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Abstract12

Equity, de�ned as reward according to contribution, is considered a central aspect13

of human fairness in both philosophical debates and scienti�c research. Despite large14

amounts of research on the evolutionary origins of fairness, the evolutionary rationale15

behind equity is still unknown. Here, we investigate how equity can be understood in the16

context of the cooperative environment in which humans evolved. We model a population17

of individuals who cooperate to produce and divide a resource, and choose their cooperative18

partners based on how they are willing to divide the resource. Agent-based simulations,19

an analytical model, and extended simulations using neural networks provide converging20

evidence that equity is the best evolutionary strategy in such an environment: individuals21

maximize their �tness by dividing bene�ts in proportion to their own and their partners'22

relative contribution. The need to be chosen as a cooperative partner thus creates a23

selection pressure strong enough to explain the evolution of preferences for equity. We24

discuss the limitations of our model, the discrepancies between its predictions and empirical25

data, and how interindividual and intercultural variability �t within this framework.26

Keywords: equity theory, fairness, inequity aversion, partner choice, merit, proportion-27

ality28
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1 Introduction29

For centuries, philosophers have emphasized the important role of proportionality in hu-30

man fairness. In the fourth century BC, Aristotle suggested an "equity formula" for fair31

distributions (Aristotle, 1999), mathematical equivalent of "reward according to contribu-32

tion," whereby the ratios between the outputs O and inputs I of two persons A and B are33

made equal: OA
IA

= OB
IB

. This formula also captures the concept of "merit," the idea that34

people who work harder deserve more bene�ts (Adams, 1963; Konow, 2003; Skitka, 2012).35

Psychological research on distributive justice, and on equity theory in particular, has36

o�ered extensive empirical support for Aristotle's claim (Adams, 1963; Homans, 1958;37

Walster et al., 1973; Mellers, 1982). Equity theory aims to predict the situations in which38

people will �nd that they are treated unfairly. A robust �nding is that receiving more or39

less than what one deserves leads to distress and attempts to restore equity by increasing40

or decreasing one's contribution (Adams, 1963; Adams and Jacobsen, 1964). People prefer41

income distributions with strong work-salary correlations, prefer to give more to individ-42

uals whose input is more valuable, and favor meritocratic distributions as a whole in both43

micro- and macro-justice contexts (Baumard et al., 2013).44

More recently, experiments with economics games have shown that participants con-45

sistently divide the product of cooperative interactions in proportion to each individual's46

talent, e�ort, and the resources invested in the interaction (Cappelen et al., 2010; Frohlich47

et al., 2004). Meritocratic distributions have been observed across many societies (Mar-48

shall et al., 1999), including hunter-gatherer societies (Gurven, 2004; Alvard, 2002; Liénard49

et al., 2013; Schäfer et al., 2015), and can be detected very early in human development50

(Kanngiesser et al., 2010; Baumard et al., 2012), suggesting that equity could be a universal51

and innate pattern in human psychology.52

Preferences for equitable outcomes present the same evolutionary problem as prefer-53

ences for fair outcomes in general: at least in the short term, those preferences are costly.54
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Although people react more to inequitable situations when they are disadvantageous than55

when they are advantageous, people still feel uncomfortable in unjusti�ed advantageous56

situations (Austin and Walster, 1974; Fehr and Schmidt, 1999). Experiments even show57

that people are ready to incur costs and decrease their own payo� in order to achieve more58

equitable distributions (Dawes et al., 2007). How can natural selection account for the59

evolution of such costly preferences ?60

Until now, little attention has been given to this question. There have been many61

theoretical studies on the evolution of fairness (Nowak et al., 2000; Gale et al., 1995;62

Page and Nowak, 2002; Barclay and Stoller, 2014; André and Baumard, 2011; Debove63

et al., 2015a), but all of them are concerned with explaining the evolution of fairness in64

the ultimatum game, an economic game where the fair division happens to be a division65

into two equal halves (Güth et al., 1982; Camerer, 2003). However, equal divisions are66

just a special case of the more general category of equitable divisions: that is, divisions67

proportional to contributions. As emphasized by equity theory, unequal divisions can be68

judged fair when they respect the partners' investment, talents, commitment, etc. In brief,69

although many models can explain the evolution of preferences for equal divisions, none70

of them is able to explain the evolution of preferences for proportional divisions. Here71

we aim to understand whether natural selection can lead to such proportional divisions of72

resources (including the particular case of equal divisions), in a scenario where partners73

can make di�ering contributions to a cooperative undertaking.74

Partner choice has had an important role in the evolution of cooperation, as evidenced75

by both theoretical (Aktipis, 2004; Nesse, 2007; Aktipis, 2011; McNamara et al., 2008; Bar-76

clay, 2011) and empirical studies (Barclay, 2004; Barclay and Willer, 2007; Sylwester and77

Roberts, 2013, and see Barclay, 2013 for a review in humans). When people are in com-78

petition to be chosen as cooperative partners, experiments show that they increase their79

level of cooperation because they have a direct interest in doing so (Barclay, 2004, 2006).80

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 10, 2016. ; https://doi.org/10.1101/052290doi: bioRxiv preprint 

https://doi.org/10.1101/052290


Partner choice also has interesting consequences for the evolution of fairness. It leads to81

equal divisions of resources in theoretical and empirical settings (André and Baumard,82

2011; Debove et al., 2015b,a), because when individuals can choose whom to cooperate83

with then they are better o� refusing divisions that do not compensate their opportunity84

costs. These results suggest the way through which partner choice could also explain the85

evolution of divisions proportional to contributions: if greater contributors have larger86

opportunity costs, they will choose partners who give them something at least equal to87

these opportunity costs. Nonetheless, this hypothesis has never been studied formally.88

To summarize, preferences for equity are robust and widespread in humans, but we89

currently lack an evolutionary explanation for their costly existence. Here, we aim to90

put the partner choice mechanism to the test to see if it can explain such preferences. We91

develop models in which individuals put e�ort into the production of a collective good, and92

di�er with regard to both the amount of e�ort they are willing to put in and the e�ciency93

of their contribution to the production of the good. To determine the evolutionarily stable94

sharing strategy in this environment, we �rst analyzed an evolutionary model using agent-95

based simulations. We then developed a simple analytical model to better understand96

the simulations, and tested the robustness of our results by performing simulations with97

evolving neural networks as more realistic decision-making devices. The results provide98

converging support for the conclusion that when individuals can choose whom to cooperate99

with, equity emerges as the best strategy, and the o�ers that maximize �tness are those100

that are proportional to the individual's relative contribution to the production of the101

good.102

2 Methods103

We develop three complementary sets of simulations and an analytical model. For clarity,104

we present the �rst set of simulations in details before explaining how the other sets di�er.105
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Source code for all simulations is available online.106

2.1 Simulations Set 1: two productivities107

2.1.1 Individuals108

We consider a population of n individuals who will be given multiple opportunities to109

cooperate and produce resources during their life. Cooperation only takes place in dyadic110

interactions. We assume individuals are characterized by a "productivity", such that some111

individuals can produce more resources than others when they cooperate. Individuals can112

be of one of two productivities: low-productivity individuals can produce a resources when113

they cooperate, while high-productivity individuals can produce b resources (b > a). This114

productivity is constant across the entire life of an individual but is not heritable: at birth,115

each individual is randomly attributed a level of productivity that is independent of his116

parent's. This condition is necessary so that there is always a diversity of productivities117

in the population at each generation.118

To decide with whom they will cooperate and how to divide resources, we assume119

that each individual is characterized by eight genetic variables: four rij and four MARij120

variables, with i and j ∈ {HP,LP}, denoting an individual's productivity (HP = High-121

Productivity, LP = Low-Productivity). rij is the fraction of resources (between 0 and 1)122

that an individual of productivity i will give to an individual of productivity j. We call123

the rij variables the �reward� variables. MARij is the minimum acceptable reward, the124

minimum fraction of resource that an individual of productivity i is ready to accept from125

an individual of productivity j.126

2.1.2 Social life127

Only two types of events can happen at any given time in our model: the encounter128

of two solitary individuals, or the split of two cooperating individuals. We model time129
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continuously. At each loop of the model, we (i) determine the time period until the next130

event (ii) determine whether this event is an encounter or a split, and (iii) execute the131

corresponding actions for each event, described below. This process is repeated until time132

has exceeded a constant L, which corresponds to the end of the life of all individuals (see133

section "reproduction" below).134

After any event occurring at time t (or after the birth of individuals at t=0), the time135

period until the next event is drawn in an exponential distribution of parameter136

λ(t) = (C(t) ∗ τ2 ) + S(t) ∗ β137

with C(t) the number of cooperating individuals at time t, S(t) the number of solitary138

individuals at time t, β a constant encounter rate and τ a constant split rate.139

The probability p(t) that this event is an encounter is then given by140

p(t) = S(t) ∗ β
λ(t)141

Conversely, 1− p(t) is the probability that this event is a split.142

Depending on whether the event is an encounter or a split, two scenarios unfold:143

1/ If the event is an encounter, two solitary individuals are randomly drawn from the144

population and o�ered an opportunity to cooperate to produce resources. To this end,145

one of the two individuals is randomly selected to unilaterally decide how to divide the146

resources through her rij reward variable. We call this individual the �partner�. However,147

before cooperation e�ectively starts, the partner must be accepted by the second individ-148

ual. We call the second individual the �decision maker�. The decision maker makes her149

decision based on her partner's reputation. For simplicity, we do not model the formation150

of this reputation. We simply assume that the decision maker knows her partner's reward151

value rij . For instance, a HP partner A has a reputation of rAHPLP
with a LP decision152

maker B. The LP decision maker will then compare the value of rAHPLP
to her own153
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MARBLPHP
, and if rAHPLP

≥ MARBLPHP
, the partner will be accepted and cooperation154

will start. From this point on until the interaction stops, the two individuals produce, at155

each unit of time, an amount of resources that is equal to the sum of their respective pro-156

ductivities, from which the decision maker receives a fraction rAHPLP
. Conversely, if the157

partner's reputation is not good enough for the decision maker (rAHPLP
< MARBLPHP

),158

the two individuals do not cooperate together and go back to the pool of solitary individ-159

uals without receiving any resources.160

2/ If the event is a split, a pair of cooperating individuals is randomly chosen to split,161

and the two individuals go back to the pool of solitary individuals.162

2.1.3 The cost of partner choice.163

The cost of partner choice is implicit in our model. It is a consequence of the time it164

takes to �nd a partner. Hence, the cost and bene�t of being choosy are not controlled by165

explicit parameters, but by two parameters that characterize the "�uidity" of the social166

market: the "encounter rate" β, and the "split rate" τ . When β
τ is large, interactions last167

a long time (low split rate τ) but �nding a novel partner is fast (high encounter rate β),168

and individuals thus should be picky about which partners they accept. This is a situation169

where partner choice is not costly. On the contrary, when β
τ is low, interactions are brief170

but �nding a novel partner takes time, and individuals should thus accept almost any171

partner. Partner choice is then costly.172

2.1.4 Reproduction173

We model a Wright-Fisher population with non-overlapping generations: when the lifespan174

L has been reached, all individuals reproduce and die at the same time. The number of175

o�springs produced by a focal individual is given by:176

o�springs = round(
f ∗ z
z̄

)177
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with z the focal individual's amount of resources accumulated throughout her life, z̄178

the average amount of resources accumulated in the population, and f a constant multi-179

plication factor. O�springs receive the four rij and four MARij traits from their parents,180

with a probablity m of mutation on each trait. Mutations are drawn from a normal dis-181

tribution centered around the trait value with standard deviation d, and constrained in182

the interval [0,1]. After mutations take place, n individuals are randomly drawn from the183

pool of o�springs to constitute the population for the next generation.184

Table 1 summarizes the model's parameters. To obtain the results presented below,we185

initialize all simulations with a population of stingy and undemanding individuals, who186

do not share when they play the role of partner and accept any partner when they play187

the role of decision maker (rij = 0, MARij = 0). We then test our hypothesis that188

partner choice can lead to equitable divisions by observing how rewards and MARs evolve189

across generations, in two conditions: when partner choice is costly (low β
τ ), and when190

partner choice is not costly (large β
τ ). In particular, we will observe the rewards given by191

LP individuals to HP individuals at the equilibrium when partner choice is not costly, to192

detect whether they show the same pattern of proportionality between contribution and193

reward than the one observed in the empirical human data.194

Parameter name Description
Value used to
obtain reported
results

n number of individuals 500
a productivity of low-productivity individuals 1
b productivity of high-productivity individuals 2

r
reward, fraction of resources that an individual
agrees to give to another

evolving (starts
at 0)

MAR
minimum accepted reward, minimum fraction of
resource that an individual is ready to accept

evolving (starts
at 0)

β encounter rate from 0.0001 to 1
τ split rate 0.01
L lifespan 500
m mutation rate 0.002
d mutation standard deviation 0.02

Table 1: Parameters of the model, and values used to obtain the �gures presented in the main
text. Deviations from these values do not change the core results.
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2.2 Analytical model.195

We develop an analytical model that incorporates all of the features of the simulations pre-196

sented above, but with one simpli�cation: we assume that the total number of interactions197

accepted per unit of time is the same for each individual. With this assumption, rejecting198

an opportunity to cooperate does not compromise the chances of cooperating later, but199

on the contrary grants new opportunities. This situation is analogous to the condition200

where β
τ tends towards in�nity in the simulations: social opportunities are plentiful at the201

scale of the length of interactions. The analysis of this model is presented in details in SM202

section B.203

2.3 Simulations Set 2: a continuum of productivities204

Introducing a continuum of productivities is necessary to get closer to biological reality.205

Rather than having only two productivities a and b in our population, we assume in206

Simulations Set 2 that the productivity of an individual at birth is sampled from a uniform207

distribution between a and b. In this situation, individuals never interact with a partner of208

the exact same productivity. This constitutes a challenge for modeling in that individuals209

would need to be equipped with an in�nity of rij and MARij traits to react to the in�nity210

of possible contributions by their partner (Gavrilets and Scheiner, 1993).211

To solve this problem, we do not characterize anymore individuals with rij and MARij212

traits, but instead endow them with two three-layer feedforward neural networks (one213

network to produce the rewards, and another one to produce the MARs). Both neural214

networks have the same structure: two input neurons, �ve hidden neurons, and a single215

output neuron. The �rst neural network is used when playing the role of partner: it senses216

an individual's own productivity and that of her decision maker, and produces the reward217

as output. The second network is used when playing the role of decision maker: it senses an218

individual's own productivity and that of her partner, and produces the MAR as output.219
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Each network has its own set of synaptic weights (see Fig. 3A and SM section A.2), that220

are transmitted genetically. Because evolution now operates on these weights, and not on221

rewards or MARs directly, individuals can now evolve a reaction norm. They can evolve a222

function that produces outputs even from inputs they have never encountered before (i.e.,223

individuals of new productivities). This property of neural networks is important in our224

case, because equity is precisely a relationship between two quantities, contribution and225

reward. Seeing whether natural selection will be able to recreate the same relationship of226

proportionality between contribution and reward using simple neural networks is thus of227

great interest. All other methodological details for Simulations Set 2 are the same as in228

Simulations Set 1.229

2.4 Simulations Set 3230

As a �nal test of the robustness of our model, we test whether natural selection also231

favors divisions proportional to contributions when contribution is measured in terms of232

time invested into cooperation (instead of productivity). We present the details of these233

simulations and its results in SM section A.1.234

3 Results235

We �rst present the results for Simulations Set 1. Parameter values used to obtain the236

�gures are summarized in Table 1. Reasonable deviations from these values do not alter237

the results. Moreover, analytical results con�rm the results of Simulation Set 1 (see SM238

section B).239

We present the case where high-productivity individuals are able to produce twice as240

much resources as low-productivity individuals (a = 1, b = 2). Figure 1 shows the evo-241

lution of rewards r accepted by decision makers across generations. Rewards increase242

in all possible combinations of productivities, when partner choice is not costly (circle243
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markers). If we focus on rewards accepted by high-productivity decision makers with low-244

productivity partners (Fig 1, upper-right panel), simulations show that at the evolutionary245

equilibrium, low-productivity partners have to give exactly 66% of the total resource pro-246

duced to their high-productivity decision makers. This reward is exactly proportional to247

the relative contribution of each individual, as high-productivity individuals produce 66%248

of the total shared resource when a = 1 and b = 2. Similarly, high-productivity partners249

give only 33% to low-productivity decision makers, a reward which low-productivity deci-250

sion makers accept, as it corresponds to their relative contribution (Fig 1, lower-left panel,251

circle markers). Finally, both high-productivity and low-productivity individuals give each252

other exactly 50% of the total resource when they meet as a pair, re�ecting the fact that253

proportionality means equal division when contributions are equal (Fig 1, upper-left and254

lower-right panels). This pattern of divisions is con�rmed by the analytical model (dashed255

lines in Fig 1, and see SM section B), and divisions proportional to contribution also256

evolve when contribution is measured in terms of time invested into cooperation instead257

of productivity (see SM section A.1).258

By comparing simulations with a low and a high β
τ ratio, Figure 1 also emphasizes259

the critical importance of partner choice for proportional rewards to evolve. When we260

decrease the β
τ ratio, individuals spend more time looking for new partners and thus the261

cost of changing partners is increased. In this situation, rewards remain very low over gen-262

erations and never rise towards proportionality, regardless of di�erences in productivity263

(Fig 1, triangle markers). For instance, even if low-productivity partners produce less than264

half of the resources when they cooperate with high-productivity decision makers, they265

keep most of the resources for themselves when partner choice is costly. Figure 2 shows266

the distribution of rewards given by low-productivity individuals to high-productivity in-267

dividuals at the end of an 8,000-generation simulation, for di�erent values of the β
τ ratio.268

Proportional rewards of 66% can only evolve when β
τ is large, showing again that without269

partner choice, proportionality cannot evolve.270
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The results of Simulation Set 2 con�rm this pattern. With a continuum of produc-271

tivities in the population (between 1 and 2), rewards still respect proportionality at the272

evolutionary equilibrium. Each individual who enters an interaction is rewarded with an273

amount of resources exactly equal to her productivity (Fig 3B). As explained in the meth-274

ods section, neural networks have two inputs: an individual's own contribution and her275

partner's (or decision maker's) contribution. It is thus possible to represent the output of276

a network on a 3D plot, shown in Fig 3C. To plot this �gure, we extracted the synaptic277

weights of the neural networks producing MARs for 15,000 individuals, at the last gen-278

eration of 30 di�erent simulation runs. We averaged the value of the networks' outputs279

over those 15,000 individuals. Fig 3C shows that the networks evolved to produce MARs280

that are proportional to their bearer's relative contribution (Fig 3C and D, and see SM281

section C.2). The higher the decision maker's productivity, and the lower the partner's282

productivity, the more demanding the decision maker becomes.283

4 Discussion284

We modelled a population of individuals choosing each other for cooperation. When di�er-285

ent contributions to cooperation are made, resource divisions proportional to contributions286

evolve. Individuals producing more resources or investing more time into cooperation re-287

ceive more resources than individuals producing or investing less. Asking for divisions that288

match one's own contribution, and proposing such divisions to others, constitutes the best289

strategy when partner choice is possible. In other terms, a preference for equity maximizes290

�tness in an environment where individuals can choose their cooperative partners.291

It is important to note that our results cannot be summarized as "a preference for292

equity helps individuals to be chosen as a partner" or "a preference for equity helps avoid293

interactions with sel�sh partners." This is only half of the story. If the point were only to be294

chosen as a partner, the best strategy would be to be as generous as possible, an outcome295
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which is sometimes observed in models inspired by competitive altruism theories (Roberts,296

1998). The point here is rather to be chosen as a partner while at the same time avoiding297

exploitation by being over-generous. Our model clearly shows that the best strategy to298

solve this problem is to give proportionally to the other's contribution�not less, but also299

not more. Equity is the result of a trade-o� between two evolutionary pressures which300

work in opposite directions: the pressure to keep being chosen, but also the pressure to301

choose wisely.302

This last point is better understood by looking at the precise mechanism through303

which proportionality evolves. The key factor determining divisions of resources at the304

evolutionary equilibrium are the opportunity costs of each individual. Opportunity costs305

represent the bene�ts an individual renounces to when she makes a choice. From an evo-306

lutionary point of view, it is trivial that an individual will want to make the best choices307

possible to minimize her opportunity costs. Hence, the best strategy to keep being chosen308

as a cooperative partner is to compensate others' opportunity costs: when individual A309

agrees to interact with individual B, individual B should give A something equal to A's310

opportunity costs at the time of making the decision (and vice versa). This is exactly why311

high-productivity individuals get more in our model: high-productivity individuals have312

larger opportunity costs than low-productivity individuals. Suppose that low-productivity313

individuals produce 1 unit of a resource whereas high-productivity individuals produce 2.314

High-productivity individuals thus have the possibility to produce 4 resources when they315

interact with other high-productivity individuals, leaving them with 2 resources on av-316

erage (see exactly why in SM section C.1). 2 resources is thus the opportunity cost of317

high-productivity individuals when they agree to cooperate with low-productivity indi-318

viduals. Thus, if low-productivity individuals want to be good partners, they will have319

to compensate high-productivity individuals' opportunity costs and give them exactly 2320

resources (out of 3 produced), which will result in a proportional o�er of 66%. But low-321

productivity individuals should not give more neither, because they also have access to322
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interactions in which they could gain 1 unit on average (when they cooperate with other323

low-productivity individuals). In other words, low-productivity individuals have oppor-324

tunity costs of 1, and should thus not accept divisions leaving them with less than 1.325

Our current model and previous papers on the subject (André and Baumard, 2011; De-326

bove et al., 2015b,a) push forward the idea that the sense of fairness is a psychological327

mechanism evolved to compensate others' opportunity costs and minimize one's own op-328

portunity costs. This characterization only comes from models investigating fairness in329

distributive situations though, so it would be interesting to see if it holds in more diverse,330

non-distributive situations.331

Our model has several limitations, which need to be acknowledged. First, while we332

suppose that individuals choose each other based on their reputation, we do not explicitly333

model the formation of this reputation. Individuals automatically know the reputation334

of others and this reputation is reliable. It could be interesting to relax this assumption,335

especially because reputation formation (through communication for instance) might be336

an important point that distinguishes humans from non-human primates. Second, the337

population we model does not match the hunter-gatherer population in the sense that it338

is not structured. This is important because a structure, such as camps or family units,339

could potentially a�ect opportunities to choose partners. Finally, it might be interesting to340

model the evolution of fairness in a wider range of cooperative interactions than we have341

considered here (outside distributive situations for instance). All of these assumptions342

should be relaxed in future studies.343

Partner choice is not the only evolutionary mechanism postulated to lead to the evo-344

lution of fairness in the literature. Some authors have argued that fairness could be345

explained by empathy (Page and Nowak, 2002), spite (Huck and Oechssler, 1999; Barclay346

and Stoller, 2014; Forber and Smead, 2014), "noisy" processes such as drift or learning347

mistakes (Gale et al., 1995; Rand et al., 2013), the existence of a spatial population struc-348
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ture (Page et al., 2000; Killingback and Studer, 2001), or alternating o�ers (Rubinstein,349

1982; Hoel, 1987). But as we explained in the introduction, all of these models equate350

fairness with equality, and it is thus unknown whether they can explain a more general351

case. Testing whether those models pass the "equity test" will be an excellent way to352

compare and decide between these models, a necessary undertaking that has been largely353

neglected. The extensive literature on �bargaining� in economics (Binmore, 1986; Bin-354

more, 1998; Alexander, 2000) was also more focused on the case in which players are in a355

symmetric position, and usually did not investigate proportional bargaining solutions. An356

exception is the work by Kalai (1977) (although Binmore, 2005 also mentions the problem357

p. 31), who shows that individuals will compromise in di�erent bargaining situations so as358

to keep their proportions of utility gains �xed. But, as Kalai recognizes it himself (P11),359

�a more di�cult problem is to �nd what these proportions should be�. This is precisely360

where we make a contribution: we show that when individuals evolve in biological mar-361

kets, these proportions are automatically determined by the other encounters individuals362

can make. In other words, one could rephrase our model as showing that individuals can363

bargain based on their outside options (or opportunity costs), but contrarily to what has364

been done before, we do not �x exogenously those outside options. Rather, outside options365

emerge endogenously from all the encounters individuals can make in the population.366

Talking about bargaining theory suggests alternative interpretations of our model. It367

might be argued that human fairness is the result of bargaining at the proximal level, the368

result of rational cognitive processes. We argue instead that the "bargaining" already took369

place at the ultimate level by means of natural selection, and that the result of this bar-370

gaining is the existence of a genuine sense of fairness which "automatically" makes humans371

prefer equitable strategies. This hypothesis does not exclude the possibility that humans372

are also capable of consciously bargaining based on their opportunity costs, but this be-373

havior would not be the product of an evolved sense of fairness. While our model bears a374

great resemblance to historical market models (Osborne and Rubinstein, 1990) and other375
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models in economics in which fair outcomes have sometimes been observed (Rubinstein,376

1982; Binmore, 2005), we emphasize that the markets we model are ultimate biological377

markets (Noë and Hammerstein, 1994; Noë et al., 2001). This is not just an empty ter-378

minological variation: locating markets at the ultimate level has important implications379

for our understanding of the psychological mechanisms underlying fairness. Among other380

things, it allows us to understand why fairness does not seem to be based on self-interest at381

the psychological level even if fairness evolved for self-interested reasons (Baumard et al.,382

2013; Trivers, 1971).383

Another alternative interpretation of our model remains. One could agree that fairness384

judgments are based on simple automatic rules rather than complex conscious calculations,385

but argue that those rules could have evolved culturally rather than biologically. This is386

not an issue that can be settled theoretically, as the same models can always be interpreted387

as instances of biological or cultural evolution. To date, we de�nitely lack empirical data to388

answer this question with certainty, but the idea of a biologically evolved sense of fairness389

is not made absurd by the existing data. As early as the age of 12 months, children react390

to inequity (Schmidt and Sommerville, 2011; Geraci and Surian, 2011; Sloane et al., 2012),391

equity has been identi�ed in many cultures around the word (Marshall et al., 1999; Gurven,392

2004), and children reject conventional rules when they violate principles of fairness (Turiel,393

2002). We do not take experiments on inequity aversion in non-human primates as evidence394

for a biologically evolved sense of fairness, as the negative reactions to inequity observed so395

far can still be interpreted in more parsimonious ways (see Bräuer and Hanus (2012) for a396

review and Amici et al. (2014) for methodological issues). Nonetheless, those experiments397

remind us that many researchers expect that prosocial behaviors traditionally associated398

with the existence of human institutions, religions, or cultural artefacts can also evolve399

biologically. In fact, Robert Trivers himself recognized that the most important implication400

of his seminal paper on the evolution of reciprocity (Trivers, 1971) was that "it laid the401

foundation for understanding how a sense of justice evolved" (Trivers, 2006).402
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The existence of intercultural and interindividual variations in fairness judgements (?Cap-403

pelen et al., 2010; Schäfer et al., 2015) is sometimes taken as evidence against their bi-404

ological origin. This criticism is generally ill-founded, as evolutionary explanations have405

no particular di�culty accommodating variation (Barkow et al., 1992). In the case of406

fairness, it is important to remember that what our model predicts is not the evolution407

of a �xed judgement but the evolution of an algorithm, an information-processing mecha-408

nism (Barkow et al., 1992). This is particularly evident in our extended simulations where409

the evolving unit is a neural network, precisely a special type of algorithm. This algorithm410

works on inputs (contributions) to produce outputs (divisions of resources), and here lies411

an important source of variability, because inputs can vary across cultures and individuals412

while the algorithm remains the same. For instance, measurements of contributions are413

a�ected by beliefs ("How long do I think it takes to harvest this quantity of food?"). If414

contribution was the only input in our model, in real-life more parameters can a�ect the415

algorithm's inputs, such as general knowledge ("Is this person not productive because she416

is sick?") or individual interpretations of the situation ("Are we engaged in a communal417

interaction? A joint venture? A market exchange?"). This last point could explain why418

even in carefully controlled environments, where there is little ambiguity about the source419

of inequalities, there is still heterogeneity in fair behaviors, with some people behaving as420

egalitarians, others as meritocrats, and others still as libertarians (Cappelen et al., 2007,421

2010).422

In fact, while interindividual and intercultural variations have crystallized the debate,423

intra-individual variation can also be observed even in Western countries. In some sit-424

uations we behave as meritocrats, requiring pay for each additional hour of presence at425

work (Adams, 1963; Adams and Jacobsen, 1964), whereas the next day on a camping trip426

with strangers we behave more like egalitarians, without constant monitoring and book-427

keeping of our contributions and those of others (Cohen, 2009). Neither our brain (the428

algorithm) nor our culture has changed in the meantime. What has changed is the way429
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we interpret the situation (part of the input to the algorithm). This idea needs to be de-430

veloped more formally, and we do not suggest that it is the only way to explain variation,431

but it may constitute a fruitful avenue of research.432

Another interesting question is the prevalence of equity in traditional societies. We433

have mentioned anthropological records of distributions according to e�ort (Gurven, 2004;434

Kaplan and Gurven, 2005), but it is also well known that hunter-gatherers transfer meat435

in a way that not does not seem to respect equity. This type of interaction has been436

called "generalized reciprocity" by Sahlins (1972) and also seems to match Fiske (1992)'s437

notion of a "communal sharing" system. There are at least two mutually compatible438

ways to reconcile this observation with the predictions of our model. The �rst is to439

recognize that equity can be limited by other factors, for instance diminishing returns440

to consumption (Nettle et al., 2011). People could stop caring about equity when they441

become satiated or when they receive little additional value from consuming one more unit442

of bene�ts. The second is to consider that even in generalized reciprocity good hunters443

are rewarded with more bene�ts, but those bene�ts are delayed. This hypothesis has444

received support recently from �ndings showing that generous hunters and hard workers445

are central in the social networks of small-scale societies (Lyle and Smith, 2014; Bird446

and Power, 2015). In this last perspective, our model should not be taken at face value447

as predicting the evolution of strict equity with immediate input/output matching, but448

more generally as input/output matching over a long time and across di�erent cooperative449

activities ("generalized equity").450

We conclude by noting that proportionality is important in distributive justice but is451

also a cornerstone of institutional justice, wherein o�enders are punished in proportion452

to the severity of their crimes (Hoebel, 1954; Robinson and Kurzban, 2007). It is also453

central to the morality of many religions, in which rewards and punishments are made454

proportional to good and bad deeds by supernatural entities or forces (Baumard and455
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Boyer, 2013). Although this is only speculation at present, our results may thus also456

explain why historically recent cultural domains such as penal justice and moral religions457

insist on the principle of proportionality: retributive punishment and supernatural justice458

may re�ect our evolved desire for proportionality.459
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Supplementary Material460

A Simulation procedures461

A.1 Simulations Set 3: contribution through time invested462

A.1.1 Methods463

Having a higher productivity is only one way to contribute more to a cooperative in-464

teraction. Another natural way is to spend more time to amass resources. To test the465

robustness of our partner choice mechanism, we thus created a third set of simulations in466

which there are no more di�erences of productivity between individuals, but one of the467

two individuals in a cooperating dyad has to invest m times more time than her part-468

ner. We thus model the possibility that there is a cooperative role more time-consuming469

than the other. In practice, we model this by randomly attributing a �high investment470

of time� role to the partner or the decision maker when an encounter takes place. The471

decision maker then decides whether or not she wants to cooperate with her partner based472

on her partner's reputation for a given level of investment into cooperation. Each indi-473

vidual is thus characterized by 4 genetic variables, two rkl and two MARkl, with k and474

l ∈ {H,L}, denoting an individual's time investment (H = High, L = Low). If the partner475

is accepted, individuals share a constant resource of size 1 at each unit of time, and the476

end of the interaction is determined in the same way than in Simulations Set 1, through477

a constant split rate τ . When a split happens though, the individual who needs to in-478

vest more time is prevented to encounter new individuals for a length of time equal to479

(m−1)∗ (the length of the interaction). Because this individual is prevented to encounter480

other individuals during this period, one can interpret this period as a period in which481

this individual is still investing time into the previous interaction.482
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All other methodological details for Simulations Set 3 are the same as in Simulations483

Set 1. In particular, we start from a population of individuals giving zero reward even484

when they invest less time into cooperation, and observe what will be the relationship485

between contribution (time invested) and rewards at the evolutionary equilibrium.486

A.1.2 Results487

Simulations Set 3 show that proportional rewards also evolve when individuals di�er not488

by their productivity but by the time they invest in cooperation (Fig 4). Setting m = 2,489

one individual of the pair has to invest twice as much time as the other. When the decision490

maker invests twice as much time, the partner agrees to reward him with 66% of the total491

resource at the evolutionary equilibrium, when partner choice is not costly. Conversely,492

when decision makers invest half as much time as their partner, they accept rewards of 33%493

only, showing that the �tness-maximizing strategy in this situation is to accept rewards494

proportional to each partner's relative time investment.495

A.2 Functioning of the neural networks496

Each neuron in the networks computes an output signal of value497

output =
1

1 + e( − input)
(1)

with input being a linear combination of the outputs of the neurons of the previous498

layer and the related synaptic weights. This is a function routinely used in evolutionary499

robotics (Nol� and Floreano, 2000). Synaptic weights can take values from the interval500

[−5, 5], and are randomly drawn from a uniform law covering this interval at the start of501

the simulation.502

When applying mutations, to avoid networks to fall in suboptimal local maxima, mu-503

tations on the synaptic weights are drawn from a uniform distribution with a small proba-504
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bility 0.05 ; otherwise they ar drawn in a normal distribution centered around the synaptic505

weight's value.506

B Analytical model.507

We developed an analytical model to model the situation where individuals di�er by their508

productivity (but not e�ort), and where only two productivities coexist in the population.509

The analytical model incorporates all of the features of the simulations, but with one sim-510

pli�cation: we assume that the total number of interactions accepted per unit of time is511

the same for each individual. With this assumption, rejecting an opportunity to cooperate512

does not compromise the chances of cooperating later, but on the contrary grants new op-513

portunities. This situation is analogous to the condition where β
τ tends towards in�nity in514

the simulations: social opportunities are plentiful at the scale of the length of interactions.515

When individuals reject an interaction, however, they are forced to postpone their social516

interaction to a later encounter. We assume that this entails an explicit cost expressed517

as a discounting factor δ (0 ≤ δ < 1). If we call the average payo� of an individual of518

productivity i Gi, then δGi will be the average expected payo� in the next interaction519

after rejecting an o�er. When δ equals 1, refusing an interaction carries no cost; when δ520

equals 0, refusing an interaction will result in zero payo� from the next interaction. In521

practice, we will neglect the case where δ equals 1, as it leads to artefactual results (see522

below).523

The assumption that only partners can decide of the division in our model is necessary524

so that the evolution of fairness is not explained trivially. When only one individual can525

decide, natural selection favors sel�shness (André and Baumard, 2011). This is easy to526

understand. On the one hand, whatever reward a partner suggests, accepting it brings527

a greater gain than rejecting it for the decision maker. Therefore, in all cases, natural528

selection favors indiscriminate partners, with decision makers taking whatever bene�ts529
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are made available to them. On the other hand, and as a result, selection favors stingy530

partners, o�ering the minimal possible amount. Because decision makers are in such an531

inferior bargaining position, in the following analysis we will focus on decision makers'�532

and not partners'�payo�s. A decision maker receiving a large share of the resource is a533

strong indication that there are evolutionary forces at work against the expected partners'534

sel�shness.535

All our analyses assume that (i) individuals enter the population at a constant rate,536

(ii) evolution is slow compared to an individual's lifespan (and thus ) (iii) mutations are537

rare, and that (iv) there is no recombination between genetic traits (pij and qij). As a538

consequence of (i) and (ii), the composition of the population does not change during an539

individual's life. As a consequence of (iii) and (iv), at any evolutionary equilibrium, all the540

strategies present in the population must reach the same payo� for individuals of a given541

strength (only a high mutation rate or recombination rate could continuously re-introduce542

maladaptive strategies in the population, yielding a variance of payo�s at each generation).543

Here we ask the same question answered in the main paper through simulations: how544

will the behavioural traits rij and MARij (i and j ∈ {HP,LP}) evolve in an environment545

where LP and HP individuals coexist and share resources? As a reminder, MARLPHP546

reads as "the minimum reward that a LP individual will accept from a HP individual,"547

and rHPLP as "the reward a HP individual will give to a LP individual."548

Following the precise evolutionary dynamics of the system to answer this question549

is quite a complex challenge, in particular due to epistasis phenomena. The low �tness550

bene�ts brought by a reward r can be compensated by high bene�ts from an acceptance551

threshold MAR, or small bene�ts obtained in interactions with individuals of one pro-552

ductivity could be compensated by high bene�ts received in interactions with the other553

productivity, generating linkage disequilibrium (McNamara et al., 2008). But as in (André554

and Baumard, 2011), it is easier to derive simple conditions on the payo� an individual555
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would or would not have an interest in accepting at the evolutionary equilibrium.556

B.1 Solving the system557

The reasoning is more normative than descriptive, as we consider a situation in which the558

equilibrium has already been reached, and derive constraints on the values of traits that559

individuals should display at the equilibrium. To derive the payo� a LP individual should560

receive from a HP individual at the evolutionary equilibrium, we need to consider four561

arguments:562

1. All individuals with the same productivity must gain the same payo�. At563

the equilibrium, all HP individuals should gain the same payo� GHP per interaction564

(otherwise it wouldn't be an equilibrium), and the same is true for LP individuals.565

We thus only have two average payo�s in the population at the equilibrium. The566

average payo� of a HP individual is labeled GHP , and that of a LP individual is567

written GLP .568

2. Every individual of productivity i accepts exactly δGi, with i ∈ {HP,LP}. If569

an individual's average payo� is Gi, his expected payo� in the next interaction (if the570

current interaction is refused) will be δGi. As a consequence, a decision maker should571

never refuse a reward that is above the corresponding δGi, but should always refuse572

rewards that are below this level. At the equilibrium, because rewards from partners573

should evolve toward the minimum that decision makers will accept, individuals will574

always demand and accept exactly δGi, no matter who they are interacting with575

(regardless of their partner's productivity). We thus have:576



MARHPHP = δGHP

MARHPLP = δGHP

MARLPLP = δGLP

MARLPHP = δGLP

(2)
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3. Partners give their decision makers what they want at the evolutionary577

equilibrium, as long as a
b >

δ(x−1)
δx−2 .578

Knowing (1) and (2), it can be shown that partners are always better o� giving their579

decision makers what they "ask for" (δGi) at the evolutionary equilibrium, as long580

as δ < 1. The reasoning is as follows.581

Suppose that at the evolutionary equilibrium, all LP individuals refuse to give HP582

individuals what they ask for, namely δGHP (but all other demands are satis�ed).583

The average social payo� of a LP individual in this population is then584

GLP = (1− x)

(
δGLP

2
+
δGLP

2

)
+

1

2
x (a+ a) (3)

with x the proportion of LP individuals in the population and a the productivity of585

LP individuals. GLP can be decomposed into three terms: an average payo� obtained586

in interactions with other LP individuals 1
2 (a+ a), an average payo� obtained in587

interactions with HP individuals when HP individuals play the role of decision makers588

(in this case, under our hypothesis the reward will be rejected and the LP individual's589

payo� will be discounted by δ), and, �nally, an average payo� obtained in interactions590

with HP individuals when HP individuals are partners (the LP individual's MAR is591

met, so they gain δGLP ).592

Similarly, the payo� of a HP individual in this population is593

GHP = x

(
δGHP

2
+

1

2
(−δGLP + b+ a)

)
+

1

2
(1− x) (b+ b) (4)

with b the productivity of HP individuals. Solving the system composed of equa-594

tions (3) and (4) gives us an expression for GHP and GLP . The question we need595

to answer now is the following: what would happen if, in such a population, a mu-596

tant LP individual decided to accept to give HP individuals what they want? Upon597
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meeting a HP individual and being assigned the role of partner, this mutant would598

gain a+ b− δGHP (the resource to be shared minus the demand of a HP individual)599

instead of just δGLP (the average payo� being discounted). Knowing GLP and GHP ,600

it is easy to show that it is never possible that δGLP ≥ a + b − δGHP as long as601

δ < 1. In other words, at the evolutionary equilibrium, it is impossible that all LP602

individuals refuse to o�er δGHP to HP individuals, because they would gain more603

from doing so.604

What if there was some polymorphism in the population such that only some LP605

individuals refuse to give HP individuals what they ask for? The average social606

payo� of those LP individuals is still written the same as in equation (3). But607

because we know that at the evolutionary equilibrium all individuals with the same608

productivity must gain the same payo�, the payo� of all LP individuals will be the609

same, regardless of phenotype. The coexistence of two types of LP individuals in the610

population would imply that δGLP = a+ a− δGHP (the payo� of the two types of611

LP individuals in the position of partner when paired with HP individuals is equal),612

but as we showed above, this is not possible as long as δ < 1. As a consequence, it is613

not only impossible that all LP individuals refuse to give HP individuals what they614

want at the evolutionary equilibrium, it is also impossible that some LP individuals615

refuse to give HP individuals what they want as long as δ < 1.616

Following the same reasoning, it can be shown that it is not possible for some individ-617

uals (of any productivity) to refuse to give their social partner (of any productivity)618

what they ask for at the evolutionary equilibrium as long as a
b >

δ(x−1)
δx−2 (see SM619

section B.2). When a
b ≤

δ(x−1)
δx−2 , it is possible that LP individuals refuse to give other620

LP individuals what they ask for. This condition re�ects the fact that if the di�er-621

ence of productivity between HP and LP individuals is too large, it is more bene�cial622

for LP individuals to interact with HP individuals than with LP individuals. As we623
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will see though, this is only possible when partner choice is costly. Moreover, as long624

as a
b > 0.5, as is the case in our simulations, it is not worth it for LP individuals625

to refuse to interact with other LP individuals, and so all partners will give their626

decision makers what they want at the evolutionary equilibrium.627

If ab >
δ(x−1)
δx−2 , we can thus write:628



rHPHP = δGHP

rHPLP = δGLP

rLPLP = δGLP

rLPHP = δGHP

(5)

and if ab ≤
δ(x−1)
δx−2 , we can thus write:629



rHPHP = δGHP

rHPLP = δGLP

rLPHP = δGHP

(6)

4. a
b >

δ(x−1)
δx−2 , no o�er is never refused630

If a
b > δ(x−1)

δx−2 , from step 3. it directly results that no reward is ever rejected at631

the evolutionary equilibrium, because each partner's reward is exactly equal to the632

decision maker's MAR, and thus each reward is accepted. If no reward is ever refused,633

the average payo� of LP and HP individuals respectively can be written as:634



GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ 1

2x (a+ a)

GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ 1

2(1− x) (b+ b)

(7)

Solving this system gives us an expression for GHP and GLP as a function of x and635

δ at the evolutionary equilibrium:636
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

GLP = b(δ−δx+x−1)+a((δ−1)x−1)
δ−2

GHP = b(δ−δx+x−2)+(δ−1)xa
δ−2

(8)

From (5) and (8), it is straightforward to show that when δ tends toward 1 (partner637

choice is not costly), rLPHP tends toward b. That is, when partner choice is not638

costly, even if LP individuals are in the strategically dominant position of partner,639

at the evolutionary equilibrium they o�er HP individuals an amount that is exactly640

equal to their productivity b. In percentage, this corresponds to an o�er proportional641

to the relative contribution of each individual: LP individuals o�er HP individuals642

b
b+a ∗ 100 % of the total resource to be shared.643

Similarly, it can be shown that when δ tends toward 1, LP individuals o�er other LP644

individuals a resources, HP individuals o�er other HP individuals b resources, and645

HP individuals o�er LP individuals a resources. At the equilibrium, when partner646

choice is not costly each individual is rewarded with an amount exactly equal to his647

contribution.648

5. a
b ≤

δ(x−1)
δx−2 , all LP individuals refuse to interact with other LP individuals649

In this case, the average payo� of LP and HP individuals respectively can be written650

as:651



GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ δxGLP

GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ 1

2(1− x) (b+ b)

(9)

Solving this system gives us an expression for GHP and GLP as a function of x and δ652

at the evolutionary equilibrium:653
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

GLP = (x−1)((δ−1)b+a(δx−1))
δ(x(δx−2)−1)+2

GHP = b(δ((x−1)x−1)−x+2)−(δ−1)xa
δ(x(δx−2)−1)+2

(10)

From (6) and (10), it is straightforward to show that when δ tends toward 1, the654

previous results hold: LP individuals o�er HP individuals b resources, HP individuals o�er655

other HP individuals b resources, and HP individuals o�er LP individuals a resources.656

B.2 Veri�cation that partners are always better o� giving657

their decision maker what they want at the evolutionary equi-658

librium, except when a
b ≤

δ(x−1)
δx−2659

There are four hypothetical primary situations that need to be taken into account:660

• A: when HP individuals are partners, they refuse to give other HP individuals what661

they want662

• B: when HP individuals are partners, they refuse to give other LP individuals what663

they want664

• C: when LP individuals are partners, they refuse to give other LP individuals what665

they want666

• D: when LP individuals are partners, they refuse to give HP individuals what they667

want668

These situations are not mutually exclusive, however, so the total number of possible669

situations is:670

∑4
k=1

(
4

k

)
= 15671

Situation D was already proven to be impossible at the evolutionary equilibrium in672

the previous section. We now show that the same holds for the 14 remaining situations,673
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except in situation C. We give the expected social payo� of HP and LP individuals in674

each situation. We also give the condition that must be satis�ed for each situation to be675

possible at the evolutionary equilibrium; it is then straightforward to show that, given our676

parameter values (0 ≤ x ≤ 1, 0 ≤ δ < 1 ), this condition can never be satis�ed.677

Situation A:678

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ 1

2x (a+ a)679

• GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ δ(1− x)GHP680

• Condition −δGHP + b+ b ≤ δGHP impossible681

Situation C:682

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ δxGLP683

• GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ 1

2(1− x) (b+ b)684

• Condition −δGLP + a+ a ≤ δGLP impossible when a > δ(x−1)b
δx−2685

Situation B:686

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ 1

2x (a+ a)687

• GHP = x
(
δGHP

2 + δGHP
2

)
+ 1

2(1− x) (b+ b)688

• Condition −δGLP + b+ a ≤ δGHP impossible689

Situation A & C:690

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ δxGLP691

• GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ δ(1− x)GHP692

• Condition −δGLP + a+ a ≤ δGLP ∧ −δGHP + b+ b ≤ δGHP impossible693

Situation B & C:694

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ δxGLP695

• GHP = x
(
δGHP

2 + δGHP
2

)
+ 1

2(1− x) (b+ b)696
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• Condition −δGLP + a+ a ≤ δGLP ∧ −δGLP + b+ a ≤ δGHP impossible697

Situation C & D:698

• GLP = δxGLP + (1− x)
(
δGLP

2 + δGLP
2

)
699

• GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ 1

2(1− x) (b+ b)700

• Condition −δGLP + a+ a ≤ δGLP ∧ −δGHP + b+ a ≤ δGLP impossible701

Situation B & D:702

• GLP = (1− x)
(
δGLP

2 + δGLP
2

)
+ 1

2x (a+ a)703

• GHP = x
(
δGHP

2 + δGHP
2

)
+ 1

2(1− x) (b+ b)704

• Condition −δGHP + b+ a ≤ δGLP ∧ −δGLP + b+ a ≤ δGHP impossible705

Situation A & D:706

• GLP = (1− x)
(
δGLP

2 + δGLP
2

)
+ 1

2x (a+ a)707

• GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ δ(1− x)GHP708

• Condition −δGHP + b+ a ≤ δGLP ∧ −δGHP + b+ b ≤ δGHP impossible709

Situation A & B:710

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ 1

2x (a+ a)711

• GHP = δ(1− x)GHP + x
(
δGHP

2 + δGHP
2

)
712

• Condition −δGHP + b+ b ≤ δGHP ∧ −δGLP + b+ a ≤ δGHP impossible713

Situation A & C & D:714

• GLP = δxGLP + (1− x)
(
δGLP

2 + δGLP
2

)
715

• GHP = x
(
δGHP

2 + 1
2 (−δGLP + b+ a)

)
+ δ(1− x)GHP716

• Condition −δGLP+a+a ≤ δGLP∧−δGHP+ b+ b ≤ δGHP∧−δGHP+ b+a ≤ δGLP717

impossible718
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Situation A & B & C:719

• GLP = (1− x)
(
1
2 (−δGHP + b+ a) + δGLP

2

)
+ δxGLP720

• GHP = δ(1− x)GHP + x
(
δGHP

2 + δGHP
2

)
721

• Condition −δGLP+a+a ≤ δGLP∧−δGHP+ b+ b ≤ δGHP∧−δGLP+ b+a ≤ δGHP722

impossible723

Situation B & C & D:724

• GLP = δxGLP + (1− x)
(
δGLP

2 + δGLP
2

)
725

• GHP = x
(
δGHP

2 + δGHP
2

)
+ 1

2(1− x) (b+ b)726

• Condition −δGLP+a+a ≤ δGLP∧−δGHP+ b+a ≤ δGLP∧−δGLP+ b+a ≤ δGHP727

impossible728

Situation A & B & D:729

• GLP = (1− x)
(
δGLP

2 + δGLP
2

)
+ 1

2x (a+ a)730

• GHP = δ(1− x)GHP + x
(
δGHP

2 + δGHP
2

)
731

• Condition −δGHP+ b+ b ≤ δGHP∧−δGLP+ b+a ≤ δGHP∧−δGHP+ b+a ≤ δGLP732

impossible733

Situation A & B & C & D:734

• GLP = δ(1− x)GLP + δxGLP735

• GHP = δ(1− x)GHP + δxGHP736

• Condition −δGHP + b + b ≤ δGHP ∧ −δGLP + b + a ≤ δGHP ∧ −δGLP + a + a ≤737

δGLP ∧ −δGHP + b+ a ≤ δGLP impossible738

As explained in the previous section, the veri�cation that it is not possible for some (but739

not all) individuals not to interact with other individuals at the evolutionary equilibrium740

(in case of polymorphism) is already implied by the use of not strict inequalities.741
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C Supplementary discussion742

C.1 Opportunity costs743

In the main article, we explain that when high-productivity individuals are assessing a low-744

productivity individual's reward, they have opportunity costs (or "outside options") of 2745

because they expect to receive 2 with other high-productivity individuals on average. It is746

important to see that this is true only because high-productivity individuals have an equal747

chance of playing the role of either decision-maker or partner when they interact with other748

high-productivity individuals. If some high-productivity individuals always played the role749

of decision maker with other high-productivity individuals, they would be exploited all750

the time by those high-productivity partners, which would drastically reduce their outside751

options when bargaining with low-productivity individuals, preventing the evolution of752

proportionality. Thus, in our model the evolution of proportionality depends as much753

on the possibility of changing roles as on the possibility of changing partners. In real754

life, this is the equivalent of having a rich and varied social life with multiple cooperative755

opportunities in which one is not always in the worse bargaining position (Wiessner, 1996;756

Kaplan et al., 2009).757

C.2 Theoretical problems with partner choice758

Partner choice is an intrinsically complicated subject. The existence of a wide variety759

of cooperative partners to choose from means that a wide variety of social strategies can760

coexist and provide the same bene�ts, complicating evolutionary analysis. For example,761

an individual's acceptance of low rewards as a decision maker could be compensated by the762

low rewards she herself makes as a partner. Or some low payo�s received when interacting763

with low-productivity individuals could be compensated by high payo�s received when764

interacting with high-productivity individuals.765
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These e�ects explain why a quick look at the evolved strategies of individuals is not766

always enough to �nd a pattern of proportionality. This is especially true with neural767

networks working on a continuum of productivities or e�ort. While, as we have shown,768

the theoretical �tness-maximizing behavior is to o�er an amount proportional to one's769

own relative contribution, it is not necessarily the case that neural networks will produce770

proportional o�ers for the whole range of inputs they are exposed to. Imagine an individual771

who o�ers proportional rewards only to the best producers in the population, while o�ering772

less-than-proportional rewards to other individuals. At the evolutionary equilibrium, our773

model predicts that these unfair rewards will be rejected. But as long as �nding a new774

partner is not costly, being rejected does not lead to a loss of �tness. As a consequence,775

any individual can o�er less-than-proportional rewards to a fraction of the population, as776

long as another fraction still accepts the rewards she makes that are proportional. In other777

words, individuals can specialize in o�ering proportional rewards to only a fraction of the778

range of productivities in the population, and stop interacting with the remaining fraction.779

Because they stop interacting, the rewards o�ered to this fraction become subject to drift.780

Because of this mechanism, it is possible that averaging the output of di�erent evolved781

neural networks does not reveal a pattern of proportionality. In our simulations, averaging782

the output of 15,000 neural networks producing MARs yielded an almost perfect propor-783

tional relationship between contributions and MARs (main paper, Fig. 3C). Plotting the784

average output of 15,000 neural networks producing rewards did not show such a perfectly785

proportional relationship, although it was not far from it. Here, it is important to remem-786

ber that despite this variability in the rewards that are extended, proportionality prevails787

when we look only at the interactions that actually take place: only proportional rewards788

are accepted at the evolutionary equilibrium, as evidenced in Fig. 3B of the main article.789

Finally, problems of neutrality add complexity to the analysis. Although at the begin-790

ning of our simulations raising MARs drove the evolution of proportional rewards, once791
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proportional rewards had spread in the population, the selection pressure to maintain high792

MARs disappeared: if all individuals o�er rewards of r, requesting r or r− ε as a decision793

maker brings the same payo�. Because of drift, MARs can thus start to decrease, and794

in turn partners will be selected to decrease their rewards to try to exploit those unde-795

manding decision makers. This exploitation cannot last for long, as it soon revives the796

selection pressure to increase MARs, but the dynamic exists. Although it is rather easy to797

conceptualize why, under appropriate conditions, partner choice leads to proportionality,798

the actual dynamics underlying this result are far from straightforward to understand.799
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Figure 1: Evolution of the average rewards accepted in cooperative interactions according to
the productivity of the decision maker and the partner. High-productivity individuals produce
twice as much resources as low-productivity individuals. When partner choice is not costly,
rewards evolve to match the decision maker's relative contribution. Dashed lines represent the
expected reward in the analytical model. The evolution of MARs is visually undistinguishable
from the evolution of rewards and thus not represented.
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Figure 2: Distribution of rewards o�ered by low-productivity individuals to high-productivity
individuals in the last generation of an 8,000-generation simulation, for di�erent levels of partner
choice cost (higher values of β

τ
represent lower costs). High-productivity individuals' relative

contribution compared to low-productivity individuals is 0.66, so the dashed line represents the
expected equitable distribution. This distribution can only be reached when partner choice is
not costly (β

τ
is high).
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Figure 3: Evolution of equitable rewards made by neural networks working on a continuum
of productivities. A: Schematic representation of the neural networks that make rewards.
Networks take each individual's productivity as inputs and produce the reward as output. The
u's represent synaptic weights on which evolution takes place. B: 15,000 individuals and their
lifelong average gain plotted against their productivity. C: Average MARs produced by the
neural networks of 15,000 individuals after 8,000 generations, for di�erent values of the input
neurons. The more an individual produces and the less the partner produces, the larger the
individual's MAR. D: Average MARs produced by 15,000 neural networks plotted against the
relative contribution of the bearer of the network.

47

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 10, 2016. ; https://doi.org/10.1101/052290doi: bioRxiv preprint 

https://doi.org/10.1101/052290


Average reward

accepted

By individuals investing half as much time By individuals investing twice as much time

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

Time (generations)

A
ve
ra
ge
of
fe
r
ac
ce
pt
ed

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

Time (generations)

Partner choice not costly (β/τ = 100)

Partner choice costly (β/τ = 0.01)

Expected offer if the partner is rewarded according to her relative contribution

Figure 4: Evolution of the average reward accepted, depending on whether partners invest
twice as much or half as much time into cooperation. Individuals investing twice as much time
receive twice as much resources at equilibrium, and vice-versa.
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