurement of cell viability and cell vitality. We assess how pressure changes cell viability and metabolic activity. Cell viability

is assessed through a viability kit (LIVE/DEAD Yeast Viability Kit, Thermo Fisher Scientific). Briefly, propidium iodide (PI) is added to the

culture medium. PI only enters the nucleus of dead cells and binds to DNA. We observe that, even at maximum pressure, most of the cells are

alive (more than 90% of the cells). Cell vitality is assessed by flowing in a cell permeable esterase substrate (FungaLight Yeast CFDA, AM,

Thermo Fisher Scientific) that is cleaved by esterases. The cleaved molecule becomes fluorescent, which enables one to assess esterase

activity, which is directly linked to the global cell metabolic activity. We observe that, even though cell vitality does not change much at 0.5

MPa (the change is less than 15%), it is almost non existent at the maximum pressure of 1MPa. This suggests that, even though alive, cells are

not metabolically active. This could be explained by pressure-induced molecular crowding, as in [20], where all processes in the cell are

slowed down to the point of stalling by the very high compression. Note that at the highest pressure, we observe about 5% of the cells bursting.
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Figure S5 The density of nuclear Whi5 is anti-correlated with the growth rate. This plot shows the nuclear Whi5 density for different

growth-induced pressures. The Whi5 density was obtained by measuring the number of cells presenting a nuclear Whi5 normalized by the

observed area. Note that the nuclear density of Whi5 is increasing with decreasing growth rate, suggesting that growth rate reduction is

accompanied with a cell cycle delay in the G1 phase of the cell cycle.
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Figure S6 Relationship between fraction of surface covered and growth-induced pressure indicates turgor pressure adaptation.
A. The growth-induced pressure increases (circles) faster than linearly with the fraction of surface covered. The dashed lines are obtained

from our bead-spring simulations, in which yeast cells are modeled as elastic shells subject to a constant turgor pressure. The simulations

yield a growth-induced pressure that increases linearly with surface coverage. The slope is equal to the turgor pressure Π, for which we chose

three different values (see inset). The discrepancy between data and simulations suggests that the turgor pressure increases with

growth-induced pressure.

B. The growth-induced pressure divided by the fraction of covered surface corresponds to the pressure exerted in the contacts between cells

and cover slip. Accordingly, the constant turgor pressure simulations of elastic shells yield nearly horizontal lines. The data, however, clearly

shows that the pressure in the cell-coverslip contacts increase with the growth-induced pressure. This may indicate a gradual increase in turgor

pressure.

Error bars of the simulation data are smaller than the symbols. Error bars for the surface coverage are estimated as followed: We assume that

we cannot measure the contact better than the diffraction limit. Hence, assuming a circular contact, we write that the radius of the contact has

a typical error of ±δ , where δ is the radius of the Point Spread Function.
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Figure S7 The average cell-cell contact stress approaches the cell turgor pressure under high compressive stress. We measure the

cell-cell contact stress in mass-spring simulations, and find that for high compression / packing fraction, the stress approaches the internal cell

turgor pressure.

A. Mass-spring simulations scheme. Identical cells are randomly distributed in a rigid box. The initial concentration is low so the cells do not

touch one another. Compression is performed by successive reduction of the size of the simulation box with the rate in the range of

0.01−0.1μm s−1.

B. 50 identical cells (R0 = 2.5μm, Π = 1.0 MPa, E = 150 MPa, t = 0.1μm) are compressed. For each pair of cells, the contact stress is

calculated and the average contact stress is plotted (red line) versus the fraction of box volume occupied by cells. For strong compression

(>0.7) the value of the average contact stress saturates at the value equal to turgor pressure, 1 MPa. The envelope corresponds to ±SD and is

obtained out of 5 replicates simulations with different random initial cell positions and orientations.

Inset. The contact stress σc is calculated as a ratio of the total normal force between two cells Fn and total contact area Ac. The contact area

Ac on one cell is a sum of areas of all triangles being in contact with the other cell. A triangle is in contact with another cell if all its vertices

are in contact with the neighbor cell (non-zero repulsive forces). The total normal force exerted on one cell is a sum of all normal forces

exerted on each vertex by the neighbor cell. To calculate the normal force F (red arrow) acting on a vertex (black-red circle), first the sum of

all non-bonded repulsive forces, Frep (red dashed lines), is calculated. Next the normal component of this force is extracted as a dot product

with all the triangles (described by the normal vectors ni) being in contact with the neighboring cell (shaded triangles), ni ·Frep . In order to

avoid double counting of the normal component of the force Frep, each dot product with ni is scaled by the area of the triangle on which the

force Frep is acting.
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Figure S8 Self-driven jamming can propagate cracks in agar gels.
We inoculate an agar gel (2%) by plunging in it a 0.45 mm diameter needle, which was first dipped in an overnight culture of budding yeast

(strain S288C). The agar dish is then incubated at 30 degree Celsius under humidity control (to avoid drying). As the cartoon illustrates, cells

flow out of the crack, and grow on the surface of the agar gel. The cells on top of the dish give rise to the large cloud on the lower image

observed at 26.5 h, showing that the cells are not fully trapped in the crack. Nevertheless, the crack tips are propagating as a function of time,

presumably due to jamming. As a control, we show images of cracks that were created by stabbing without cells and then incubated for the

same amount of time. A time-lapse movie of the crack propagation is available here.
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Figure S9 How cells grow in our coarse-grain simulation. Schematic of A the growth and B division processes and C inter-cell interactions

in our coarse-grained simulations. Each cell is composed to two lobes, the mother and bud.

A. During growth, the mother lobe diameter of cell i stays fixed at σi,mother = σ while the bud grows from σi,bud = 0 to σi,mother = σ .

B. Once the bud reaches σi,mother = σ , cell i divides into two new daughter cells that retain the orientation of their mother cell.

C. Cells i and j interact via only upon overlap via repulsive linear spring interactions with modulus k.
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Figure S10 How we parameterize our corse-grain simulation. We use the experimental pressure curves to parameterize our coarse-grain

simulations: the pressure rise enables to parameterize the growth, and the pressure drop the damping rate.

Pressure as function of time during a single pressure drop for A experiments, B simulations without feedback, and C simulations with

feedback (P0/k = 0.07). The red line in A corresponds to experiments with a 135◦ value. The red lines in B and C corresponds to simulations

with best-fit values of μ (B: μ = 8×104γ
√

mkCG and C: μ = 2×103γ
√

mkCG) used in Fig. 2B and Fig. 2C of the main text, the cyan line

corresponds to larger values of μ (B: μ = 3.2×105γ
√

mkCG and C: μ = 8×104γ
√

mkCG) and the green line corresponds to smaller values of

μ (B: μ = 2×104γ
√

mkCG and C: μ = 5×102γ
√

mkCG). For A, the dashed line shows the mean slope during pressure increase
(
Ṗexp
↑

)
and

the dotted line shows mean slope during avalanche
(
Ṗexp
↓

)
. For B and C, the dashed line is the mean slope during increase

(
Ṗsim
↑

)
and the

dotted line shows the extracted value of Ṗsim
↓ that yields the same ratio of Ṗ↓

/
Ṗ↑ as experiments.
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