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Abstract 

Understanding the spatio-temporal dynamics of endemic infections is of critical 

importance for a deeper understanding of pathogen transmission, and for the 

design of more efficient public health strategies. However, very few studies in 

this domain have focused on emerging infections, generating a gap of knowledge 

that hampers epidemiological response planning. Here, we analyze the case of a 

Chikungunya outbreak that occurred in Martinique in 2014. Using time series 

estimates from a network of sentinel practitioners covering the entire island, we 

first analyze the spatio-temporal dynamics and show that the largest city has 

served as the epicenter of this epidemic. We further show that the epidemic 

spread from there through two different propagation waves moving northwards 

and southwards, probably by individuals moving along the road network. We 

then develop a mathematical model to explore the drivers of the temporal 

dynamics of this mosquito-borne virus. Finally, we show that human behavior, 

inferred by a textual analysis of messages published on the social network 

Twitter, is required to explain the epidemiological dynamics over time. Overall, 

our results suggest that human behavior has been a key component of the 

outbreak propagation, and we argue that such results can lead to more efficient 

public health strategies specifically targeting the propagation process.	
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\body 

Introduction 

It is well known that for most infectious diseases, transmission intensity 

fluctuates through space and time (1). Understanding the spatio-temporal dynamics of 

infectious diseases provides considerable insights into our understanding of their 

epidemiology (1–4) and can help design better strategies for their control (5, 6). The 

transmission dynamics of numerous endemic pathogens, ranging from childhood 

diseases (3) to vector-borne diseases (7), have been studied in many different 

countries (8, 9). As a result, numerous factors have been identified that drive the 

temporal dynamics of pathogen transmission (10), such as the abundance of vector 

population for vector-borne diseases (11), or abiotic factors, which can drive the 

dynamics of environmentally-transmitted agents like cholera (12). They also include 

host behavior, such as the switch between school and holiday periods that shapes 

seasonality of childhood diseases (13), or more complex social mechanisms, 

involving belief-based or prevalence-based feelings (14). 

Local transmission can also be influenced by movements of infectious 

individuals between cities, especially in small localities and islands (15). This leads to 

a spatial structure of pathogen spread which has been extensively documented for 

many communicable diseases (1, 7). A pattern of travelling waves from large cities to 

rural areas has been highlighted for childhood diseases in the UK (3) or Senegal (16), 

as well as for vector-borne diseases such as Dengue fever in Thailand (7, 17). 

Although these temporal and spatio-temporal patterns have been documented 

for many endemic diseases, studies on emerging infections remain rare, creating a 

large information gap (but see (18) for a recent example). This gap is detrimental to 

public health because an understanding of the initial stages of propagation is highly 
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relevant for the overall disease epidemiology. Observations during the early stages of 

an epidemic allow public health authorities to adapt their strategies quickly (19) and 

to efficiently organize a control response in the face of such highly unpredictable 

events. An efficient early response is particularly crucial in the case of emerging 

infections where most of the population is assumed to be susceptible due to the 

absence of pre-existing immunity. 

The recurrence of these emerging events are currently threatening much of the 

progress made by public health campaigns during the past decades (20, 21), making a 

solid understanding of early-stage epidemic dynamics a clear research priority. To 

this extent, the temporal and spatio-temporal dynamics of Chikungunya outbreak in 

Martinique Island represents a unique semi-natural experimental case study. 

Introduced in December 2013 in Caribbean Islands (22) and in Martinique (23), the 

Chikungunya virus, transmitted by the mosquito Aedes aegypti in this area, has spread 

throughout the whole island, resulting in more than 72,500 infections and 51 deaths 

(24). Since the island has a relatively small land area (1,040 km2), introductions 

mainly happen through the largest cities where the harbor and airport are located, 

allowing us to study the natural drivers of the spatio-temporal propagation without the 

scrambling effect of multiple immigration routes. 

 We aimed to identify the main drivers of the temporal and spatio-temporal 

dynamics of the 2014 Chikungunya outbreak in Martinique. We first analyzed the 

similarity between epidemiological time series recorded within each locality to 

quantify the propagation through space and time. Focusing on the period preceding a 

large spatial propagation throughout the island, we then fitted a mathematical model 

to quantify the contribution of three potential drivers, namely (i) mosquito abundance 

(inferred from entomological surveys), (ii) awareness of the epidemic in the local 
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human population, and (iii) the interest for protection against the disease (the latter 

two both inferred from a textual analysis of messages recorded on the social network 

Twitter) on the temporal dynamics of the outbreak. Based on the identified 

importance of human behavior during this outbreak, we argue that more research 

should focus on quantitative assessment of human behavior in the context of 

emerging infections, and that this component should be considered very seriously in 

epidemiological response planning in the face of unexpected disease outbreaks. 
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Materials and methods 

Epidemiological Data 

 Our epidemiological data includes the number of new suspected Chikungunya 

cases within each locality for each week during the first nine months of the outbreak 

(from December 2013 to August 2014). Here, we use the number of suspected cases 

rather than the number of confirmed cases because biological confirmation has not 

been made routinely after the first 5 months owing to logistic complexity, and thus 

does not reflect the disease activity over the whole period. These incidence time series 

have been estimated based on a network of sentinel practitioners that covers all the 

localities on the island with at least one medical doctor, resulting in 28 localities 

considered (over a total number of 34 localities throughout the island). Each week, the 

total number of suspected cases collected by sentinel practitioners is extrapolated to 

the whole island using the ratio “medical activity of sentinel practitioners present 

during the week” / “medical activity of all the practitioners in Martinique” (25). These 

time series have been smoothened through Fast-Fourrier Transform (FFT algorithm 

(26)) in order to remove excessive stochasticity. 

 

Entomological data 

Mosquito abundance is expected to play a significant role in pathogen 

transmission rate. Taking advantage of long term surveys that have been conducted in 

Martinique during the past 15 years, we modeled statistically the abundance of 

mosquitoes through time, assuming that this abundance is linked to the proportion of 

infested houses visited during routine surveillance, and to the probability of mosquito 

presence. More precisely, we quantify the contribution of the different climatic and 

land-use data available through Generalized Linear Mixed models (27) in order to 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 12, 2016. ; https://doi.org/10.1101/052183doi: bioRxiv preprint 

https://doi.org/10.1101/052183


explain the probability of mosquito presence. This step allows us to derive a robust 

estimate of the population dynamics of Aedes aegypti through time (see details in 

Supplementary Materials S1). 

 

Human behavior data 

Because insecticides are expected to have a limited efficiency according to the 

high level of mosquito resistance observed in Martinique (28), we aimed to infer the 

efficiency of intensive communication campaigns aimed at the public, operated by 

local public health authorities. To do that, we assume that human behavior that could 

impact pathogen transmission – i.e. through larval source reduction (e.g. removal of 

stagnant water) and/or individual protection (use of repellents, bednets, etc.) against 

mosquitoes – can be estimated by the amount of relevant messages posted by local 

residents on the online social network Twitter talking about the outbreak. We 

quantified the awareness of the epidemic through the number of messages posted on 

Twitter during the first 9 months of the outbreak that contained the word 

Chikungunya. In order to account solely for sentiments from people who were located 

in Martinique during the outbreak, we considered only messages by Twitter users who 

declared to be based in Martinique. Then, we quantified the protection behavior 

through the presence of a sentiment of protection need expressed in the tweets. We 

textually analyzed the content of each of the 423 tweets messages recorded during this 

period (including re-tweets) to identify 73 tweets messages with the presence of this 

feeling (still including re-tweets). Messages classification is detailed in 

Supplementary Materials (section S2). 

Spatio-temporal analysis  
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The spatio-temporal dynamics were first visually assessed by plotting the 

scaled incidence rate for each locality through time. This visual exploration allowed 

formulating a hypothesis about the structure of the spatio-temporal dynamics that 

were then tested statistically. Following previous works on the metapopulation of 

infectious diseases (17, 29), we tested if the similarity between times series of 

incidence rate at each locality was associated with the geographic distance between 

these localities. If a travelling pattern exists, the similarity between times series is 

expected to decrease with geographic distance between them (29). To quantify the 

similarity between time series, we used (i) the Euclidean distance at each time step of 

the time series over the whole time series and (ii) at the epidemic peak (the week 

when the locality has reached its maximal incidence rate).  

 

Temporal analysis  

 To quantify the contribution of each of the potential drivers of temporal 

dynamics, we used a mathematical model framed within the SIR framework (30): 

	

𝑑𝑆
𝑑𝑡 = 𝜇𝑁 − 𝛽 𝑡 𝑆𝐼 − 𝜇𝑆	

𝑑𝐸
𝑑𝑡 = 𝛽 𝑡 𝑆𝐼 − 𝜖𝐼 − 𝜇𝐸 

𝑑𝐼
𝑑𝑡 = 𝜖𝐼 − 𝜎𝐼 − 𝜇𝐼 

𝑑𝑅
𝑑𝑡 = 𝜎𝐼 − 𝜇𝑅	

where S represents susceptible individuals that are not infected. These individuals can 

become exposed (E) at a rate 𝛽 𝑡 .  After a latency period of 1/ε (asssumed here to be 

3 days(31)), exposed individuals become infectious (I) and then infect susceptible 
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mosquitoes, which can in turn infect susceptible humans. Finally, infectious 

individuals recover at rate 𝜎 (assumed to be 4 days-1.ind-1, (31)) and are then 

permanently immunized against the disease (R). Birth and death rates are identical (µ) 

in order to keep population size constant. Since we focus on an emerging event over a 

short period of time, we assume that human demography does not play a significant 

role in the epidemic dynamics. We include the contribution of the three potential 

temporal drivers through a fluctuating forced transmission rate: 

𝛽 𝑡 = 𝑥!(𝑥!𝑎 𝑡 )(1+ 𝑥!𝑝 𝑡 + 𝜏 )(1+ 𝑥!𝑞 𝑡 + 𝜏 ) 

where x0 is the average transmission rate through time, (𝑥!𝑎 𝑡 ) represents the impact 

of mosquito population dynamics on transmission rate (x1 is a constant and a(t) is the 

estimated mosquito abundance at time t), (1+ 𝑥!𝑝 𝑡 ) represents the influence of 

protection applied by human population, as measured by the textual analysis of tweets 

(x2 is a constant and p(t) represents the normalized activity on social network 

expressing a need for protection) and 1+ 𝑥!𝑞 𝑡  represents the influence of 

activity – and therefore of the epidemic awareness - as measured on Twitter (x3 is a 

constant and q(t) represents the normalized overall activity on Twitter discussing the 

Chikungunya outbreak). The parameter 𝜏 represents the lag between the impact 

quantified on Twitter and its consequences for transmission. We have assumed that 

the behavior measured on Twitter could be a real-time indicator (𝜏 = 0), a delayed 

indicator (𝜏 = 1) when individuals talk on Twitter after having applied the protection, 

or an anticipated indicator (𝜏 = −1) when the Twitter activity reflects the behavior 

change one month before its impact on mosquito population. The 𝛽 𝑡  function is 

constrained positive. We then looked for the best estimation of x1, x2 and x3 that 

allows the mathematical model to reproduce the incidence dynamics observed. 

Technically, we maximized the likelihood of the model predictions knowing the data 
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by assuming a Gaussian distribution of the model errors through the Nelder-Manson 

algorithm implemented within the optim package in R (32). All details are given in 

supplementary materials S3.	
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Results 

The first cases have been declared in Fort-De-France, the largest city on the 

Island (33). The visual analysis of the spatio-temporal dynamics shows two travelling 

waves from this city, northwards and southwards (Figure 1). Interestingly, in the north 

of the island, the association between local epidemiological dynamics and geographic 

distance relies on the timing of epidemic peak (r=0.6454, p-value=0.0094) rather than 

on the whole series (r=0.49, p-value=0.061), while in the south of the island, it relies 

on the whole times series (r=0.72, p-value=0.0037) rather than on the epidemic peak 

(r=0.39, p-value=0.16). This difference will be discussed later. Based on these 

correlations, we use the correlation coefficients to characterize the invasion sequence 

of the virus throughout the island (Figure 2). 

 In order to focus on a time period when pathogen dispersal was limited, we 

limit the analysis of the temporal dynamics of the epidemic to the time period before 

it began spreading to remote areas within the island, i.e. from December 2013 to May 

2014. We estimate parameters x1, x2 and x3 for all possible combinations of 

transmission drivers (mosquito abundance, awareness of the epidemic, and the need 

for protection) and an anticipated (𝜏 = −1), real-time (𝜏 = 0) or delayed (𝜏 = 1) 

indicator of human behavior impact on transmission. Comparisons between the Mean-

Squared Error (using Akaike Information Criterion gives identical results) of each of 

these models show that the model including both mosquito abundance and the 

expressed need for protection, with an anticipated notification on Twitter, is the most 

parsimonious explanation of the temporal dynamics observed (Table 1). Moreover, 

the model predicts around 28,000 new cases over the six-month period, an estimate in 

line with the slightly more than 30,000 cases recorded by epidemiological data, 
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highlighting the accuracy of this mathematical model despite its simplicity (Figure 3).	
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Discussion 

 In this paper, we aimed to identify the main drivers of the Chikungunya 

outbreak that occurred in Martinique in 2014. We have demonstrated that the 

temporal dynamics of virus transmission is jointly determined by mosquito abundance 

as well as by human behavior as inferred from the feelings expressed on the online 

social network Twitter. We have also shown that the spatio-temporal dynamics of the 

outbreak follow a classic travelling wave pattern through space in two different 

directions (northwards and southwards). 

 While mosquito abundance is an expected explanation for the temporal 

dynamics of the outbreak, the importance of human behavior on the initial stages of 

an outbreak are less often taken into account, let alone quantified. To the best of our 

knowledge, this is first time that human behavior has been quantified through social 

media for a vector-borne disease outbreak. It is consistent with the increasing amount 

of evidence regarding the role of human behavior in pathogen transmission (14, 34). 

Moreover, our analysis shows that the influence of human behavior is not constant 

through time, suggesting that communication campaigns have different impacts 

according to the timing of the operation. This calls for a coordinated outbreak 

response from public health authorities, municipalities and other partners involved in 

source reduction, communication campaigns and use of chemical insecticide. 

 The spatio-temporal spread of the outbreak was shown to follow a two-waves 

pattern originating from the capital (Fort-De-France), which is also the place where 

the outbreak started. Nevertheless, the north and south waves proceeded differently. 

In the north, where the road network seems weakly connected, only the epidemic peak 

is associated with distance from Fort-De-France, suggesting that human movement 

acts as a seed for local epidemics. Conversely, the other traveling wave in the south, 
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where the road network looks much more connected, is associated with similarity 

between the whole time series instead of the epidemics peak. We can therefore 

suggest that the dense road network could allow more exchange of infectious 

individuals that would increase the inter-dependence of pathogen dynamics between 

localities. While this hypothesis is difficult to demonstrate, we conducted a 

complementary theoretical approach (supplementary materials S4) showing that this 

explanation could be plausible. The suggestions that the topology of connections 

between human populations affects the spatial diffusion dynamics of diseases 

epidemics is in line with results from theoretical studies on the role of network 

structures on infectious disease spread (35). 

 As for any study focusing on epidemiological data, we have made several 

assumptions that deserve discussion. First, our epidemiological data relies on a 

sentinel network, and this non-exhaustivity could bring some uncertainty to the 

validity of our assumptions. Nonetheless, almost 20% of the medical doctors working 

on the island serve as sentinel doctors, as compared with the 1% of sentinel doctors in 

metropolitan France (36), providing support for the relevance and quality of the data 

we used in our model. Second, we have assumed that these epidemiological data 

contained the localities where individuals had been infected, although it instead 

contained the localities where the offices of sentinel doctors are located. Nevertheless, 

this bias is generally assumed for the study of spatio-temporal dynamics of pathogens 

and is not expected to play a large role on such analysis(1, 9). Finally, the low 

specificity of the Chikungunya symptoms, combined with an unknown number of 

infected individuals who did not enter the surveillance system for different reasons, 

can potentially lead to an underestimation of the real incidence. Nevertheless, there is 

no reason to believe that this bias fluctuated through time. Therefore, this might have 
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a possible quantitative impact on our results but it should not qualitatively change our 

conclusions. 

 The use of feelings expressed on social networks, even if extremely 

interesting, can potentially introduce a bias since social networks are used only by a 

small – but rapidly growing - subset of the population (37). Recent studies have 

shown that the demographic makeup of social media users become increasingly less 

biased (38). In Martinique during the sampling period, the source of the tweets used 

in this study is likely to have come from a non-representative population sample. 

There are however no good quantitative data to suggest that epidemic awareness and 

the felt need for protection are very different in different population groups. 

Previously, the use of such digital epidemiology methods (39, 40) has been shown to 

reflect quite correctly the epidemiological dynamics of such emerging pathogens (39), 

suggesting that this surrogate can be integrated into mechanistic models involving 

human host behavior (14). A careful comparison of this approach against large-scale 

surveys, if representing the gold-standard to infer human sentiments, is lacking right 

now. 

 Human behavior is increasingly recognized as an important factor for 

pathogen spreading. The recent example of Ebola outbreaks in Western Africa has 

seen many dramatic examples of this, underlining how epidemiological response 

strategies need to consider this component in order to be maximally efficient (41). 

While the role of human behavior has long been suggested as a driver for emerging 

infections (42), the emergence of online social networks, now widely used throughout 

the world, opens new opportunities to assess it quantitatively (43). Our finding that the 

most parsimonious model for temporal dynamics includes Twitter activity as an 

anticipated indicator of its impact highlights that analysis of Twitter messages could 
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potentially offer to public health authorities a tool to measure or even predict 

fluctuations in protective behavior seen in the population. Such quantification, when 

combined with individuals’ movements and other biotic and abiotic factors known to 

influence pathogen transmission, can contribute to optimize the efficiency of public 

health strategies (44) designed to mitigate the spread of emergent pathogens. 
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Figures:	

	

	

Figure 1: Summary of the spatio-temporal dynamics of the 2014 Chikungunya 
outbreak in Martinique. (A) Colors represent the scaled incidence rate (ranking 
from 0 in dark to 1 in hot yellow) for each locality (rows), ranked from the 
extreme south to the extreme north of the island according to its position from 
Fort-De-France, and each week (column). Two waves appear from Fort-De-
France, northwards and southwards. Geographic distance (log of km) between 
different localities through road (x-axis) and (B) the week of the epidemic peak 
(r=0.6454, p-value=0.0094) and (C) the Euclidean distance between the whole 
time series (r=0.72, p-value=0.0037). 
 

	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 12, 2016. ; https://doi.org/10.1101/052183doi: bioRxiv preprint 

https://doi.org/10.1101/052183


	

	

Figure 2: Invasion sequence of the Chikungunya outbreak based on the 
correlation between geographic distance and epidemiological dynamics (see main 
text for more details). Colors follow a gradient from red (epicenter of the 
epidemics, Fort-de-France) to dark blue (last localities to have been affected, i.e., 
showing the lowest correlation coefficient). 
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Figure 3: Match between recorded epidemiological data (black) and the most 

parsimonious mathematical model including mosquito abundance and expressed 

need for protection on Twitter (red line). Estimated transmission parameters are 

x0= 3.76 10-4, x1=0.295, x2=0.644. See table 1 for model selection details. 
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Tables:  
 

Parameters 

included in 

transmission rate 

Twitter as an 

anticipated 

indicator (τ=-1) 

Twitter as a 

real-time 

indicator (τ=0) 

Twitter as a 

delayed 

indicator (τ=1) 

None 9088 9088 9088 

Mosquito 

abundance (MA) 

6980 6980 6980 

Expressed 

protection need 

(EPN) 

3897 7546 5191 

Epidemics 

awareness (EA) 

7797 8240 6878 

MA and EPN 2402 4058 3161 

MA and EA 7242 8518 5484 

EPN and EA 7218 7529 3685 

MA, EPN and EA 4389 7639 2675 

 

Table 1: Results of model estimation. We show here the squared root of the 
Mean-Squared Error instead of AIC in order to show the difference between the 
observed and predicted number of cases. The best model includes the variation 
in mosquito abundance and the expressed need for protection represented by the 
proportion of tweets talking about protection against the mosquito in the set of 
all tweets that included the word Chikungunya (only Twitter accounts declared 
in Martinique have been considered). 
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