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 5 
Abstract 6 
 7 
For the heterologous gene expression systems, the codon bias has to be optimized according to 8 

the host for efficient expression. Although DNA viruses show a correlation on codon bias with 9 

their hosts, HIV genes show low correlation for both nucleotide composition and codon usage 10 

bias with its human host which limits the efficient expression of HIV genes. Despite this 11 

variation, HIV is efficient at infecting hosts and multiplying in large number. In this study, first, 12 

the degree of codon adaptation is calculated as codon adaptation index (CAI) and compared with 13 

the expected threshold value (eCAI) determined from the sequences with the same nucleotide 14 

composition as that of the HIV-1 genome. Then, information theoretic analysis of nine genes of 15 

HIV-1 based on codon statistics of the HIV-1 genome, individual genes and codon usage of 16 

human genes is done. Comparison of codon adaptation indices with their respective threshold 17 

values shows that the CAI lies very close to the threshold values. Despite not being well adapted 18 

to the codon usage bias of human hosts, it was found that the Shannon entropies of the nine 19 

genes based on overall codon statistics of HIV-1 genome are very similar to the entropies 20 

calculated from codon usage of human genes. Similarly, for the HIV-1 genome sequence 21 

analyzed, the codon statistics of the third reading frame has the highest bias representing 22 

minimum entropy and hence the maximum information.  23 

 24 
Keywords: HIV-1 Genome, Shannon Entropy, Codon Usage Bias, Codon Adaptation Index, Expected Codon Adaptation Index 25 
 26 
Introduction 27 
 28 
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Every organism has its own pattern of codon usage. All the synonymous codons for a particular 29 

amino acid are not used equally. Some synonymous codons are highly expressed, whereas the 30 

use of others is limited. The use is species-specific [1] [2]. The difference in codon usage is also 31 

observed among genes of the same organism [3]. Codon bias has been linked to specific tRNA 32 

levels that are mainly determined by the number of tRNA genes that code for a particular tRNA 33 

[4]. The choice of codon affects the expression level of genes. This is seen in the expression 34 

pattern of transgenes.  Gustafsson et. al. showed that the use of particular codons can increase 35 

expression of the transgene by over 1,000 fold [5]. In bacteria, the gene expressivity correlates 36 

with codon usage [6]. Although bacteriophages have been shown to have codons that are 37 

preferred by their hosts [7] however, the codon usage pattern of RNA virus differs from its host 38 

[8]. Despite this variation, the HIV virus can effectively multiply in human T cells. Codon usage 39 

of early genes (tat, rev, nef) shows higher correlations with human codon usage [9], but late 40 

genes show little correlation. It raises a question how such variation in codon usage still allows 41 

for efficient viral gene expression. van Weringh et. al. showed that there is a difference in the 42 

tRNA pool of HIV-1 infected and uninfected cells. Even though they speculated that HIV-1 43 

modulates the tRNA pool of the host making it suitable for its efficient genome translation, 44 

however, the extent to which such modulation helps in efficient translation is still unknown. 45 

  46 

After Shannon published his groundbreaking paper "A Mathematical theory of Communication" 47 

[10], there have been several attempts in using information theory in the context of living 48 

systems. It has been used for measuring the information content of biomolecules, polymorphisms 49 

identification, RNA and protein secondary structure prediction, the prediction and analysis of 50 

molecular interactions, and drug design [11]. Shannon used the term information differently than 51 
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classical information theorists have used.  DNA comprises 4 nucleotides A, G, C, T whose 52 

distribution pattern varies among different species. Gatlin deduced information content based on 53 

this distribution pattern [12] using transition probability values obtained from the neighbor data 54 

[13]. Also, we know that information is not absolute. It depends on the context. This means that 55 

the same sequence of DNA may represent different amounts of information depending on what 56 

environment it is in or on the machinery that interprets the sequence. We exploit this to calculate 57 

the Shannon entropy for the nine genes of HIV-1 based on codon distribution of the viral 58 

genome, individual genes and that of its host – human codon usage frequency. Information is 59 

calculated based on the codon distribution for three possible reading frames. Here, I have tried to 60 

use the information as mentioned by Shannon to see whether information theoretic analysis leads 61 

to some novel insights into the problem.  To the best of my knowledge, I believe that such study 62 

has not been carried out yet. Viruses show overlapping genes and are speculated to be present to 63 

increase the density of genetic information [14]. The reason for calculating the Shannon entropy 64 

based on three different reading frames is that these genes are read by ribosomal frame-shifting 65 

[15]. For those nine genes, I have also calculated the intrinsic entropy of the sequence which can 66 

be defined as the entropy based on its own codon usage (i.e. codon usage within the same gene) 67 

to compare with other entropy values. 68 

  69 

Heterologous expression systems, such as viruses, use host translational machinery for their 70 

replication. They are under constant evolutionary pressure to adapt to the host tRNA pool. To 71 

estimate a degree of evolutionary adaptiveness of host and viral codon usage, Codon Usage 72 

Index (CAI) is used [16]. But, for sequences with a high biased nucleotide composition, 73 

interpretation of CAI can be tricky [17]. So, to know whether the value of CAI is statistically 74 
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significant and has arisen from codon preferences or is merely artifacts of nucleotide 75 

composition bias, expected CAI (eCAI) can be the threshold value for comparison [18]. 76 

 77 
 78 
Methodology: 79 

 80 
The DNA sequences were obtained from the NCBI database in FASTA format. For each 81 

sequence, codon statistics were obtained by entering the sequences on online Sequence 82 

Manipulation Suite [19] and by using the standard genetic code as the parameter. Number and 83 

fractions of each possible codons were noted. The first nucleotide was deleted to shift the reading 84 

frame by +1 to include other possible codon patterns and again the number and frequency were 85 

noted. The process was repeated for +2 reading frame. Now, as any of the reading frames can 86 

contain the gene of interest, all three reading frame statistics were used to calculate the Shannon 87 

entropy separately. The assumption made in the calculation is that reading the message occurs in 88 

a linear fashion without slippage of the reading frame (RF).  89 

According to Shannon, for a possible set of events with probability distribution given by {p1, p2, 90 

p3, …, pn } the entropy or uncertainty is given by, 91 

 92 

              
 
               93 

 94 

This is, in fact, the observed entropy of a sequence with the given probability distribution. H is 95 

the maximum when all     are equally likely. In this condition, the information content is zero. 96 

The amount of information or 'negentropy' in a sequence can then be given as, 97 

 98 

                           99 
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  100 

Where,      is the entropy obtained from given probability distribution [20] 101 

Lately, the information theoretic value of a given DNA sequence was obtained using the 102 

Shannon formula as double sum [21], 103 

 104 

                          
            

   
     
      105 

 106 

Here,     is the number of distinct amino acids,            is the number of synonymous codons 107 

(or micro-states) for amino acid i (or macro-state) whose value range from 1 to 6, and          is 108 

the probability of synonymous codon j for amino acid i. 109 

First, a row matrix was constructed with fractions of codons used. 110 

 111 

                     

 112 

The fractions in the matrix were treated as microstates to calculate Shannon entropy and thus 113 

another matrix was constructed consisting of Shannon entropy of each fraction distribution. 114 

 115 

                              

  

   

 

 116 

The total Shannon entropy of the sequence is then calculated as: 117 

 118 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2016. ; https://doi.org/10.1101/052274doi: bioRxiv preprint 

https://doi.org/10.1101/052274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 

           

 119 

Here N is the total number of codons present in the gene of interest. Such calculation was 120 

performed for all three RFs. As null models, two nucleotides compositions- one with the same 121 

nucleotides composition as that of the HIV-1 genome sequence and another with the equal 122 

percentages of each four nucleotides (25% each) - were used for the construction of random 123 

sequences.  124 

The correlation coefficient for each gene's codon statistics and human codon usage statistics was 125 

calculated. Correlation coefficients for two genes vpr and vpu were calculated again removing 126 

the codon data for which no amino acid is present in that gene. Then, Shannon entropy was 127 

calculated for all nine genes using the human codon usage statistics. Intrinsic entropy, which is 128 

the entropy based on own codon statistics of each gene was also calculated. Again, the 129 

assumption is that there is no slippage of reading frame during translation of the message. Thus, 130 

codon statistics for single reading frame starting with start codon was used to calculate intrinsic 131 

entropy. Similarly, average entropy was calculated by averaging the fractions of codons for all 132 

three RFs. For the calculation of percentage overall GC content and position specific GC content 133 

of codons of nine genes and CAI values, http://genomes.urv.cat/ CAIcal/ [21] online site was 134 

used again using the standard genetic code as the parameter. For calculation of the expected 135 

codon adaptation index was performed in E-CAI server (http://genomes.urv.es/CAIcal/) using 136 

Markov chain and standard genetic code as the parameters. Human codon usage statistics were 137 

obtained from the online site (http://genomes.urv.cat/CAIcal/CU_human_nature.html). 138 

Computations were performed in R. 139 

 140 
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 Result and Discussion: 141 

The calculation of CAI shows that all the genes have high values (Table 1) albeit with a varying 142 

degree of GC content. All the CAI values are greater than 0.6 with vpu having the lowest value 143 

of 0.62 whereas tat has the highest value of 0.77. CAI well above 0.5 is usually considered to be 144 

showing a good level of adaptation towards the host, however, one should be careful while 145 

interpreting these values as they may not reveal the level of adaptation just by themselves. Such 146 

values may result due to the bias in nucleotides composition. So, to know whether these values 147 

actually represent the adaptation we need to set a threshold set by the bias in nucleotides 148 

composition. For that expected CAI (eCAI) is calculated and compared with CAI [18]. From 149 

these comparisons, none of the genes seem to be well adapted to the human codons usage 150 

pattern. However, they do not show poor adaptation either as all genes have higher CAI values. 151 

Interestingly, they lie close to the threshold values. We can note that the GC content of all the 152 

genes is below average. Also, GC content of second and third nucleotides of codons shows the 153 

greatest variability. As neither nucleotide bias nor the pressure for adaptation exclusively 154 

explains high CAI values, we can speculate that both factors play a role, to some extent, in 155 

determining the values.  156 

 157 
Table 1: Codon adaptation index (CAI) and GC content of HIV-1 genes. 158 

Gene Length CAI %GC %GC1 %GC2 %GC3 eCAI (p<0.05) 

gag 1503 0.73 44.0 50.3 43.5 38.3 0.74 

nef 621 0.76 49.4 58.0 44.4 45.9 0.76 

tat 2592 0.77 39.8 38.8 41.0 39.7 0.78 

pol 1746 0.71 38.3 48.8 36.4 29.6 0.72 

rev 2682 0.73 40.5 41.5 39.7 40.2 0.74 

vif 579 0.72 42.0 46.6 41.5 37.8 0.74 

vpr 291 0.73 45.0 54.6 34.0 46.4 0.74 

vpu 249 0.62 37.8 54.2 31.3 27.7 0.66 

 CAI and eCAI values with overall GC percentage and position specific GC percentage for nine HIV-1 genes is reported. %GC 1, 159 
%GC2 and %GC3 represent GC percentage of the first, second and the third position of the codons respectively. Second and third 160 
position of the codon shows greatest bias in GC content as compared to the first position (except for tat and rev gene which 161 
shows almost no bias for all three positions) 162 
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Entropic calculation shows a general trend for the sequences analyzed. First, +2 frame-shifted 163 

reading frame shows lower entropy as compared to two other reading frames. This marked 164 

distinction of the third reading frame among three possible reading frames of the sequence 165 

analyzed is surprising. As it has the lowest entropy among three reading frames, the sequence 166 

with the codon usage pattern of the third RF represents the highest information (in Shannon's 167 

sense) (Table 3). Calculations from 10 random genomic sequences, having the same nucleotide 168 

bias as that of the HIV-1 genome, did not show such pattern. The mean of the average entropy 169 

per codon for each reading frames of those random sequences was 5.8 with the standard 170 

deviation of 0.05. This probably suggests that there is a genome-wide conservation of codon 171 

usage for the third reading frame of the HIV genome analyzed, but the reason is unclear.  172 

 173 

We see that there is a high correlation between codon present in HIV-1 early genes (tat, rev, nef) 174 

and human codon usage (fig 1), but correlation is lower for other genes: env, gag, pol, vpr, vif, 175 

vpr (table 2); vpu and vif genes have the lowest correlation with human codon usage. The degree 176 

of correlation also differs for 3 RFs' codon statistics with that of nine genes: high correlation 177 

probably suggesting that the particular gene resides at that RF. 178 

 179 
Table 2. Correlation coefficients calculated among human codon usage, codon usage of HIV-1 genes and 180 

codon statistics for all three reading frames of HIV-1 genome 181 
Genes Correlation coefficients 

Human 

codon 

RF 0 RF +1 RF +2 

env 0.48 0.78 0.74 0.87 

gag 0.55 0.84 0.76 0.83 

tat 0.72 0.88 0.96 0.91 

rev 0.62 0.91 0.87 0.94 

vpu 0.26 / 0.41 0.61 0.54 0.68 

vpr 0.48 / 0.55 0.61 0.66 0.65 

vif  0.44 0.79 0.74 0.76 

nef  0.73 0.78 0.76 0.73 
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pol  0.57 0.84 0.82 0.89 

Human  - 0.74 0.78 0.66 

The table shows the correlation between codon fractions of nine genes with human codon usage fraction (column 2) 182 
and also with three different reading frames. RF 0 represents the codon fractions of the initial reading frame of HIV-183 
1 sequence, RF +1 represents a codon fractions of single frame shift and RF +2 represents codon fractions of +2 184 
frameshifts of the HIV-1 genome sequence. Human codon usage statistics is also compared with the three possible 185 
reading frames of HIV-1 genome where +1 shifted reading frame shows the highest correlation. 186 
For vpu and vpr gene, the number after backlash is calculated removing the data for which no codons are present for 187 
certain amino acids. 188 
 189 

 190 
 191 

Fig 1: Scatter plot between codons fractions of tat, rev and nef genes of HIV-1 and human codon usage fraction with 192 
the correlation coefficient of 0.72, 0.62 and 0.73 respectively. These three genes have the highest correlation with 193 
human codon usage and are also the early genes. 194 
 195 

env, rev, pol and vpu genes have the highest correlation with the third reading frame as compared 196 

to other two reading frames. Similarly, gag and vpr also have a high correlation coefficient. If we 197 

use codon statistics of third RF to calculate the Shannon entropy, we get the minimum entropy 198 

and hence maximum information. But, then again we run into a problem as this third RFs shows 199 

the lowest correlation coefficient with human codon usage pattern. So, there must be a balance 200 

between these contrasts: maximizing information or maximizing correlation. Take gag for 201 

example, it shows high correlation with RF0 and RF2 both of which have lower correlation with 202 
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human codon usage. This means that the choice of codons affects the gag gene expression. In 203 

fact, the ratio of native and optimized codons determines the HIV-1 gag expression [23]. This 204 

also supports the speculation that codon bias leads to sub-optimal expression in infected cells. 205 

There is, in fact, good evidence that HIV-1 gene expression is not the maximum but, is fine-206 

tuned to allow regulation of diverse processes [24]. More evidence of sub-optimal expression is 207 

shown by the fact that when codon optimized genes that are better adapted to the host tRNA pool 208 

were introduced, it led to higher expression [25][26][27]. From the entropic calculation based on 209 

human codon usage, we can see that vpu and vif have the lowest entropy, but as they have a low 210 

correlation with human codon usage, their expression is limited. Codon optimization of these 211 

genes results in the increase of expression level [28]. However, high correlation does not imply 212 

that the gene is in that reading frame. It is possible that such bias may or may not affect 213 

biological function, but it is likely that such distinction of lower entropy has some evolutionary 214 

importance. 215 

 216 
Table 3: Entropies of HIV-1 genes based on various codon distributions 217 
Genes gag nef tat pol rev vif vpr vpu env Entropy 

per 

codons 

Entropy 

H 

2900.79 1198.53 5002.56 3369.78 5176.26 1117.47 561.63 480.57 1638.57 5.79 

Entropy 

0 

2855.70 1179.90 4924.80 3317.40 5095.80 1100.10 552.90 473.10 1613.10 5.70 

Entropy 

+1 

2845.68 1175.76 4907.52 3305.76 5077.92 1096.24 550.96 471.44 1607.44 5.68 

Entropy 

+2 

2790.57 1152.99 4821.48 3241.74 4979.58 1075.01 540.29 462.31 1576.44 5.57 

Entropy I 2764.28 1144.92 4902.02 3066.49 5050.00 1034.48 559.62 389.27 1509.32 - 

Average 

entropy 

2875.74 1188.18 4959.36 3340.68 5131.56 1107.82 556.78 476.42 1624.42 5.74 

Shannon Entropic values in bits for nine genes based on different codon statistics. Entropy H denotes the entropic 218 
value based on human codon usage statistics. Entropy 0, Entropy +1 and Entropy +2 represent the entropic values 219 
based on first reading frame, +1 shifted reading frame and +2 shifted reading frame of HIV-1 genome sequence 220 
respectively. Entropy I represents intrinsic entropy. Average entropy is calculated by averaging the codon statistics 221 
for three possible reading frames. The last column shows the average entropies per codons that are used for the 222 
calculation of total entropies of each row. 223 
 224 
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Intrinsic entropy differs greatly with other entropic values as it shows lowest values for most 225 

genes. Such low intrinsic entropies may have significance for free-living organisms as lower 226 

entropies suggest higher bias. But, for heterologous expression systems such as HIV-1, entropy 227 

H probably represents the best entropic values for the genes analyzed as host (human) gene 228 

usage codon statistics was used for the calculation. Average entropy, which is closer to entropy 229 

H rather than intrinsic entropy, gives a better representation for entropic value and hence for the 230 

amount of information a gene contains inside a human host. Although there is great variation in 231 

the synonymous codon usage statistics between HIV-1 genes and human genes, the entropic 232 

values for the HIV-1 genes based on the overall code distribution of the HIV genome shows 233 

almost similar values as compared to the calculation based on human codon usage statistics 234 

(Table 3). Even for a vpu gene, which has a very low correlation coefficient (0.26), the entropic 235 

values based on overall codon statistics of HIV-1 genome and human codon usage statistics 236 

show similarity: 476.42 and 480.57 bits respectively. Even if we remove the data for which there 237 

is no single codon for certain amino acids in that gene, the correlation coefficient is still low. 238 

In vpu gene, codons for Cysteine, Threonine and Phenylalanine are absent. If we remove that 239 

data, we get a correlation coefficient of 0.41, which is still low. However, this removal does not 240 

affect the entropic calculation. Similarly, for vpr gene, codons for Cysteine are absent. Removing 241 

that data new correlation coefficient obtained is 0.55 and average entropic values and entropy H 242 

are close: 556.78 and 561.63 bits respectively.  243 

 244 

HIV is a highly variable virus which undergoes rapid mutation. Although it cannot match its 245 

codon bias with that of the host, but it can have a stable codon usage pattern. To maintain the 246 

overall codon statistics, it has to maintain the nucleotide composition, which is the determinant 247 
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of codon bias [28]. Despite its high mutation rate, the biased nucleotide composition of HIV is 248 

constant over time [29]. If the genes have same codon biases as that of the host then it might lead 249 

to their highest expression. But this is not desired as it would not allow for efficient tuning of its 250 

complex processes. If codon bias is completely different from that of the host, then it might 251 

result in very low expression putting its ability to survive in the host in question. So, HIV has to 252 

find a solution which can result in sub-optimal expression of the genes. From the calculation in 253 

table 3 (Entropy H and Average Entropy), it seems that HIV has found a solution in which its 254 

codon bias is different from that of host to allow sub-optimal expression, but at the same time 255 

represent the same level of information as can be obtained from the codon bias of its host. Also, 256 

random sequences generated from the conserved nucleotide bias (but not from random sequences 257 

with no nucleotide bias) give the same results suggesting that nucleotide bias decides the 258 

entropic values (Table 4). In fact, both average entropies per codon calculated from HIV-1 259 

genome and the human genes (Table 3) lie within 95% confidence interval of the mean of the 260 

average entropy per codon obtained from random sequences generated from the conserved 261 

nucleotide bias.  One possible explanation for this observation is that, despite having a difference 262 

in codon bias with human, HIV-1 viruses have evolved to represent the same level of 263 

information as would have represented by the codon bias of the human host. 264 

Table 4: Entropic calculation and ANOVA for random sequences 265 
 Mean of average 

entropy per 
codon 

95% of confidence 
interval 

Standard 
Deviation 

F-value Prob>F 

RC Sequences 5.76 5.72-5.80 0.04 136.23 
 

7.87E-10 

RNC Sequences 5.97 5.95-5.97 0.02 

Mean average entropy per codons for random sequences and ANOVA for the result obtained is reported. RC represents ten 266 
random sequences generated from conserved nucleotide distribution. This is the same nucleotide distribution as that of the 267 
HIV-1 genome. RNC represents another ten random sequences that are generated with equal fractions of nucleotides (0.25 268 
each). ANOVA shows that the F-value is large 136.23 with very low p>F suggesting the means of entropies from the two 269 
distributions are different. 270 
 271 

 272 
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Conclusion: 273 
 274 
Despite many studies, HIV viral genome still possesses several mysteries. HIV is evolving along 275 

with its human host. However, it is not clear why its nucleotide composition and synonymous 276 

codon usage bias differ greatly from its host. From the comparison of CAI with eCAI, we can 277 

conclude that HIV genes are not well adapted to the tRNA pools of humans. So, it can be 278 

inferred that selection pressure on HIV to adapt to tRNA pools is counteracted by the rapid 279 

mutation of its genome. It is not clear whether nucleotide composition bias can give rise to the 280 

asymmetry in the observed information content along three possible reading frames. However, 281 

despite having large differences in nucleotide composition and synonymous codon usage bias, 282 

HIV genes are seem to have evolved to represent the same level of information as obtained by 283 

the codon bias of human genes. How HIV is able to attain such uniformity, despite differing 284 

from its host, is yet another mystery this study has surfaced. Further work is needed, which can 285 

bring together the differences in one place to give a clear picture of the evolution of the HIV 286 

viral genome. 287 

 288 
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