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Abstract 

Single-cell RNA-seq technologies enable high throughput gene expression measurement of 

individual cells, and allow the discovery of heterogeneity within cell populations.  Measurement 

of cell-to-cell gene expression similarity is critical to identification, visualization and analysis of 

cell populations. However, single-cell data introduce challenges to conventional measures of 

gene expression similarity because of the high level of noise, outliers and dropouts. Here, we 

propose a novel similarity-learning framework, SIMLR (single-cell interpretation via multi-

kernel learning), which learns an appropriate distance metric from the data for dimension 

reduction, clustering and visualization. We show that SIMLR separates subpopulations more 

accurately in single-cell data sets than do existing dimension reduction methods. Additionally, 

SIMLR demonstrates high sensitivity and accuracy on high-throughput peripheral blood 

mononuclear cells (PBMC) data sets generated by the GemCode single-cell technology from 10x 

Genomics.  
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Background 

Single-cell RNA sequencing (scRNA-seq) technologies have recently emerged as a powerful 

means to measure gene expression levels of individual cells and to reveal previously unknown 

heterogeneity and functional diversity among cell populations [1]. Quantifying the variation 

across gene expression profiles of individual cells is key to the identification and analysis of 

complex cell populations that arise in neurology [2], immunology [3], oncology [4] and 

developmental biology [5]. The heterogeneity identified across individual cells can answer 

questions irresolvable by traditional ensemble-based methods, where gene expression 

measurements are averaged over a population of cells pooled together [6], [7].  Recent works 

have demonstrated that de novo cell type discovery and identification of functionally distinct cell 

subpopulations are possible via unbiased analysis of all transcriptomic information provided by 

scRNA-seq data [8]. Therefore, unsupervised clustering of individual cells using scRNA-seq 

DATA is critical to developing new biological insights and validating prior knowledge. 

Most existing single-cell studies employ computational and statistical methods that have been 

developed primarily for analysis of data from traditional bulk RNA-seq methods [8]–[10]. These 

methods do not address the unique characteristics that make single-cell expression data 

especially challenging to analyze: outlier cell populations, transcript amplification noise, and 

biological effects such as the cell cycle [11]. In addition, it has been shown that many statistical 

methods fail to alleviate other underlying challenges, such as dropout events, where zero 

expression measurements occur due to sampling or stochastic transcriptional activities [12]. 

Recently, new single-cell platforms such as DropSeq [13], InDrop [14] and GemCode single-cell 

technology [15] have enabled a dramatic increase in throughput to thousands of cells. These 

platforms have adapted recent sequencing protocols such as unique molecular identifiers (UMIs) 
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to create digital counts of transcripts in a cell. However, with 3’-end sequencing instead of full 

transcript sequencing, low coverage per cell and varying capture efficiency, these high-

throughput platforms produce data sets where 95% of measurements are zeros.  

The technological differences across single-cell platforms as well as the biological differences 

across studies can strongly affect the usability of unsupervised clustering methods. Core to the 

problem is that unsupervised clustering methods usually rely on specific similarity metrics across 

the objects to be clustered, and standard similarity metrics may not generalize well across 

platforms and biological experiments, and thus be unsuitable for scRNA-seq studies. To address 

this problem and answer the key question of “which cells are similar or different” in a way that 

generalizes across different single-cell data sets, we introduce SIMLR (single-cell interpretation 

via multi-kernel learning), a novel framework that learns appropriate cell-to-cell similarities 

from the single-cell data. We use SIMLR to simultaneously (1) cluster cells into groups for 

subpopulation identification and (2) produce a 2-D or 3-D visualization of the expression data. 

SIMLR preserves consistency between clustering and visualization, enabling one to 

quantitatively and qualitatively understand structures underlying single-cell data sets.  

SIMLR offers two main advantages over previous methods: (1) it learns a distance metric that 

best fits the structure of the data. This is important because the diverse statistical characteristics 

of single-cell data produced today do not easily fit specific statistical assumptions made by 

standard dimension reduction algorithms; (2) in contrast to some previous analyses that pre-

select gene subsets of known function [10], [16], SIMLR is unsupervised, thus allowing de novo 

discovery from the data. We empirically demonstrate that SIMLR produces more separable data 

points and more reliable clusters than PCA as well as many commonly used nonlinear methods, 
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and we use SIMLR to provide 2-D and 3-D visualizations that assist with the interpretation of 

single-cell data derived from several diverse technologies and biological samples.  
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Results and Discussion 

Overview of Algorithm 

Here we highlight the main ideas in our methodology underlying SIMLR, and we provide full 

details in Materials and Methods. 

Given a 𝑁×𝑀 gene expression matrix 𝑋 with 𝑁 cells and M genes (𝑁   <   𝑀) as an input, 

SIMLR solves for 𝑆, an 𝑁×𝑁 symmetric matrix that captures pairwise similarities of cells. In 

particular, 𝑆!", the (𝑖, 𝑗)th entry of 𝑆, represents the similarity between cell 𝑖 and cell 𝑗. SIMLR 

assumes that if 𝐶  separable populations exist among the 𝑁  cells, then 𝑆  should have an 

approximate block-diagonal structure with 𝐶 blocks whereby cells have larger similarities to 

other cells within the same subpopulations. 

We introduce an optimization framework that learns 𝑆 by incorporating multiple kernels to learn 

appropriate cell-to-cell distances from the data (Figure 1a). We provide an efficient algorithm to 

optimize for 𝑆, while simultaneously learning the block-diagonal structure within 𝑆. The cell-to-

cell similarity values in 𝑆 can be used to create an embedding of the data in 2-D or 3-D for 

visualization, as well as a projection of the data into a latent space of arbitrary dimension to 

further identify groups of cells that are similar (Figure 1b).  

 

General optimization framework  

SIMLR computes cell-to-cell similarities through the following optimization framework: 
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minimize
!,!,!

         𝐷 𝑥! , 𝑥! 𝑆!"
!,!

  + 𝛽 𝑆 !
!   +   γ  𝐭𝐫(𝐿!(𝐼! − 𝑆)𝐿)+ 𝜌 𝑤! log𝑤!

!

 

subject  to    𝐷 𝑥! , 𝑥!   =      𝑤!𝐷!
!

𝑥! , 𝑥! , 𝑤!
!

= 1,𝑤! ≥ 0,

𝐿!𝐿 = 𝐼! , 𝑆!"
!

= 1, and  𝑆!" ≥ 0  for  all   𝑖, 𝑗 , 

(1) 

where  𝑥! is the length-𝑀 gene expression vector of cell 𝑖, i.e., the 𝑖th row of 𝑋; 𝐷 𝑥! , 𝑥!  is the 

distance between cell 𝑖 and cell 𝑗, expressed as a linear combination of distance metrics 𝐷! with 

weights 𝑤! ; 𝐼!  and 𝐼!   are 𝑁×𝑁 and 𝐶×𝐶  identity matrices respectively;  and 𝛽  and γ are non-

negative tuning parameters. 𝑆 ! is the Frobenius norm of 𝑆. The optimization problem involves 

solving for three variables: the similarity matrix 𝑆, the weight vector 𝑤, and a 𝑁×𝐶 rank-

enforcing matrix 𝐿.   

The intuition behind the first term in the formula is that the learned similarity S between two 

cells should be small if the distance between them is large.  The second term is a regularization 

term that avoids over-fitting the model to the data. If there are 𝐶 subpopulations, the gene 

expressions of cells of the same sub-type should have high similarity, and ideally the effective 

rank of 𝑆 should be 𝐶. Thus, the third term along with the constraint on 𝐿 enforces the low-rank 

structure of 𝑆: the matrix (𝐼! − 𝑆) is essentially the graph Laplacian [17], and the trace-

minimization problem enforces approximately 𝐶 connected components in a similarity graph that 

consists of nodes representing the cells, and edge weights corresponding to pairwise similarity 

values in 𝑆 [17]. The fourth term imposes constraints on the kernel weights to avoid selection of 

a single kernel; we empirically found that this regularization improves the quality of learned 

similarity (Supplementary Table 1).  
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One critical component of this optimization problem is the choice of the distance measure 

𝐷 𝑥! , 𝑥!  between pairs of cells. It is well-known that the distance metric defined for the input 

space is critical to the performance of clustering and visualization algorithms designed for high-

dimensional data [18]. Due to the presence of outliers and unusual zero-inflated distributions in 

single-cell data, standard metrics like the Euclidian distance may fail to perform well. Thus, 

instead of using a pre-defined distance metric, we incorporate multiple kernel learning [19] that 

flexibly combines multiple distance metrics.  

We employ an efficient algorithm for optimizing 𝑆, 𝐿 and 𝑤. The intuition behind our procedure 

is simple: holding two of these three variables fixed, the optimization problem over the third 

variable is convex. Hence, we alternate between optimizing each variable while holding the other 

two fixed until convergence (for full details, see Materials and Methods).  

 

Dimension reduction for clustering and visualization    

SIMLR relies on the stochastic neighbor embedding (SNE) [20] methodology for dimension 

reduction, with an important modification: t-SNE computes the similarity of the high-

dimensional data points using a Gaussian kernel as a distance measure and projects the data onto 

a lower dimension that preserves this similarity. Instead of using the gene expression matrix as 

an input to t-SNE, we use the learned cell-to-cell similarities 𝑆 (detailed in Supplementary 

Methods).   

For visualization, we use our modified t-SNE algorithm to project the data into two or three 

dimensions so that the hidden structures in the data can be depicted intuitively. For clustering, 

we use the same approach to reduce the dimensions to 𝐵, resulting in an 𝑁×𝐵 latent matrix 𝑍, to 
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which we can apply any existing clustering algorithms, such as K-means [21] to assign labels to 

each cell. The number of reduced dimensions 𝐵 is typically equal to the number of desired 

clusters 𝐶.   

 

Applications 

Cell-to-cell similarities 	
  	
  

We start by benchmarking SIMLR against conventional pre-defined measures in capturing true 

cell-to-cell similarities on four published single-cell data sets (for the full details of each data set, 

see Materials and Methods): 

1. Eleven cell populations including neural cells and blood cells (Pollen data set [9]).  

2. Neuronal cells with sensory subtypes (Usoskin data set [8]).  

3. Embryonic stem cells under different cell cycle stages (Buettner data set [16]).  

4. Pluripotent cells under different environment conditions (Kolodziejczk [10]).   

We selected these data sets because they span a variety of cell types and have different numbers 

of subpopulations, representing a wide range of single-cell data; cell types in each dataset were 

also known a priori and were further validated in the respective studies, providing a reliable gold 

standard with which to assess clustering performance. To evaluate SIMLR’s performance on 

these data sets, we compared subpopulation labels assigned after dimension reduction with 

SIMLR to the true subpopulation labels from the respective studies. Table 1 summarizes the 

number of cells, genes and validated populations in each data set, as well as the run time of 

SIMLR on each data set. 
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SIMLR was given the raw gene expressions and the true number of clusters, but no information 

about the true labels. Once the similarities were computed, we organized the cells according to 

the known or validated cell populations (i.e., true labels) from each study. As is shown in Figure 

2, we compared the cell-to-cell similarities learned by SIMLR with a similarity matrix computed 

from Gaussian kernels applied to Euclidean distances (Euclidean Similarity), and a pairwise 

correlation matrix (Pearson Correlation). Each column in Figure 2 corresponds to a different 

data set and each row corresponds to a different kind of similarity. The axes of the symmetric 

matrices are colored and organized by the true labels. 

As can be seen by comparing the rows of Figure 2, SIMLR learned a similarity matrix with 

block structures in remarkable agreement with the previously validated labels, while the other 

similarity matrices agree less well. Both Euclidean distances and Pearson correlations are 

sensitive to outliers, and Pearson correlations do not capture nonlinear relationships, so spurious 

similarities between cells from different groups surface with these pre-defined measures. On the 

other hand, SIMLR handles outliers with its rank constraint and nonlinear similarities using 

multiple kernels, making its learned similarity more suitable for single-cell data sets.  

Furthermore, SIMLR demonstrates one additional advantage: it can identify additional 

subpopulation structures even when the number of clusters input into the algorithm is 

conservatively selected. From the similarity structure learned by SIMLR in the Kolodziejczyk 

data set in Figure 2, we observed that each of the three validated clusters could be further 

divided into sub-clusters, which is consistent with the unsupervised analysis in the corresponding 

study [10]. However, these sub-clusters were identified using a small number of pre-selected 

genes in the original study. SIMLR preserved these substructures in an unbiased fashion while 

having clearly removed the spurious similarities between cells from different (validated) groups. 
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(In the remainder of our analysis, as gold standard we use only the unbiased and validated true 

labels as opposed to the additional subpopulations identified by unsupervised analysis.)  

 

Clustering Performance Metrics 

The similarity matrix learned by SIMLR can be leveraged to reduce the dimension of the original 

data for clustering. Many other dimension reduction approaches have been applied upstream of 

various clustering methods. For a more systematic analysis of SIMLR’s performance, we 

compared it to other dimension reduction methods using two types of metrics. 

First, we assume only the number of clusters is known a priori and run K-means on the 

dimension-reduced data in order to group cells into clusters; we compare this clustering to the 

true clustering using the normalized mutual information (NMI), a standard measure of clustering 

concordance. Second, we classify each cell based on the true labels of its nearest neighbors in the 

dimension-reduced space, and assess the accuracy of this classification using cross validation; 

we refer to this metric as nearest neighbor error (NNE). This test assesses how accurately new 

cells can be classified using cells whose labels are already known. (The formal mathematical 

definitions of NMI, NNE and other cluster performance metrics are provided in Supplementary 

Notes.)  

We select these two performance metrics because they measure different aspects of the data in 

the low dimensional latent space: NNE directly reflects how closely cells from the same 

population are surrounded by each other, whereas NMI provides a global view of how well cells 

from different populations are separated. We also tested four other performance metrics in 
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Supplementary Notes, shown in Supplementary Figures 2-5, to ensure that SIMLR performed 

well under different standards. 

 

Comparison with other dimension reduction methods 

We performed extensive comparisons of SIMLR with 8 other methods on the four data sets to 

test its utility. The 8 methods included standard linear methods including PCA [22], FA [33], and 

probabilistic PCA (PPCA) [28]; nonlinear methods including t-SNE [23], Laplacian eigenmaps 

[25], multidimensional scaling (MDS) [26], and Sammon mapping [27]; and model-based 

methods specifically designed for single-cell data like zero-inflated factor analysis (ZIFA) [12]. 

The methods we tested included all methods used in analyses of the original data sets. In addition, 

the Pollen and the Usoskin data sets were the only ones with validated labels used in [12] to 

assess ZIFA, which was specifically designed for single-cell data.  

The NMI and NNE values for the 9 methods are summarized in Table 1 and Table 2 

respectively. Our method consistently outperforms the existing alternatives on the four data sets, 

and most of the differences in NMI and NNE between SIMLR and the second best method are 

remarkably large.  

To test the robustness of SIMLR, we conducted three additional experiments for each data set.  

1. We used varying numbers (3 - 20) of latent dimensions 𝐵 to evaluate the performance of 

SIMLR and other methods. This evaluation is critical because typically the true number 

of clusters in the data is unknown. (As mentioned before, ideally 𝐵 should be equal to the 

true number of clusters for SIMLR.) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2016. ; https://doi.org/10.1101/052225doi: bioRxiv preprint 

https://doi.org/10.1101/052225
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   13 

2. We dropped varying fractions (5% - 70%) of the gene measurements in the input gene 

expression matrix to analyze how each method performs when random levels of dropout 

are present across the data, which is relevant to the high dropout rate in single-cell data.  

3. We added independent zero-mean Gaussian noise with varying variances 𝜎! (0.1 – 1) to 

the gene expression matrix. The number of dimensions 𝐶 used in this experiment is set to 

be the true number of clusters. In order to preserve the dropout characteristics, we 

ensured that the added noise was set to zero at a frequency equal to the dropout rate in 

each data set. Formally, we added a random noise vector 𝑦!   to 𝑥! by the following process: 

𝑧! ∼ Normal 0,σ!𝐼! ,              ℎ!" ∼ Bernoulli 𝑝! , 𝑦!" =
𝑧!" , if  ℎ!" = 0
      0, if  ℎ!" = 1 (2) 

where 𝑝! is the dropout rate (proportion of zeros) in the original expression matrix 𝑋. We 

set the values of an entry in the new expression matrix to zero if its value after adding 

noise dropped below zero.  

The NMI and NNE values (Figure 3a, b) on the Buettner data set show remarkably better 

performance by SIMLR as compared to other methods. In addition, we observe that SIMLR is 

not sensitive to the number of latent dimensions 𝐵 even though the most suitable choice of 𝐵 

should ideally be the number of clusters if it is known. ZIFA and FA achieve high NMI values at 

certain values of 𝐵 but are less stable and can perform much worse than SIMLR otherwise (as is 

shown in the first column of Figure 3).  Moreover, as the fraction of genes increases, the NMI 

increases and the NNE decreases more noticeably for SIMLR. Finally, while the performance of 

SIMLR decreases with the noise variance, it still outperforms other methods.  

Based on other metrics on all four data sets (shown in Supplementary Figures 2-5), we observe 

that SIMLR also outperforms other methods in a similar fashion and no other method dominates 
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in specific regimes. Therefore, SIMLR should be considered a safe alternative to existing 

approaches for single-cell data sets that are generally similar to the four data sets we consider.    

 

Visualization of cells in 2-D  

After confirming that cell-to-cell similarities learned by SIMLR are meaningful and that the 

clustering performance of SIMLR is reliable, we applied SIMLR’s SNE-based dimension 

reduction to 2-D to verify that the structures in the data are visually intuitive. We compared 

SIMLR with two of the most commonly used visualization methods in single-cell analysis: PCA 

and t-SNE. We also included ZIFA, which was shown to outperform many other model-based 

methods [15]. In Figure 4, none of the four methods used the true labels as inputs for dimension 

reduction, and we only added the true label information (in the form of distinct colors) 

afterwards to validate the results.  

SIMLR successfully separates the clusters for the Pollen (11 populations) and the Buettner (3 

populations) data sets, whereas other methods contain clusters that are mixed to different extents. 

For the 3 populations in the Kolodziejczyk data set, SIMLR and t-SNE perform similarly and 

separate the clusters more clearly than PCA and ZIFA. For the 4 populations in Usoskin, none of 

the methods separated the clusters completely but SIMLR and tSNE exhibit less overlap than 

PCA and ZIFA. These results indicate that SIMLR overall uncovers meaningful clusters that are 

more identifiable than those produced by existing methods.  The visualizations of the four data 

sets using other dimension reduction methods are provided in Supplementary Figure 1 for 

reference. 
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Application to sparse PBMC data sets 

Single-cell RNA-seq data produced from high-throughput microfluidics platforms such as 

DropSeq [13], InDrop [14] and GemCode single-cell technology [15] contains up to  95% zero 

expression counts. We tested the performance of SIMLR on sparse datasets by applying it to 

PBMC scRNA-seq data from the GemCode [15]. The PBMC data were from 5 bead enriched 

populations: naïve B (CD19+ and IgD+), CD56+ natural killer (NK) cells, CD8+ cytotoxic T 

cells, CD4+ T cells and CD14+ monocytes. The purity of the populations was validated by 

FACS, and clustering analysis of the scRNA-seq transcriptome profile. To generate a ground 

truth set, we generated in silico mixtures from these 5 datasets at specific proportions: 10%, 5%, 

25%, 40%, 20%. SIMLR provided an unbiased classification of these subpopulations that was 

highly consistent (with NMI over 0.95 on average). In addition, we used t-SNE and PCA with K-

means clustering as baselines, and they also produced good agreement with the true labels 

(Figure 5a). The overall improvement of SIMLR over t-SNE and PCA was noticeable but not 

highly significant because many cell types (such as monocytes, naïve B cells) are easily 

distinguishable from other cell types. 

To provide intuition for how SIMLR differs from t-SNE and PCA, we illustrate one of the trials 

(Figure 5b-c, colored by ground-truth cell types) where the 5 different cell types are better 

separated using SIMLR. PCA produced the most ambiguous visualization across NK cells, 

CD8+ cytotoxic T cells and CD4+ T cells, whereas t-SNE did not completely separate NK cells 

from CD8+ cytotoxic T cells. We performed pairwise clustering to elucidate the cases where 

SIMLR and other methods differ (Figure 5d and Supplementary Figure 7). While most pairs 

were easy to separate by all methods, SIMLR’s overall improvement over t-SNE and PCA 

resulted from its ability to separate CD8+ T cells and NK cells (highlighted in the orange boxes 
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in Figure 5e). CD8+ T cells and NK cells are difficult to separate because the two cell types can 

share several common gene markers and certain T cells share properties of both NK and CD8+ 

cells [23], [24]. In the case where SIMLR did not outperform PCA (highlighted in the blue boxes 

in Figure 5d), we found that SIMLR mistakenly grouped a very small number of monocytes 

with NK cells but still correctly separated the vast majority, leading to a negligible difference 

from PCA.  

No clustering method is guaranteed to always outperform others on real data sets, especially 

when the number of clusters is sometimes difficult to pre-determine. For this reason, each 

method can have a certain degree of variability. Using the in silico mixing of immune cells, we 

showed that SIMLR can still reveal reliable clusters on sparse data sets and the overall 

performance is indeed insensitive to the variability from trial to trial.  

Simulation on simulated nonlinear manifold data sets   

In addition to real single-cell data sets with ground truth information, we evaluated SIMLR’s 

performance on simulated data to evaluate how accurately it captured nonlinear manifolds. We 

focused on comparisons to t-SNE because SIMLR directly adapts the algorithm for t-SNE. We 

first created artificial clusters of cells (concentric circles) in a low-dimensional latent space 

(Figure 6a), used a random linear transformation to project the data into a high dimensional 

space, and then added noise and zeros following the model in [12] to create the single-cell gene 

expression matrix. (More details on the simulation methodology are provided in Supplementary 

Notes.) In Figure 6b, we show how SIMLR separates the clusters more clearly than t-SNE, as 

measured by NNE (results were similar with other metrics; Supplementary Figure 7) at each 

stage of the data generation process: prior to adding noise or zeros, after adding noise, and after 

adding zeros.  When more noise (Figure 6c) or dropouts (Figure 6d) are added to the data, the 
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cluster information in t-SNE becomes obscured, where as the impact on SIMLR is less 

significant as the NNE is lower and the clusters are still separated very well.  

While in this example we generate clusters as concentric circles in the latent space to illustrate 

how SIMLR can separate even clusters with complex structures, we also evaluated SIMLR’s 

performance on Gaussian clusters (Supplementary Figures 9 and 10), comparing to factor 

analysis and ZIFA [12] as well as to t-SNE. We found that SIMLR outperformed the other 

methods if the dropout rate was low, whereas ZIFA outperformed the other methods if the 

dropout rate was high; the latter result is unsurprising, because ZIFA is explicitly designed to 

accommodate a high dropout rate and we generated the data using ZIFA's dropout model.  
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Conclusions 

High-throughput single-cell RNA sequencing technologies have enabled fine-grained analysis of 

cell-to-cell heterogeneity and molecular functions within tissues and cell populations that until 

recently could only be studied in bulk. As additional high-throughput approaches become 

available for single-cell RNA-seq, a wider range of studies pertaining to fundamental cellular 

functions will continue to emerge. Consequently, single-cell data sets may exhibit even higher 

levels of diversity (e.g., different tissues, comparisons of healthy versus disease-associated cell 

populations, different stages of the cell cycle or across development, different experimental 

technologies, and other sources of variation across data sets). Such diversity in experimental 

conditions and cell collections makes it difficult and undesirable to define cell-to-cell similarity 

measures based on strict statistical assumptions. As novel methodologies and algorithms are 

urgently needed for this new type of data, SIMLR can adapt to the heterogeneity across different 

single-cell data sets by learning an appropriate similarity measure for each data set. 

In this paper we extensively evaluated SIMLR using recently published distinct single-cell data 

sets and without any prior knowledge of groups of significant genes. We demonstrated that 

SIMLR is able to learn appropriate cell-to-cell distances that uncover similarity structures that 

would otherwise be shadowed by noise or outlier effects. Furthermore, SIMLR successfully 

clusters cell populations and projects the high-dimensional data in a visually intuitive fashion. 

We show that SIMLR separates clusters more cleanly than 8 other popular dimension reduction 

methods, including linear methods (such as PCA), nonlinear methods (such as Sammon), and a 

recently published approach (ZIFA) specifically designed for single-cell data sets [12].  

Because each dimension reduction algorithm makes its own assumptions, it is unlikely that one 

is optimal for all data sets. As we have shown, SIMLR performs very well on single-cell data 
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sets that contain several clusters -- a frequent use case where heterogeneity is defined by distinct 

cell lineages. But because SIMLR assumes the data has cluster structures, it may not be best 

suited for data that does not contain clear clusters, such as cell populations that contain cells 

spanning a continuum. Further, because SNE-based algorithms (such as SIMLR) generally 

preserve local rather than global structure of the data, they may be best suited for problems 

where local structure (such as clustering) is of interest rather than continuous global structure 

(such as progression through pseudotime).  Similar to many non-linear methods (such as t-SNE), 

SIMLR scales quadratically with the number of cells during similarity computation. This 

scalability limits the utility of SIMLR, as well as most unsupervised methods, when the number 

of cells is large, even though it runs very quickly on most available single-cell data sets. 

Therefore, when it comes to single-cell data sets with a very large number of cells, modifications 

to SIMLR will be necessary. For these applications, it would be computationally tractable to first 

apply SIMLR to a subset of cells, and then use the labeled cells to train a classifier to identify the 

remaining cells. Such an approach with other clustering methods have been used several single-

cell studies [13][25] to make the computation feasible. It would be interesting to extend SIMLR 

in this direction to explore the tradeoff between the number of cells used for the initial clustering 

and the sensitivity in identifying rare cell populations. Advances in both experimental and 

computational approaches for single-cell analysis will lead to new and fundamental discoveries 

in areas spanning important biological systems. 
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Materials and Methods 

Four Published Data Sets 

For all the data sets above, we applied a logarithmic transformation 𝑓 𝑋 = log!"(𝑋 + 1) to the 

single-cell raw expression data. We used the following four data sets in our analysis:  

1. Eleven cell populations including neural cells and blood cells (Pollen data set [9]). This 

data set was designed to test the utility of low-coverage single-cell RNA-seq in 

identifying distinct cell populations, and thus contained a mixture of diverse cell types: 

skin cells, pluripotent stem cells, blood cells, and neural cells. This data set includes 

samples sequenced at both high and low depth; we analysed the high-depth samples, 

which were sequenced to an average of 8.9 million reads per cell.  

2. Neuronal cells with sensory subtypes (Usoskin data set [8]). This data set contains 622 

cells from the mouse dorsal root ganglion, with an average of 1.14 million reads per cell. 

The authors divided the cells into four neuronal types: peptidergic nociceptors, non-

peptidergic nociceptors, neurofilament containing, and tyrosine hydroxylase containing.  

3. Embryonic stem cells under different cell cycle stages (Buettner data set [16]). This data 

set was obtained from a controlled study that quantified the effect of the cell cycle on 

gene expression level in individual mouse embryonic stem cells (mESCs). An average of 

0.5 million reads were obtained for each of the 182 cells and at least 20% of the reads 

were mapped to known exons on the mm9 mouse genome. The cells were sorted for three 

stages of the cell cycle using fluorescence-activated cell sorting, and were validated using 

gold-standard Hoechst staining. 

4. Pluripotent cells under different environment conditions (Kolodziejczyk data set [10]). 

This data set was obtained from a stem cell study on how different culture conditions 
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influence pluripotent states of mESCs. This study quantified the expression levels of 

about 10 thousand genes across 704 mESCs from 9 different experiments involving three 

different culture conditions. An average of 9 million reads were obtained for each cell 

and over 60% of the reads mapped to exons on the Mus musculus genome. 

Five Purified Immune Cell Types in Human PBMC  

scRNA-seq libraries of 5 bead-enriched PBMC populations were generated by 10x Genomics 

[15]. We computationally sampled a total of 1000 cells randomly from the individual purified 

populations at the proportion of 10%, 5%, 25%, 40%, 20%, respectively for each in silico trial 

after selecting cells by total UMI counts (Supplementary Figure 6).  

 

Multiple Kernel Learning 

Instead of using a predefined distance metric, we incorporate multiple kernel learning in SIMLR 

to compute the distances between pairs of cells. The general form of the distance between cell 𝑖 

and cell 𝑗 is defined as  

𝐷 𝑐! , 𝑐!   =      𝑤!   𝐷! 𝑐! , 𝑐!
!

=   𝑤!    𝜙! 𝑐! − 𝜙! 𝑐! 𝟐
𝟐

!

 (3) 

where 𝜙! 𝑐!  is the 𝑙th kernel-induced implicit mapping of the 𝑖th cell. This mapping is implicit 

because we are only concerned about the inner products of the 𝜙! 𝑐!  and 𝜙! 𝑐!  for pairs 𝑖, 𝑗  

as follows: 

𝜙! 𝑐! − 𝜙! 𝑐! 𝟐
𝟐 = 𝜙! 𝑐! !𝜙! 𝑐! + 𝜙! 𝑐!

!𝜙! 𝑐! − 2𝜙! 𝑐! !𝜙! 𝑐!  

  = 𝐾! 𝑐! , 𝑐! + 𝐾! 𝑐! , 𝑐! − 2  𝐾! 𝑐! , 𝑐! = 2− 2  𝐾! 𝑐! , 𝑐!  

(4) 
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where we only need to compute the kernel functions: 𝐾! 𝑐! , 𝑐! . (The kernel of two identical 

inputs is set to 1 by convention). So we can refine the optimization problem to include the 

distance in the objective and the corresponding weights as variables as follows. 

 

minimize
!,!,!

      − 2 𝑤!𝐾! 𝑐! , 𝑐! 𝑆!"
!,!,!

  + 𝛽 𝑆 !
!   +   γ  𝐭𝐫(𝐿!(𝐼! − 𝑆)𝐿)+ 𝜌 𝑤! log𝑤!

!

 

subject  to      𝐿!𝐿 = 𝐼! , 𝑤!
!

= 1,𝑤! ≥ 0, 𝑆!"
!

= 1, and  𝑆!" ≥ 0     

(5) 

We describe the optimization of L, w, and S below; we describe selection of the parameters 𝛽, 𝛾 

and 𝜌 in the Supplementary Methods.  

 

Solving the optimization problem  

Initialization of 𝑆,𝑤, and  𝐿: The weight of multiple kernels, 𝑤, is initialized as an uniform 

distribution vector, i.e., 𝑤 = !
!
, !
!
,… , !

!
, where 𝐺  is the number of kernels. This uniform 

weights suggests that we don’t have any bias towards any specific kernel. The similarity matrix 𝑆 

is initialized as 𝑆!" = 𝑤!𝐾! 𝑐! , 𝑐!!   . 𝐿 is initialized as the top 𝐵 eigenvectors of 𝑆.  

The optimization problem formulated above is non-convex with respect to all of the variables 

𝑆, 𝐿,𝑤, but the problem of each variable conditional on other variables being fixed is convex. So 

we can apply an alternating convex optimization method to solve this tri-convex problem 

efficiently. The following three steps are implemented iteratively until the variables all converge. 

The update schemes are shown in Algorithm (1). 
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Notice that Step 4 is an auxiliary step in this problem where we incorporate a similarity 

enhancement heuristic that can further improve clustering accuracy. The similarity obtained from 

Equation (4) is usually sparse because of the constraints, so some pairwise interactions can be 

absent even though they can be exploited by higher order structures such as local connectivity. 

So we create a diffusion process where we can improve the similarities. 

Step 1: Fixing 𝐿 and 𝑤 to update 𝑆: 

When we minimize the objective function with respect to (w.r.t.) the similarity matrix 𝑆, we can 

rewrite the optimization problem as follows. 

minimize
!

        −    𝑤!𝐾! 𝑐! , 𝑐!
!

+ 𝛾 𝐿𝐿! !"      𝑆!"
!,!

  + 𝛽 𝑆 !
!    

subject  to     𝑆!"
!

= 1  and  𝑆!" ≥ 0  for  all  (𝑖, 𝑗)   

(6) 

 

The first summation term in the objective as well as constraints are all linear, and the second 

summation in the objective is a simple quadratic form that can be solved in polynomial time 

[26].  

Step 2:  Fixing 𝑆 and 𝑤 to update 𝐿: 

When we minimize the objective function w.r.t. the latent matrix 𝐿 , we can rewrite the 

optimization problem as follows. 

maximize
!

           𝐭𝐫(𝐿!(𝑆 − 𝐼!)𝐿) 

subject  to      𝐿!𝐿 = 𝐼!    
(7) 

The trace of 𝐿!(𝑆 − 𝐼!)𝐿  is maximized when 𝐿  is an orthogonal basis of the eigenspace 
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associated with the 𝐶 largest eigenvalues of  (𝑆 − 𝐼!) [27].  Thus, 𝐿 can be computed efficiently 

using any matrix numeric toolbox.  

Step 3:  Fixing 𝑆 and 𝐿 to update 𝑤: 

When we minimize the objective function w.r.t. the kernel weights 𝑤, we can re-write the 

optimization problem as follows. 

maximimize
!

         𝑤!
!

𝐾! 𝑐! , 𝑐! 𝑆!"
!,!

−𝜌 𝑤! log𝑤!
!

 

subject  to       𝑤!
!

= 1,𝑤! ≥ 0,   

(8) 

The problem with a convex objective and linear constraints can be solved by any standard 

convex optimization method quickly [26]. Details of steps in updating 𝑤  and choices the 

multiple kernels are stated in Supplementary Methods. 

Step 4: Similarity enhancement 

Given a similarity matrix 𝑆, we construct a transition matrix 𝑃 such that  

𝑃!" =
𝑆!"   𝟏{!∈!!(!)}
𝑆!"   𝟏{!∈!!(!)}!

  , (9) 

where 𝐴!(𝑖) represents the set of indices of cells that are the 𝐾 top neighbors of cell 𝑖 under the 

learned distance metric. Under this construction, the transition matrix is sparse as well so we 

preserve most of the similarity structure. The diffusion-based method to enhance the similarity S 

has the following update scheme: 

𝐻!"
(!!!) = 𝜏𝐻!"

(!!!)𝑃 + 1− 𝜏 𝐼!   (10) 
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where we have 𝐻!"
(!) = 𝑆!" as an input and the final iteration of 𝐻!" is used as the new similarity 

measure 𝑆!". We show that the diffusion process converges in Supplementary Methods.  

SIMLR iterates the four steps above until convergence. We use the eigengap (Supplementary 

Methods) as the convergence criterion. When the method has converged, the similarity S should 

be stable and so its eigengap, i.e, the difference between the 𝐶 + 1th and 𝐶th eigenvalues, 

should be stable too. Further, a good low rank similarity S should have a small eigengap. We 

show the dynamics of the eigengap during iterations in SIMLR on the four real data sets 

(Supplementary Figure 11). SIMLR converges within around 10 iterations.  
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Additional File 

The following additional file is available with this paper. Additional file 1: Supplementary 

Information includes Supplementary Notes, Figures and Methods.  

 

Abbreviations 

SIMLR: Single-cell Interpretation via multi-kernel enhanced similarity learning; mESCs: mouse 

embryonic stem cells; NMI: Normalized mutual information; NNE: Nearest neighbor error; 

MDS: Multidimensional scaling; FA: Factor analysis; PCA: Principal component analysis; 

PPCA: Probabilistic principal components analysis; ZIFA: Zero-inflated factor analysis; SNE: 

Stochastic neighbor embedding; t-SNE: t-distributed stochastic neighbor embedding. 
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Figure Legends 
 

Figure 1 

Outline of SIMLR. (a) SIMLR learns a proper metric for the cell-to-cell distances using the gene 

expression and constructs a similarity matrix. (b) The similarity matrix is used for visualization 

of cells in 2-D and for dimension reduction for clustering. 

 

Figure 2  

Heatmaps of similarities of cells in four data sets. Three types of similarities are compared: (1) 

similarities learned from the data by SIMLR, (2) similarities computed from Gaussian kernels 

applied to Euclidean distances, and (3) similarities computed from pairwise Pearson correlations.  

 

Figure 3 

Comparison of 9 different dimension reduction methods under the three robustness experiments 

on the Buettner data set. (a) The clustering accuracy in terms of NMI; higher scores denote better 

performance. (b) The clustering accuracy in terms of NNE; lower scores denote better 

performance. SIMLR is not sensitive to the number of latent dimensions selected for the 

algorithm (left column), and still outperforms other methods even when fractions of genes are 

dropped (middle column) or when additional noise is added to the data (right column). 

	
  

Figure 4 

Comparison of different representative dimension reduction methods for visualizing four single-

cell data sets. Each row corresponds to one of four different methods (SIMLR, t-SNE, PCA, and 

ZIFA) and each column corresponds to a different data set ([8]–[10], [16]). Each point is colored 
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by its true label in the corresponding data set.  There are 3 labels for the Buettner data set, 11 for 

the Pollen data set, 3 for the Kolodziejczyk data set, and 4 for the Usoskin data set. 

 

Figure  5 

Comparison of SIMLR, tSNE and PCA for visualizing and clustering the PBMC data set. (a) 

NMIs, Accuracy, Rand Index (RI) and adjusted Rand Index (aRI) between true cell identity and 

cluster labels for each method over 20 trials of randomly sampling 1000 cells from 5 immune 

cell populations at a fixed proportion. (b-d) 2D visualization with (b) PCA (c) SIMLR and (d) t-

SNE for a single trial where scatter points are colored by true cell labels. (e) Pairwise 

comparison plots for a single trial where the row and column of a plot specifies the two cell 

populations (indicated on the diagonal) being compared. Plots in the upper triangle show the 

NMIs associated with SIMLR, tSNE and PCA in clustering two different cell populations. Plots 

in the lower triangle show the 2-D projection of pairs of cell types using SIMLR, where points in 

grey are of the cell type defined by the row and those in purple are of the cell type defined by the 

column.   

 

 

Figure 6  

Dimension reduction of artificial gene expression generated from (a) 2-D latent data; each 

cluster is a concentric circle in the latent space. (b) The first row of plots show SIMLR’s 2-D 

dimension reductions and the second row of plots show t-SNE’s before adding noise or dropout 

(left plot), after adding noise (middle plot) and after adding noise and dropout (right plot). (c) 

NNE of t-SNE and SIMLR as noise is increased; lower scores denote better performance. (d) 
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NNE of of t-SNE and SIMLR as zeros are added to the data (smaller values of 𝜆 indicate a 

higher dropout rate). (e) Fraction of entries zeroed out as a function of 𝜆. 
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Tables 

Table 1 Summary of the characteristics of the four real single-cell data sets, with SIMLR’s 

computational time.  

Data set # cells # genes # populations run time (seconds) 

Pollen [9] 249 9966 11 3.40 

Usoskin [8] 622 15332 4 18.54 

Buettner [16] 182 9573 3 2.369 

Kolodziejczyk [10] 704 11235 3 23.67 
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Table 2. NMI values for the four single-cell data sets. Higher values indicate better performance.  

Data set PCA Laplacian MDS t-SNE Sammon PPCA FA ZIFA SIMLR 

Buettner 0.56 0.27 0.56 0.32 0.05 0.59 0.67 0.65 0.89 

Kolodziejczyk 0.77 0.62 0.77 0.77 0.40 0.76 0.72 0.72 0.95 

Pollen 0.83 0.80 0.83 0.93 0.75 0.83 0.82 0.79 0.94 

Usoskin 0.39 0.48 0.39 0.69 0.41 0.40 0.36 0.41 0.69 
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Table 3. NNE values for the four single-cell data sets. Lower values indicate better performance.  

Data set PCA Laplacian MDS t-SNE Sammon PPCA FA ZIFA SIMLR 

Buettner 0.21 0.38 0.22 0.18 0.21 0.20 0.11 0.16 0.05 

Kolodziejczyk 0.0016 0.0278 0.0016 0.0014 0.018 0.0016 0.009 0.01 0.0018 

Pollen 0.052 0.156 0.055 0.023 0.11 0.056 0.075 0.075 0.020 

Usoskin 0.30 0.11 0.29 0.072 0.20 0.29 0.31 0.28 0.063 
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Algorithms 
	
  

	
  
  

Algorithm 1 Similarity Learning via SIMLR

Input: X, the single-cell gene expression matrix, C, a target number of cell populations

Step 1 : Fix L and w to update S.
Step 2 : Fix S and w to update L.
Step 3 : Fix L and S to update w.
Step 4 : Enhance the similarity S.
Step 5 : Repeat 1-4 until L, S and w converge.

1
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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