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Haplotype phasing is a fundamental problem in medical and population genetics. Phas-

ing is generally performed via statistical phasing within a genotyped cohort, an approach

that can attain high accuracy in very large cohorts but attains lower accuracy in smaller co-

horts. Here, we instead explore the paradigm of reference-based phasing. We introduce a

new phasing algorithm that attains high accuracy across a broad range of cohort sizes by ef-

ficiently leveraging information from large external reference panels (such as the Haplotype

Reference Consortium, HRC) using a new data structure based on the positional Burrows-

Wheeler transform. Our method improves phasing accuracy by >2x compared to the best

publicly available alternative for phasing small European-ancestry cohorts, and it attains a

≈20x speedup and ≈10% increase in accuracy compared to reference-based phasing using

SHAPEIT2. Our method is freely available for reference-based phasing using the HRC panel

via the Sanger Imputation Service and the Michigan Imputation Server.
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Haplotype phasing is a central problem in human genetics [1]. Over the past decade, phas-

ing has most commonly been performed via statistical methods applied within a genotyped co-

hort [2–14]. Wet-lab technologies for direct phasing have also generated considerable recent inter-

est, but these methods are currently much less scalable [15]. In general, the accuracy of statistical

phasing methods increases steadily with sample size due to improved modeling of linkage disequi-

lbrium and increasing prevalence of identity-by-descent. We and others have recently developed

methods that achieve very high statistical phasing accuracy in cohorts comprising a large fraction

of a population [8] or containing >100,000 samples [13, 14]. However, for smaller cohorts, accu-

racy of cohort-based statistical phasing is fundamentally limited by the quantity of data available.

Here, we explore an alternative paradigm, reference-based phasing, which can achieve high

accuracy even in smaller cohorts by leveraging information from an external reference panel.

This paradigm targets a user group complementary to recent methods for phasing very large co-

horts [13, 14]. In particular, methods for mapping molecular QTLs using allele-specific reads

require accurate phasing information, but recent papers introducing these methods have reported

that inaccurate phasing currently limits their potential [16, 17].

We present a new reference-based phasing algorithm, Eagle2, which we have incorporated

into the Sanger Imputation Service and the Michigan Imputation Server to perform free reference-

phasing using the 32,470-sample Haplotype Reference Consortium (HRC) [18]. This approach

achieves >2x improved phasing accuracy over publicly available alternatives when used to phase

small European-ancestry cohorts, with smaller improvements for larger cohort sizes. The Eagle2

algorithm represents a substantial computational advance over existing reference-based phasing

algorithms: Eagle2 achieves a 20x speedup over SHAPEIT2 [12]—i.e., genome-wide phasing

in 1.5 minutes per sample—with a 10% improvement in accuracy across a range of ancestries.

(We note that SHAPEIT2 is not available for reference-based phasing on public HRC servers due

to licensing restrictions.) Eagle2 achieves this performance via two key ideas that distinguish it

from previous phasing algorithms [3–14]: a new data structure based on the positional Burrows-

Wheeler transform [19] and a rapid search algorithm that explores only the most relevant phase

paths through a hidden Markov model (HMM). We have released Eagle2 as open-source software

(see URLs).
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Results

Overview of methods

The Eagle2 phasing algorithm takes as input a diploid target sample and a library of reference

haplotypes. The statistical model underlying Eagle2 is a haplotype copying model similar to the

Li-Stephens model [20] used by previous HMM-based methods. However, Eagle2 has two key dif-

ferences compared to previous HMM-based methods. First, whereas previous approaches approx-

imate the haplotype structure (e.g., by merging haplotypes into local clusters) to produce a more

tractable HMM, Eagle2 efficiently represents the full haplotype structure in a way that losslessly

condenses locally matching haplotypes. Second, using this representation, Eagle2 selectively ex-

plores the space of diplotypes—i.e., complementary pairs of phased haplotypes—in a way that

only expends computation on the most likely phase paths (i.e., diplotypes with highest posterior

probabilities). This approach is distinct from the dynamic programming or sampling methods em-

ployed by previous phasing software and enables much greater computational efficiency. In more

detail, Eagle2 efficiently represents haplotype structure by introducing a new data structure, the

HapHedge, which can be generated in linear time using the positional Burrows-Wheeler transform

(PBWT) [19]. Eagle2 then explores diplotypes using a branching-and-pruning beam search. We

provide a schematic of the method in Figure 1 and present full details in Online Methods and the

Supplementary Note.

We note that the Eagle2 algorithm is very different from the long-range phasing algorithm we

recently developed for phasing extremely large cohorts [13]. (We refer to the previous method as

Eagle1.) The basic idea of Eagle1 was to harness identity-by-descent among distant relatives—

which is pervasive at very large sample sizes but rare among smaller numbers of samples—to

rapidly call phase using a fast scoring approach. In contrast, Eagle2 analyzes a full probabilistic

model similar to the diploid Li-Stephens model used by previous HMM-based methods. Con-

sequently, whereas Eagle1 suffered decreased accuracy compared to HMM-based methods when

used to phase <50,000 samples, Eagle2 achieves improved accuracy over previous methods for

both small and large haplotype reference panel sizes, as we demonstrate below. Finally, we note

that the Eagle1 algorithm was originally only implemented for cohort-based phasing; in this work,

we have extended the implementation to reference-based phasing for the sake of comparison. Like-
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wise, we have implemented a cohort-based version of Eagle2 that we also benchmark below.

Phasing performance using genotyped reference panels

We first benchmarked Eagle2 against previous reference-based phasing methods using reference

panels generated by phasing subsets of genotyped cohorts. These benchmarks allowed us to ex-

plore a greater range of reference panel sizes and genetic ancestries than currently available in

sequenced reference panels (as the N=32,470 samples currently in the HRC are predominantly

European), understanding that genotyped reference panels containing a limited set of markers are

not broadly useful for reference-based phasing. We performed benchmarks using a total of five

data sets: the UK Biobank cohort [21] and the four GERA sub-cohorts, which were genotyped on

four distinct European, African, East Asian, and Latino genotyping arrays [22, 23]. All five data

sets were typed on arrays containing 650K–850K autosomal markers with typical heterozygos-

ity and missingness rates, and each data set contained a small subset of mother-father-child trios

(Online Methods and Supplementary Table 1).

For the UK Biobank reference-based phasing simulations, we generated simulated reference

panels by randomly selecting Nref = 15,000, 30,000, or 50,000 samples (not containing trio mem-

bers) and phasing them using Eagle1 [13]. We then benchmarked the computational cost and accu-

racy of reference-based phasing methods by using each panel of 2Nref haplotypes to phase sets of

other UK Biobank target samples including the 70 European-ancestry trio children, which we used

for benchmarking accuracy (Online Methods). We performed these benchmarks on chromosomes

1, 5, 10, 15, and 20 (a total of 174,595 markers comprising ≈25% of the genome) using Eagle2,

SHAPEIT2 [12], SHAPEIT2 with its --no-mcmc option (which increases speed at the expense

of accuracy), and a reference-based version of Eagle1 that we implemented for comparison. We

also attempted to benchmark Beagle v4.1 [24] but found it was too slow for this benchmark to

be practical: for the smallest analysis (chromosome 20 with Nref = 15,000 and N target = 72), Bea-

gle v4.1 required 3.6 days (in contrast to 1.1 minutes for Eagle2). (We note that the focus of

Beagle v4.1 [24] is its haploid imputation algorithm, which is much faster than its phasing algo-

rithm.) We did not benchmark HAPI-UR [11] as HAPI-UR does not implement reference-based

phasing.
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We observed that Eagle2 achieved 12–24x speedups over SHAPEIT2 for performing reference-

based phasing using panels of size Nref = 15,000–50,000 (Fig. 2a and Supplementary Tables 2

and 3). Moreover, unlike the other methods we benchmarked, the computation time Eagle2 re-

quired to phase each target sample was nearly independent of the reference size. (For very large

reference panels with Nref � 100,000, the computational cost of Eagle2 will eventually increase

with Nref; see Online Methods and the Supplementary Note.) Eagle2 achieved running times simi-

lar to Eagle1 and ≈2x faster than SHAPEIT2 --no-mcmc (both of which are much less accurate

methods than Eagle2 and SHAPEIT2 when used with reference panels of these sizes; see below).

All methods had low memory costs (<7GB for M=57,753 SNPs on chromosome 1 with Nref =

50,000; Supplementary Table 3).

In our accuracy benchmarks, which we computed using gold standard trio phase calls, we ob-

served that Eagle2 achieved 8–17% lower switch error rates [2] compared to SHAPEIT2, with

larger gains for lower values of Nref in the 15,000–50,000 range (Fig. 2b and Supplementary Ta-

ble 2). Eagle2 achieved 18–36% lower switch error rates than Eagle1 and 63–75% lower switch

error rates than SHAPEIT2 --no-mcmc in the same Nref range.

Both Eagle2 and SHAPEIT2 have an important parameter, K, that specifies the number of con-

ditioning haplotypes used to phase each target sample and thus adjusts the speed-accuracy trade-

off. We therefore also investigated the effects of varying K. (We note that the default values and

precise meaning of this parameter are different for Eagle2 vs. SHAPEIT2; by default, SHAPEIT2

locally selects K=100 best reference haplotypes in each 2Mb window, while Eagle2 selects a fixed

set of K=10,000 best reference haplotypes to use for the entire chromosome. Eagle2 efficiently

models 100x more conditioning haplotypes by using the PBWT [19] and the HapHedge data struc-

ture; see Online Methods and the Supplementary Note for details.) We considered a range of values

of K from 0.5–4 times the default K, similar to previous benchmarks of SHAPEIT2 [12]. The ef-

fects of varying K were broadly consistent for Eagle2, SHAPEIT2, and SHAPEIT2 --no-mcmc:

all methods required similarly increased computation time and achieved improved accuracy with

larger values of K (Fig. 2c,d and Supplementary Tables 2 and 3). In particular, increasing the

number of conditioning haplotypes by a factor of 4x required 2–3x more computation time for

both Eagle2 and SHAPEIT2 while achieving similar decreases in switch error rates (12–19% and

18–19%, respectively, for Nref = 15,000–50,000; Supplementary Table 2).
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To assess the robustness of these accuracy benchmarks across genetic ancestries, we performed

a similar set of simulations using the European, African, East Asian, and Latino GERA sub-cohorts

(Online Methods). Because the latter three sub-cohorts were relatively small (Supplementary Ta-

ble 1), we generated a single simulated reference panel for each sub-cohort containing all samples

not belonging to trio pedigrees (Nref = 3,817, 5,164, 7,144, and 61,684 for the African, East Asian,

Latino, and European sub-cohorts). We phased the three smaller panels using SHAPEIT2 and

phased the European panel using Eagle1. We then benchmarked reference-based phasing accuracy

by phasing the trio parents within each sub-cohort using the panel generated from that sub-cohort.

(We phased trio parents rather than trio children for these benchmarks because the three smaller

data sets contained only 3–7 independent trios each; Supplementary Table 1.) These benchmarks

confirmed our findings from the UK Biobank data: Eagle2 achieved 5–23% lower switch error

rates than SHAPEIT2, and we observed the same relative ordering of accuracies as before across

all sub-cohorts (Figure 3 and Supplementary Table 4). We note that every method had a higher

switch error rate in the GERA European sub-cohort compared to the UK Biobank, presumably due

primarily to a more diverse set of ancestries represented. In general, absolute switch error rates

are not directly comparable among data sets due to differences in demography and genotyping

properties (e.g., chip density, allele frequency distribution, and genotype error rate).

Phasing accuracy using the 1000 Genomes and HRC panels

We next benchmarked reference-based phasing using either the 1000 Genomes Project Phase 3

panel (containing N=2,504 samples from 26 populations) [25] or the HRC panel r1.1 (contain-

ing N=32,470 samples mostly of European ancestry) [18]. For these benchmarks, we used 1000

Genomes trio children as target samples, removing all 1000 Genomes trios from each reference set

before running the analyses. We phased chromosome 1, and to emulate typical genotyping density,

we restricted the SNP set to 31,853 sites typed on 23andMe chips.

Given the predominantly European composition of the HRC, the benchmarks on 32 CEU trio

children were of primary interest, and we observed in these benchmarks that all methods achieved

substantially improved accuracy using the HRC panel versus the 1000 Genomes panel (Figure 4

and Supplementary Table 5). For each choice of reference panel, Eagle2 achieved the lowest switch
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error rate, consistent with our previous results. We note that in practice, performing reference-

based phasing with SHAPEIT2 on public HRC servers is not possible due to the SHAPEIT2 li-

cense. Consequently, for phasing small European cohorts, Eagle2 provides a >2x improvement in

accuracy over the best publicly available alternative: specifically, Eagle2 with the HRC achieved

a switch error rate of 1.35% (s.e. 0.04%), while SHAPEIT2 with the 1000 Genomes panel had a

switch error rate of 3.52% (0.06%) (Figure 4 and Supplementary Table 5).

We also benchmarked accuracy in all other 1000 Genomes populations containing >1 trio.

Specifically, we phased trio children in 31 Han Chinese (CHS) trios, 30 Peruvian (PEL) trios, 15

Punjabi (PJL) trios, and 19 Yoruba (YRI) trios using either the 1000 Genomes panel or the HRC

panel, and we observed that in all cases Eagle2’s accuracy was either slightly better or statistically

indistiguishable from SHAPEIT2’s (Supplementary Table 5). Interestingly, all methods achieved

lower accuracy using the HRC panel versus the 1000 Genomes panel (Supplementary Table 5).

Given that the HRC panel contains the 1000 Genomes panel, this observation suggests that the in-

clusion of≈30,000 additional predominantly European samples reduced the ability of each method

to model the haplotype structure of non-European populations. However, we did not observe this

phenomenon when phasing the two non-European UK Biobank trios using increasing numbers of

European reference haplotypes (Supplementary Table 6), so this observation may be specific to the

current HRC release (r1.1); development of the HRC is ongoing.

Phasing performance without a reference panel

Lastly, we assessed the performance of Eagle2 when applied to cohort-based phasing, which we

also implemented in our software. The Eagle2 cohort-based phasing algorithm starts by running

the first two steps of Eagle1 [13] to rapidly produce rough haplotype estimates and then refines

these estimates using the Eagle2 core phasing algorithm (Online Methods). We benchmarked Ea-

gle2, Eagle1, and SHAPEIT2 on subsets of the UK Biobank data set containingN = 5,000, 15,000,

50,000, or 150,000 samples (including trio children and excluding trio parents). We phased chro-

mosomes 1, 5, 10, 15, and 20 as in our UK Biobank reference-based phasing simulations, and we

allowed each computational job up to 5 days to complete. We observed that Eagle2 exhibited com-

putational efficiency similar to Eagle1, achieving 5–6x speedups over SHAPEIT2 in the analyses
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SHAPEIT2 was able to complete (N=5,000 and N=15,000) (Fig. 5a and Supplementary Tables 7

and 8). Eagle2 also exhibited close-to-linear run time scaling across this sample size range, break-

ing even with Eagle1 at N≈50,000 and achieving faster running times for N=150,000.

In our accuracy benchmarks using the 70 European-ancestry UK Biobank trios, we observed

that Eagle2 achieved better accuracy than SHAPEIT2 and Eagle1 for N≤50,000, as expected

(Fig. 5b and Supplementary Tables 7 and 8). At N=150,000, Eagle1 achieved a slightly lower

switch error rate (0.31%, s.e. 0.02%) than Eagle2 (0.33%, s.e. 0.02%), although the difference was

not statistically significant. However, we observed that running Eagle2 with 4x the default number

of conditioning haplotypes (i.e., K=40,000) achieved the lowest error rates across all sample sizes

tested (0.26%, s.e. 0.02% at N=150,000). Finallly, we confirmed that Eagle2 achieved better

phasing accuracy than SHAPEIT2 or Eagle1 when used to phase the GERA samples within each

GERA sub-cohort (Supplementary Table 9), with switch error rates consistent with our earlier

reference-based simulations (Figure 3 and Supplementary Table 4).

Discussion

We have described a new phasing algorithm, Eagle2, which we have incorporated into the Sanger

Imputation Service and the Michigan Imputation Server to offer free reference-based phasing using

theN=32,470-sample Haplotype Reference Consortium panel. This service enables high-accuracy

phasing even in smaller cohorts, which was not previously possible. Eagle2 achieves substantial

gains in speed and accuracy over previous methods via a novel search-based algorithm employing

the positional Burrows-Wheeler transform. We believe this method is timely, as large sequenced

reference panels (e.g., the HRC) are now becoming available for use—but must be utilized via

analyses run on central servers due to consent restrictions. We anticipate that Eagle2’s phasing

speed—1.5 minutes per genotyped sample—will help keep computation tractable as demand for

this service increases. Additionally, we anticipate that our release of Eagle2 as open-source soft-

ware will aid in future method development and integration into analysis pipelines.

We note that Eagle2 targets a distinct user group compared to very recent work on phasing

very large cohorts [13, 14]. In particular, our Eagle1 method [13] is targeted at phasing very

large (N>100,000) cohorts and achieves much lower accuracy than both Eagle2 and previous
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methods when used to phase smaller cohorts. The SHAPEIT3 method [14], which has not yet been

published, is likewise targeted at phasing “biobank scale datasets.” We were unable to benchmark

SHAPEIT3 given that it has not yet been released, but the UK Biobank Phasing and Imputation

Documentation (see URLs) indicates that its primary advance is removing a quadratic complexity

component of the SHAPEIT2 algorithm that becomes significant as N increases beyond 10,000

samples. This suggests that if used to perform HRC-based phasing, SHAPEIT3 would be a few

times faster than SHAPEIT2 with approximately the same accuracy as SHAPEIT2; in contrast,

Eagle2 is ≈20x faster and ≈10% more accurate than SHAPEIT2. (In practice, the SHAPEIT

license precludes its use for reference-based phasing on the Sanger and Michigan HRC servers.)

While we believe that reference-based phasing using large reference panels such as the HRC

is a valuable phasing paradigm, we note a few limitations. First, reference-based phasing accuracy

is limited not only by reference panel size but also by genotyping and phasing accuracy in the ref-

erence panel. In particular, the HRC reference haplotypes are largely derived from low-coverage

sequencing data (which is generally prone to higher errors in genotype calling), and efforts to im-

prove the accuracy of the reference panel are ongoing. Second, for reference-based phasing to be

effective, the reference panel needs to contain a sizable subset of samples with genetic ancestry

well-matched to the target samples. Consequently, phasing using the HRC is currently only advan-

tageous for European-ancestry target samples, although plans are underway to grow the HRC to

better represent worldwide populations. Third, for very large cohorts (substantially larger than the

reference size), we expect that reference-based phasing will achieve only marginal gains in accu-

racy over cohort-based phasing. For such cohorts, we expect that cohort-based phasing will remain

the preferred option due to ease of execution—although if the end goal is HRC-based imputation,

then we expect that HRC-based pre-phasing [26] will be more convenient. Finally, we note that

we have not engineered Eagle2 to phase sequenced samples [27, 28]; for HRC-based phasing of

small sets of sequenced samples, the SHAPEITR method [29] (available via the Oxford Statistics

Phasing Server; see URLs) has recently been developed. Despite these limitations, we expect that

reference-based phasing using Eagle2 and the HRC panel will be a valuable resource providing

free, fast, and accurate phasing to the scientific community.
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URLs. Eagle v2.0 software and source code, http://www.hsph.harvard.edu/alkes-price/

software/.

SHAPEIT2 software,

http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html.

Beagle v4.1 software, http://faculty.washington.edu/browning/beagle/beagle.html.

PLINK software, http://www.cog-genomics.org/plink2.

UK Biobank, http://www.ukbiobank.ac.uk/.

UK Biobank Genotyping and QC Documentation, http://www.ukbiobank.ac.uk/wp-content/

uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf.

UK Biobank Phasing and Imputation Documentation, http://biobank.ctsu.ox.ac.uk/crystal/

docs/impute_ukb_v1.pdf.

GERA data set, http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000674.v1.p1.

1000 Genomes data set, http://www.1000genomes.org/.

Haplotype Reference Consortium, http://www.haplotype-reference-consortium.org/.

Sanger Imputation Service, http://imputation.sanger.ac.uk/.

Michigan Imputation Server, http://imputationserver.sph.umich.edu/.

Oxford Statistics Phasing Server, https://phasingserver.stats.ox.ac.uk/.
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Online Methods

Eagle2 core algorithm for phasing a single target sample using a set of reference haplotypes.

Here we outline the key ideas underlying the Eagle2 core algorithm for phasing a single target

sample using a set of reference haplotypes, which has three main steps.

Step 1: Selection of conditioning haplotypes. Eagle2 first identifies a subset of K=10,000

conditioning haplotypes by ranking reference haplotypes according to the number of discrepancies

between each reference haplotype and the homozygous genotypes of the target sample. As in our

previous work [13], we perform computation on blocks of up to 64 SNPs at once using bitwise

arithmetic; thus, the total computational cost of subset selection is linear in Nref with a very small

constant factor (ignoring time to rank the results, which is negligible in practice). The constant

factor is small enough that this step constitutes only a small fraction of the total run time for

Nref<100,000. We note that our discrepancy metric does not make use of inferred phase of the

target genotypes (which is possible within an iterative phase refinement scheme) and produces a

single set of conditioning haplotypes to use for the entire region being phased, in contrast to the

sophisticated approach used by SHAPEIT2 [12]. However, Eagle2 is able to condition on 100x

more haplotypes than SHAPEIT2, which we suspect makes selection of conditioning haplotypes

much less important.

Step 2: Generation of HapHedge data structure. Eagle2 next generates a HapHedge data

structure on the selected conditioning haplotypes. The HapHedge encodes a sequence of haplo-

type prefix trees (i.e., binary trees on haplotype prefixes) rooted at a sequence of starting positions

along the chromosome, thus enabling fast lookup of haplotype frequencies (Figure 1). (In practice,

we start a new tree roughly once per heterozygous site in the target sample; Supplementary Fig. 1.)

The key features of the HapHedge are linear-time construction, linear-memory representation, and

constant-time prefix extension, all with small constant factors. The compact in-memory repre-

sentation of the HapHedge is achieved via radix trees (Supplementary Fig. 2), while linear-time

construction is achieved via the positional Burrows-Wheeler transform [19]. In its simplest form,

the PBWT iteratively creates sorted lists of haplotype prefixes, moving the prefix start point from

right to left. Our algorithm extends this procedure to convert the lists of sorted prefixes into prefix

trees; see the Supplementary Note for details.
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Step 3: Exploration of the diplotype space. Having prepared a HapHedge of conditioning hap-

lotypes, Eagle2 performs phasing using a statistical model similar to the Li-Stephens haplotype

copying model [5, 20] used by previous HMM-based methods. However, in contrast to previous

methods, Eagle2 applies two new ideas to perform fast and accurate phase inference under this

model. The first idea is a new way to efficiently compute haplotype probabilities under a copy-

ing model. Naı̈vely, such computations require exponential time because of the combinatorial

explosion of possible recombination points. The standard approach to overcoming this barrier is

to observe that within a KHMM-state HMM, recursion allows computation of all marginal prob-

abilities (for all KHMM states at each of M positions) in O(MKHMM
2) time. With Eagle2, we

take a completely different recursive approach that computes the probability of a single haplo-

type in O(M) time—independent of the number of reference haplotypes K—after creation of the

HapHedge in O(MK) time. The HapHedge essentially consolidates all reference haplotypes shar-

ing a common prefix (starting at any given position) into a single atom of data, thus eliminating

future computation that scales with K.

Of course, being able to very rapidly compute the probability of a single haplotype is only

useful if we can identify a small subset of haplotype probabilities that are worth computing; to

this end, Eagle2 employs a second key idea. We perform a beam search from left to right across

the chromosome, propagating a small set of likely diplotypes that represent most of the posterior

probability mass in the local diplotype space. This approach essentially focuses computational

effort on a small subset of the diplotype space (vs. expending computation evenly across the space

as in HMM recursion), which is advantageous when most of the space is probabilistically unfavor-

able but difficult to discard a priori. Full mathematical and engineering details are provided in the

Supplementary Note.

Eagle2 algorithm for reference-based phasing with multiple target samples. In practice,

reference-based phasing is typically performed on a target set containing many samples, allow-

ing the potential to improve phasing accuracy by using inferred target haplotypes to phase each

other. By default, Eagle2 performs a variable number of phasing iterations chosen based on the

relative size of the target (N target) and the reference (Nref). This behavior is intended to allow Ea-

gle2 to automatically benefit from increased statistical power available from larger target sample
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sizes. Specifically, if N target < Nref/2, Eagle2 performs only one phasing iteration (phasing each

target sample using only the reference haplotypes). If Nref/2 ≤ N target< 2Nref, Eagle2 performs two

iterations, augmenting the reference panel with the inferred target haplotypes during the second

iteration. If N target ≥ 2Nref, Eagle2 performs three iterations in an analogous manner. Whenever

Eagle2 performs more than one iteration, all iterations prior to the final iteration use K/2 condi-

tioning haplotypes to save time, given that the last iteration has the most impact on accuracy. The

number of iterations can also be set directly via the --pbwtIters parameter.

Eagle2 algorithm for cohort-based phasing. To perform cohort-based phasing (i.e., without a

reference), Eagle2 employs an iteration similar to the above approach, but prior to running two

iterations of the Eagle2 core phasing algorithm as described above, it first runs the first two steps

of the Eagle1 algorithm, which rapidly detect identical-by-descent segments and use them to call

phase [13]. Within small data sets, identity-by-descent is less common, but our results indicate that

the two subsequent iterations of the Eagle2 core phasing algorithm are able to rapidly refine phase

calls given even an inaccurate set of initial phase calls.

UK Biobank data set. We analyzed data from the UK Biobank consisting of 152,729 samples

typed at ≈800,000 SNPs. Using PLINK [30] (see URLs), we removed 480 individuals marked

for exclusion from genomic analyses based on missingness and heterozygosity filters and 1 indi-

vidual who had withdrawn consent, leaving 152,248 samples (see URLs, Genotyping and QC).

We restricted the SNP set to autosomal, biallelic SNPs with missingness ≤10% and we further

excluded 65 autosomal SNPs found to have significantly different allele frequencies between the

UK BiLEVE array and the UK Biobank array, leaving 707,524 SNPs (57,753 on chr1, 41,538 on

chr5, 34,588 on chr10, 22,367 on chr15, and 18,349 on chr20). We identified 72 trios based on

IBS0<0.001, sex of parents, and age of trio members (see URLs, Genotyping and QC). Of the

72 trio children, 69 self-reported British ethnicity, one self-reported Indian ethnicity, and one self-

reported Caribbean ethnicity. The remaining trio child did not self-report any ethnicity, but her

parents self-reported Irish and “Any other white background” as their ethnicities, so we included

this trio child in the 70 European-ancestry trio children we used to benchmark phasing accuracy.
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GERA data set. We analyzed GERA samples (see URLs; dbGaP study accession phs000674.v1.p1)

typed on each of the four GERA ancestry-specific chips (European, African, East Asian, and

Latino); QC is described in ref. [22]. We directly analyzed all samples and all autosomal SNPs

in each of the four sub-cohorts (Supplementary Table 1). We identified independent trios in each

sub-cohort according to pedigree information provided with the data release.

Phasing software versions and parameter settings. We benchmarked Eagle1 [13], Eagle2

(r370), SHAPEIT v2 (r790) [12], and Beagle v4.1 (22Feb16.8ef) [24] using the Oxford genetic

map (supplied with SHAPEIT and Eagle). When running Eagle2 in reference-based phasing mode,

we turned off imputation of missing genotypes using the --noImpMissing flag; otherwise, we

ran all methods using their default parameter settings unless explicitly testing non-default settings.

Specifically, the non-default parameter settings we tested were the --no-mcmc and --states

(K) option of SHAPEIT2 and the --Kpbwt option of Eagle2.

Reference-based phasing using genotyped reference panels. For our reference-based phasing

benchmarks using genotyped UK Biobank data, we constructed reference panels by randomly

selecting Nref = 15,000, 30,000, or 50,000 samples (disjoint from the 72 UK Biobank trios) and

phasing these samples using Eagle1 (as phasing using SHAPEIT2 would have required several

weeks [13]). We then applied each reference-based phasing method to phase chromosomes 1,

5, 10, 15, and 20 of the N target = 72 trio children using each simulated reference panel, and we

compared the phased output against trio phase calls to compute switch error rates [2, 13]. In our

results, we report mean switch error rates and s.e.m. over the 70 European-ancestry trio children

(according to self-reported ethnicity; see above).

To benchmark per-sample computational cost of reference-based phasing, we performed an

additional set of analyses in which we phased 1,000 randomly selected samples (not contained in

the simulated reference panels) in addition to the 72 trio children. We subtracted the N target = 72

running times from the N target = 1,072 running times to obtain the incremental cost of phasing 1,000

samples, thus adjusting for initialization costs (e.g., reading the reference data and synchronizing it

with the target data), which account for a non-neglibible fraction of total computational cost when

N target is small. Finally, we divided by 1,000 to obtain per-sample costs and multiplied by 4 to scale
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up from the five chromosomes analyzed (≈25% of the genome) to a genome-wide analysis.

For our reference-based phasing benchmarks using GERA data, we applied an analogous pro-

cedure with the following minor differences. For each of the four sub-cohorts, we created a single

simulated reference panel using all samples not in the same extended pedigree as any trio. We

phased the European chip panel using Eagle1 and phased the other three panels using SHAPEIT2

(which is computationally tractable and more accurate than Eagle1 for small cohorts [13]). In each

sub-cohort, we then applied each reference-based phasing method to phase all 22 autosomes of the

trio parents in that sub-cohort, and we computed mean switch error rates over all trio parents. We

chose to benchmark accuracy using trio parents rather than trio children due to the small numbers

of trios in the non-European sub-cohorts. (For the European sub-cohort, we also computed bench-

marks using trio children for comparison.) For the European sub-cohort, we computed s.e.m. over

samples as before; for the other three sub-cohorts, we computed s.e.m. over 25 SNP blocks due

to the small numbers of trios. For the purpose of comparing methods, these standard errors are

slightly conservative due to true variation among samples and across the genome.

Evaluation of cohort-based phasing performance. For our benchmarks of phasing without a

reference, we created subsets of UK Biobank samples containing N = 5,000, 15,000, 50,000, or

150,000 samples, each of which contained all 72 trio children and none of the 144 trio parents. We

then applied each phasing method to phase chromosomes 1, 5, 10, 15, and 20 of each subset of

samples, and we computed mean switch error rates and s.e.m. over the 70 European-ancestry trio

children as above. We applied an analogous procedure to the GERA sub-cohorts with the same

modifications as above.
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Figure 1. Schematic of the Eagle2 core phasing algorithm. Given diploid genotypes from a
target sample along with a haploid reference set of conditioning haplotypes, our algorithm
proceeds in two steps. (a) We use the positional Burrows-Wheeler transform [19] to generate a
“hedge” of haplotype prefix trees rooted at markers spaced across the chromosome. These trees
encode haplotype prefix frequencies, represented here with branch thicknesses. (b) We explore a
small set of high-probability diplotypes (i.e., complementary pairs of phased haplotypes),
estimating diplotype probabilities under a haplotype copying model by summing over possible
recombination points. For each possible choice of recombination points, the HapHedge data
structure allows rapid lookup of haplotype segment frequencies. (This illustration is meant to
provide intuition for the overall approach; our optimized software implementation first
“condenses” reference haplotypes based on the target genotypes. Details are provided in
Supplementary Fig. 1 and the Supplementary Note.)
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Figure 2. Running time and accuracy of reference-based phasing in UK Biobank
simulations. We benchmarked Eagle2 and other available methods by phasing UK Biobank trio
children using a reference panel generated from Nref = 15,000, 30,000, or 50,000 other UK
Biobank samples. (a) CPU time per target genome on a 2.27 GHz Intel Xeon L5640 processor.
(We analyzed a total of 174,595 markers on chromosomes 1, 5, 10, 15, and 20, representing
≈25% of the genome, and scaled up running times by a factor of 4; see Supplementary Table 3
for details.) (b) Mean switch error rate over 70 European-ancestry trios; error bars, s.e.m. (c, d)
CPU time and mean switch error rate as a function of the number of conditioning haplotypes used
by SHAPEIT2 and Eagle2 (relative to the default values of K=100 and 10,000, respectively).
Eagle1 does not have such a parameter, so we display its performance as a horizontal line.
Numeric data and additional benchmarks varying the number of conditioning haplotypes used
with Nref = 15,000 and 50,000 are provided in Supplementary Table 2.
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Figure 3. Accuracy of reference-based phasing in GERA simulations. We phased trio parents
in each GERA sub-cohort using a reference panel generated from all other non-familial samples
in the same sub-cohort. We ran each method on all 22 autosomes and computed aggregate mean
switch error rates; error bars, s.e.m. Standard errors for the European-ancestry sub-cohort are over
400 parent samples. Standard errors for the other three sub-cohorts are over 25 SNP blocks.
Numeric data and additional benchmarks varying the number of conditioning haplotypes used by
each method are provided in Supplementary Table 4.
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Figure 4. Accuracy of reference-based phasing using the 1000 Genomes and HRC panels.
We phased 32 trio children from the 1000 Genomes CEU population using either the 1000
Genomes Phase 3 reference panel or the Haplotype Reference Consortium panel (excluding trios
in either case). We analyzed chromosome 1, and to emulate a typical use case, we restricted the
data to 31,853 markers (genotyped on 23andMe chips). We plot mean switch error rates; error
bars, s.e.m. over samples. Numeric data and additional benchmarks on other 1000 Genomes
populations are provided in Supplementary Table 5.
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Figure 5. Running time and accuracy of cohort-based phasing in the UK Biobank cohort.
We benchmarked Eagle2 and other available phasing methods on N=5,000, 15,000 50,000, and
150,000 UK Biobank samples (including trio children and excluding trio parents). (a) Total wall
clock time for genome-wide phasing on a 16-core 2.60 GHz Intel Xeon E5-2650 v2 processor.
(We analyzed a total of 174,595 markers on chromosomes 1, 5, 10, 15, and 20, representing
≈25% of the genome, and scaled up running times by a factor of 4; see Supplementary Table 8
for per-chromosome data.) SHAPEIT2 was unable to complete the N=50,000 chr1 and chr5
analyses and was uanble to complete any of the N=150,000 analyses in 5 days, the run time limit
for single compute jobs. (b) Mean switch error rate over 70 European-ancestry trios; error bars,
s.e.m. Numeric data and additional benchmarks varying the number of conditioning haplotypes
used by Eagle2 are provided in Supplementary Table 7.
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