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Summary 31 

We leveraged IDH wild type glioblastomas and derivative neurospheres to define tumor-32 

intrinsic transcription phenotypes. Transcriptomic multiplicity correlated with increased 33 

intratumoral heterogeneity and tumor microenvironment presence. In silico cell sorting 34 

demonstrated that M2 macrophages/microglia are the most frequent type of immune 35 

cells in the glioma microenvironment, followed by CD4 T lymphocytes and neutrophils. 36 

Hypermutation associated with CD8+ T cell enrichment. Longitudinal transcriptome 37 

analysis of 124 pairs of primary and recurrent gliomas showed expression subtype is 38 

retained in 53% of cases with no proneural to mesenchymal transition being apparent. 39 

Inference of the tumor microenvironment through gene signatures revealed a decrease 40 

in invading monocytes but a subtype dependent increase in M2 macrophages/microglia 41 

cells after disease recurrence. All expression datasets are accessible through 42 

http://recur.bioinfo.cnio.es/. 43 

Significance 44 

IDH wild type glioblastoma expression phenotypes have been related to tumor 45 

characteristics including genomic abnormalities and treatment response. We explored 46 

the intratumoral transcriptomic landscape, including a definition of tumor-intrinsic gene 47 

expression subtypes and how they relate to the different cellular components of the 48 

tumor immune environment.  Comparison of matching primary and recurrent gliomas 49 

provided insights into the treatment-induced phenotypic tumor evolution. Proneural to 50 

mesenchymal transitions have long been suspected but were not apparent, while 51 

intratumoral heterogeneity was a predictor of subtype transition upon recurrence. 52 

Characterizing the evolving glioblastoma transcriptome en tumor microenvironment aids 53 
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in designing more effective immunotherapy trials. Our study provides a comprehensive 54 

transcriptional and cellular landscape of IDH wild type GBM during treatment modulated 55 

tumor evolution. 56 

 57 

Highlights 58 

• Next generation GBM-intrinsic transcriptional subtypes: proneural, classical, 59 

mesenchymal 60 

• M2 macrophages, CD4+ T-lymphocytes and neutrophils dominate glioblastoma 61 

microenvironment 62 

• Sensitivity to radiotherapy may associate with M2 macrophage presence 63 

• CD8+ T cells are enriched in hypermutated GBMs at diagnosis and recurrence 64 
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INTRODUCTION 65 

The intrinsic capacity of glioblastoma (GBM) tumor cells to infiltrate normal brain 66 

impedes surgical eradication and predictably results in high rates of early recurrence. 67 

To better understand determinants of GBM tumor evolution and treatment resistance, 68 

The Cancer Genome Atlas Consortium (TCGA) performed high dimensional profiling 69 

and molecular classification of nearly 600 GBM tumors (Brennan et al., 2013; Cancer 70 

Genome Atlas Research, 2008; Ceccarelli et al., 2016; Noushmehr et al., 2010; 71 

Verhaak et al., 2010b). In addition to revealing common mutations in genes such as 72 

TP53, EGFR, IDH1, and PTEN, as well as the frequent and concurrent presence of 73 

abnormalities in the p53, RB and receptor tyrosine kinase pathways. Unsupervised 74 

transcriptome analysis identified four clusters, referred to as classical, mesenchymal, 75 

neural and proneural, that were tightly associated with genomic abnormalities(Verhaak 76 

et al., 2010a). The proneural and the mesenchymal expression subtypes have been 77 

most consistently described in literature with proneural relating to a more favorable 78 

outcome and mesenchymal to unfavorable survival (Huse et al., 2011; Phillips et al., 79 

2006; Zheng et al., 2012), but these findings were affected by the relatively favorable 80 

outcome of IDH-mutant glioblastoma which are consistently classified as proneural 81 

(Noushmehr et al., 2010; Verhaak et al., 2010a). Proneural to mesenchymal switching 82 

upon disease recurrence has been described as a source for treatment resistance in 83 

GBM relapse (Bao et al., 2006; Bhat et al., 2013; Ozawa et al., 2014; Phillips et al., 84 

2006), but the relevance of this phenomenon in glioma progress remains ambiguous. 85 

 GBM tumor cells along with the tumor microenvironment create a complex milieu 86 

that ultimately promotes tumor cell plasticity and disease progression (Olar and Aldape, 87 
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2014).  The presence of tumor-associated stroma results in a mesenchymal tumor gene 88 

signature and poor prognosis in colon cancers (Isella et al., 2015). Furthermore, the 89 

association between a mesenchymal gene expression signature and reduced tumor 90 

purity has been identified as a common theme across cancer (Martinez et al., 2015; 91 

Yoshihara et al., 2013).  Tumor-associated macrophages/microglia in GBM have  been 92 

proposed as regulators of proneural-to-mesenchymal transition through NF-kB 93 

activation (Bhat et al., 2013) and may provide growth factor mediated proliferative 94 

signals, which could be therapeutically targeted (Patel et al., 2014; Pyonteck et al., 95 

2013; Yan et al., 2015).  96 

 Here, we explored the properties of the microenvironment in different GBM gene 97 

expression subtypes and characterized the transition between molecular subtypes 98 

before and after therapeutic intervention. In doing so, we improved the robustness of 99 

gene expression subtype classification through revised gene signatures and proposed 100 

analytical methodology. Our results suggested that the tumor microenvironment 101 

interferes with expression based classification of GBM, both at the primary disease 102 

stage as well as at disease recurrence, and suggest a role for the 103 

macrophage/microglia in treatment response.  104 
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RESULTS 105 

Harnessing glioma sphere-forming cells identifies GBM specific intertumoral 106 

transcriptional heterogeneity 107 

We set out to elucidate the tumor-intrinsic and tumor microenvironment independent 108 

transcriptional heterogeneity of GBMs. We performed a pairwise gene expression 109 

comparison of independent set of GBMs and the derivative glioma sphere-forming cells 110 

(GSCs) (n = 37) (Galli et al., 2004).  In total, 5,334 genes were found to be significantly 111 

higher expressed in parental GBMs relative to derived GSCs that could be attributed by 112 

the tumor associated GBM microenvironment (Figure 1A). To focus the analysis on the 113 

tumor-intrinsic transcriptome, these genes were filtered from further analysis. GBMs 114 

with IDH mutations have distinct biological properties and favorable clinical outcomes 115 

compared to IDH wild-type GBMs (Brennan et al., 2013; Cancer Genome Atlas 116 

Research et al., 2015; Ceccarelli et al., 2016; Noushmehr et al., 2010). Using the 117 

filtered gene set, we performed consensus non-negative matrix factorization clustering 118 

to identify three distinct subgroups amongst 369 IDH wild type GBMs (Figure 1B; 119 

Figure 1C). When comparing the clustering result with the previously defined proneural 120 

(PN), neural (NE), classical (CL) and mesenchymal (MES) classification (Brennan et al., 121 

2013; Verhaak et al., 2010b), three subgroups were strongly enriched for CL, MES and 122 

PN GBMs, respectively (Figure S1). Consequently, we labeled the groups as CL, MES 123 

and PN. None of the three subgroups was enriched for the NE class, suggesting its 124 

neural phenotype is non-tumor specific. The NE group has previously been related to 125 

the tumor margin where normal neural tissue is more likely to be present (Gill et al., 126 

2014; Sturm et al., 2012) and such contamination might explain why the neural subtype 127 
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was the only subtype to lack characteristic gene abnormalities (Brennan et al., 2013; 128 

Verhaak et al., 2013). To be able to classify external GBM samples, we implemented a 129 

single sample gene set enrichment analysis (ssGSEA) based equivalent distribution 130 

resampling classification strategy using 70-gene signatures for each subgroup (Table 131 

S1)(Figure 1D), to assign each sample three empirical classification p-values by which 132 

we determined the significantly activated subtype(s) in the samples. We prepared an R-133 

library to facilitate others to evaluate our approach (Supplementary File 1). Using this 134 

method we found that the stability of cluster assignments of 144 TCGA GBM samples 135 

profiled using both RNA sequencing and Affymetrix U133A microarrays was 95% 136 

concordance (Figure S2, Table S2). This was an improvement over the 77% subtype 137 

concordance determined using previously reported methods (Verhaak et al., 2010b). 138 

We evaluated the distribution of somatic variants across all the three molecular 139 

subtypes (Figure 1E)(Figure S3) and confirmed the strong associations between 140 

subtypes and genomic abnormalities in previously reported driver genes (Brennan et al., 141 

2013; Verhaak et al., 2010b). 142 

 143 

Multi-activation of subtype signatures associated with intratumoral heterogeneity 144 

We observed that 34/369 (9.2%) samples showed significant enrichment of multiple 145 

ssGSEA scores (empirical classification p-value<0.05), suggesting these cases activate 146 

more than one transcriptional subtype (Figure 2A). To quantify this phenomenon, a 147 

score ranging from 0 to 1 was defined to quantitatively evaluate the simplicity of subtype 148 

activation based on order statistics of ssGSEA score. Samples with high simplicity 149 

scores activated a single subtype and those with lowest simplicity scores activated 150 
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multiple subtypes. All multi-subtype TCGA samples showed simplicity scores of less 151 

than 0.1 (Figure 2A). To determine whether transcriptional heterogeneity associated 152 

with genomic intratumoral heterogeneity, we correlated simplicity scores, total mutation 153 

rates and subclonal mutation rates. Included in the analysis were 224 TCGA GBMs with 154 

available whole exome sequencing data (Kim et al., 2015) and ABSOLUTE (Carter et 155 

al., 2012) determined high tumor purity (> 0.8) to equalize the mutation detection 156 

sensitivity (Aran et al., 2015). Although not significant (Wilcoxon rank test p-157 

value=0.143), the total mutation rate was less in the bottom 30% with lowest simplicity 158 

scores versus the top 30% samples with highest simplicity scores. The subclonal 159 

mutation rate was significantly higher (p-value=0.024) in samples with lowest simplicity 160 

scores (Figure 2B; Table S3), suggesting that increased intratumoral heterogeneity 161 

associates with increased transcriptional heterogeneity.  162 

We compared outcomes amongst the three transcriptional groups and observed 163 

no significant differences (Figure S4). However, when restricting the analysis to 164 

samples with high simplicity scores, a clear trend of MES showing worst survival and 165 

PN the most favorable outcome became visible. For example, Kaplan-Meier analysis of 166 

88 samples with simplicity scores >0.99 showed a median survival of 11.4, 14.7 and 167 

16.7 months were detected in MES, CL and PN, respectively, which was significantly 168 

different (log rank test, p=0.048)(Figure 2C)(Figure S4)(Table S4). Higher simplicity 169 

scores correlated with relative favorable outcome within the PN set, non-significant in 170 

the CL subtype, and correlated with relatively unfavorable survival in the MES class 171 

(Figure S5). 172 
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Single GBM cell RNA sequencing recently suggested that GBMs are comprised 173 

of a mixture of tumor cells with variable GBM subtype footprints (Patel et al., 2014). We 174 

used this data to classify 502 single GBM cells in addition to the bulk tumor derived from 175 

five primary glioblastomas (Table S5). All bulk tumor samples showed simplicity scores 176 

less than 0.05 suggesting high transcriptional heterogeneity compared to 45 of 369 177 

TCGA GBM samples with simplicity scores below 0.05 (Figure 2D). In four of five cases 178 

(MGH26, MGH28, MGH29 and MGH30), the bulk tumor samples were classified in the 179 

same primary subtype as the majority of their single cells (Figure 2D).  Our analysis 180 

suggests that the heterogeneity observed at the single cell level is captured in the 181 

expression profile of the bulk tumor, and that the five GBM samples studied at the single 182 

cell level represented samples with relatively high transcriptional heterogeneity. 183 

  184 

Transcriptional subtypes differentially activate the immune microenvironment  185 

Despite restricting the cluster analysis to genes exclusively expressed by GBM cells, we 186 

found that tumor purity predictions based on ABSOLUTE were significantly reduced in 187 

GBM classified as MES (Student T-test p-value < 10e-14; Figure 3A). This was 188 

corroborated by gene expression based predictions of tumor purity using the 189 

ESTIMATE method (Student T-test p-value < 10e-32; Figure 3B)(Yoshihara et al., 190 

2013) . The ESTIMATE method has been optimized to quantify tumor-associated 191 

fibroblasts and immune cells (Yoshihara et al., 2013) and the convergence of a 192 

decreased ABSOLUTE and decreased ESTIMATE tumor purity confirmed previous 193 

suggestions on the increased presence of microglial and neuroglial cells mesenchymal 194 

GBM (Bao et al., 2006; Engler et al., 2012; Gabrusiewicz et al., 2016; Ye et al., 2012). 195 
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The mean simplicity score of samples classified as MES was 0.53 which was 196 

significantly lower than in PN (Wilcoxon rank test p-value<0.019) and CL subtypes 197 

(Wilcoxon rank test p-value<0.0001), confirming increased transcriptional heterogeneity. 198 

In order to identify genomic determinants of macrophage/microglia chemoattraction, we 199 

compared genomic alterations between mesenchymal class samples with high (n=51) 200 

and low (n=51) ABSOLUTE based tumor purity. GBM carrying hemyzygous loss of NF1 201 

or somatic mutations in NF1 showed reduced tumor purity compared to GBM with wild 202 

type NF1 (Wilcoxon rank test p-value=0.0007) and this association was similarly 203 

detected when limiting the analysis to MES samples (Wilcoxon rank test p-204 

value=0.017)(Figure S6). Formation of dermal neurofibromas in the context of Nf1 loss 205 

of heterozygosity has been reported to be context and microenvironment dependent (Le 206 

et al., 2009). Functional studies may clarify whether NF1 deficient GBM are able to 207 

recruit cells that provide them with a proliferative advantage, or whether NF1 loss 208 

provides that proliferative advantage in a specific tumor-associated microenvironment 209 

context.  210 

To determine the cellular components of the tumor microenvironment across 211 

different transcriptional subtypes, we used the CIBERSORT in silico cytometry 212 

(Newman et al., 2015) method to evaluate absolute immune cell fractions. We 213 

evaluated 22 different immune cell types in 69 PN, 137 CL and 96 MES samples, after 214 

filtering samples with classification simplicity scores less than 0.1 (Table S6). Microglia 215 

are the resident macrophages in the central nervous system. Peripheral blood 216 

monocytes also give rise to tumor associated macrophages. These innate immune cells 217 

can be broadly classified as the proinflammatory M1 type and the alternative tumor 218 
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promoting M2 type(Hambardzumyan et al., 2015). The M2 macrophage gene signature 219 

showed a greater association with the MES subtype (13.4%) relative to the PN (4.6%) 220 

and CL (6.0%)(Figure 3C), consistent with previous analysis of the TCGA 221 

database(Doucette et al., 2013; Gabrusiewicz et al., 2016). In addition to the M2 222 

macrophage gene signature, there was also a significantly higher fraction of MES 223 

samples that expressed M1 macrophage (Student T-test p-value 3.20E-5) and 224 

neutrophil (Student T-test p-value 1.30E-9) gene signatures. In contrast, the activated 225 

natural killer T-cell gene signature (Student T-test p-value 4.91E-2) was significantly 226 

reduced in the MES subtype and resting memory CD4+ T cells (Student T-test p-value 227 

5.40E-7) were less frequently expressed in the PN subtype.  228 

To confirm the association of macrophages/microglia with the MES GBM subtype, 229 

we assessed protein expression levels of the ITGAM (alternatively known as CD11B) 230 

and IBA1 (also known as AIF1) macrophage/microglial markers in a set of 18 GBM for 231 

which we also characterized the expression subtype (Figure 3D) as well as through 232 

immunohistochemistry (Figure S7). We confirmed the microenvironment as the main 233 

source for ITGAM/IBA1 transcription by comparing transcriptional levels in 37 GBM-234 

neurosphere pairs used for gene filtering, which showed that neurospheres do not 235 

express ITGAM/IBA1 (Figure 3E). The association of the MES GBM subtype with 236 

increased level of M2 microglia/macrophages may suggest that in particular MES GBM 237 

are candidates for therapies directed against tumor-associated macrophages(Pyonteck 238 

et al., 2013). Activated dendritic cell signatures (Student T-test p-value 7.36E-3)(Figure 239 

3C) were significantly higher in the CL subtype, suggesting this subtype may benefit 240 

from dendritic cell vaccines (Palucka and Banchereau, 2012). Dendritic cells may 241 
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require an activated phenotype in order to direct the immune system. A previous study 242 

suggested that MES GBM patients treated with dendritic cells were more likely to 243 

benefit (Prins et al., 2011).   244 

 245 

Phenotypic plasticity upon GBM recurrence 246 

Glioblastoma has long been hypothesized to progress along a proneural to 247 

mesenchymal axis(Phillips et al., 2006). To determine the relevance of this transition 248 

process in IDH wildtype glioma evolution, we performed a longitudinal analysis of the 249 

subtype classification and tumor-associated microenvironment in sample pairs obtained 250 

at diagnosis and first disease recurrence from 124 glioma patients. The cohort included 251 

96 initial GBM and first recurrence, eight pairs of primary low grade glioma and 252 

matching secondary GBM, and 20 pairs of primary and recurrent low grade glioma. 253 

Gene expression profiles of 78 tumor pairs were analyzed through transcriptome 254 

sequencing, and remaining pairs were generated using Affymetrix (n = 31) and Illumina 255 

(n = 15) microarray, respectively. To facilitate exploration of this dataset we have made 256 

it available through the GlioVis portal http://recur.bioinfo.cnio.es/. We used a gene 257 

expression signature(Baysan et al., 2012) to determine that 33 of 124 cases were IDH-258 

mutant/GCIMP at presentation and recurrence (Table S7). We used the renewed gene 259 

signatures and classification method to determine molecular subtype of the 91 pairs of 260 

IDH wild type cases and found that expression class remained consistent after disease 261 

recurrence for 48 of 91 IDH-wildtype cases (52%)(Figure 4A). The MES subtype was 262 

most stable (64%) while the CL (47%) and PN (43%) phenotypes were less frequently 263 

retained. Nine, sixteen and eighteen post-treatment tumors switched subtypes to 264 
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become CL, MES and PN at disease recurrence, respectively, indicating that PN and 265 

MES increased in frequency after recurrence while the CL subtype was least frequently 266 

found (Figure 4A). The CL expression class was previously found to be most sensitive 267 

to intensive therapy and it is possible that therapy provides a competitive advantage for 268 

non-CL cells, which could explain the reduced post-treatment incidence(Verhaak et al., 269 

2010b). Our results did not identify enrichment for proneural to mesenchymal transitions.  270 

 We observed a significant difference in transcriptional simplicity between primary 271 

GBM retaining their expression class, versus those that switched to a different 272 

phenotype (Figure 4B). GBMs with a primary tumor simplicity score greater than 0.5, 273 

indicated lower transcriptional heterogeneity, were classified as the same subtype in 31 274 

of 48 (64.5%) cases, compared to 15 of 41 (36.6%) cases with primary tumor simplicity 275 

scores less than 0.5 (Fisher exact test p-value=0.01).  276 

 277 

Microenvironment transitions upon GBM recurrence 278 

Debulking surgery, radiotherapy and chemotherapy provide therapeutic barriers but 279 

nonetheless induce tumor evolution, including influences on the tumor 280 

microenvironment. We explored this possibility by comparing the tumor associated 281 

microenvironment in primary and recurrent GBMs using CIBERSORT (Table 282 

S8)(Newman et al., 2015). A comparison between 91 primary and recurrent IDH-wild 283 

type tumors revealed a decrease in monocyte gene signature expression at recurrence, 284 

suggesting relative depletion of circulation derived monocytes (Figure 5A). Next, we 285 

dissected microenvironment fluctuations between diagnosis and recurrent tumors 286 

across different subtype combinations. Primary non-MES (CL or PN) tumors showed 287 
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relatively high tumor purity and consequently, recurrent tumors classified as non-MES 288 

demonstrated a relatively global decrease of immune cells while cases transitioning to 289 

MES at recurrence represented a trend towards increased immune cell fractions 290 

(Figure 5B). Gene signatures of immunosuppressive regulatory T cells showed an 291 

increase in gene expression at recurrence across several primary-recurrence subtype 292 

combinations although the inferred cellular fractions are relatively small (Figure 5B). In 293 

contrast to the trend of monocyte depletion, the imputed M2 macrophage frequency was 294 

significantly higher at recurrence in cases transitioning to MES (Figure 5C). This 295 

observation converges with the higher predicted fraction of M2 macrophages in primary 296 

MES GBM relative to primary non-MES GBM. M1 macrophages and neutrophils also 297 

correlated with primary MES GBM, but these associations were not confirmed for 298 

recurrent GBM. We validated the increase in macrophages using immunostaining of 299 

IBA1 expression in two primary-recurrent GBM pairs which were classified as CL to 300 

MES (Figure 5D). IBA1 immunoexpression was restricted to macrophages/microglia, 301 

cells exhibiting either globular or filamentous/spidery morphology, with no expression in 302 

glioma tumor cells (Figure 5D). Quantitative analysis of microglia frequency using 303 

Inform software for automated pathology imaging processing confirmed a significantly 304 

higher presence (p value = 2.25e-11 and 2.12e-13 for patient #1 and #2, respectively) of 305 

at MES recurrence (Figure 5E). These findings further solidify the association between 306 

MES GBM and macrophage/microglia and extend this mutual relationship to disease 307 

recurrence. MES tumors at recurrence compared to primary MES tumors showed an 308 

increase in transcriptional activity associated with non-polarized M0 macrophages, 309 

which has been previously described (Gabrusiewicz et al., 2016), but also dendritic cells 310 
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which is potentially motivated by the increased levels of neoantigens at disease 311 

recurrence (Kim et al., 2015). In contrast, primary PN GBM were found to contain 312 

significantly higher fractions of five immune cell categories compared to recurrent PN 313 

GBM, indicating a relative absence of immune infiltration in PN GBM upon recurrence. 314 

 We evaluated the effect of transcriptional class on patient survival. The analysis 315 

was restricted to 50 cases for whom annotation on overall survival (OS) time and time to 316 

disease progression (PFS) were available and with high simplicity scores, indicating low 317 

transcriptional heterogeneity. We confirmed the worse prognosis for patients whose 318 

primary tumor was classified as MES on overall survival (logrank test p=0.029 with 319 

HR=1.97)(Figure 6A; Figure 6B). This pattern was retained in patients whose 320 

secondary glioma was classified as MES (logrank test p=0.09 with HR=1.71)(Figure 6C; 321 

Figure 6D). Consequently, cases for whom both primary and recurrent tumor were 322 

classified as MES subtype showed the least favorable outcome, suggesting an additive 323 

effect of transcriptional class at different time points (Figure 6E, Figure 6F)(Figure S8). 324 

 325 

Treatment-Induced Immunological Microenvironment Changes upon GBM 326 

recurrence 327 

Temozolomide treatment of gliomas can induce hypermutation(Hunter et al., 2006; Kim 328 

et al., 2015). Missense mutations may generate neoantigens that can be recognized 329 

which by CD8+ T lymphocytes (Schumacher and Schreiber, 2015). Using matching 330 

exome data we classified five recurrent gliomas in our dataset as being hypermutated at 331 

(>=400 SNVs). The predicted frequency of CD8+ T cells was significantly increased at 332 

recurrence in comparison to their primary tumors (median 7.7‰ vs 1.9‰; Wilcoxon rank 333 
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test p-value=0.008)(Figure 7A). This observation was further validated by comparing 334 

seven hypermutated primary GBMs to 238 non-hypermutated GBMs (median 7.0‰ vs 335 

0‰; Wilcoxon rank test p-value=0.031)(Figure 7B). The majority (61%) of non-336 

hypermutated primary GBMs showed predicted CD8+ T cell fractions equal to zero. The 337 

observation suggests that patients with hypermutated tumors are more likely to benefit 338 

from CD8+ T cell antitumor immunity. 339 

 Preclinical studies suggested radiation may increase the recruitment of T cells in 340 

the tumor microenvironment (Deng et al., 2014; Zeng et al., 2013). We compared the 341 

microenvironment of primary GBM treated with radiation therapy and separated short 342 

term relapse (PFS > 6 months, n = 27) from late relapse (PFS > 12 months, n = 21). 343 

Evaluating the gene signature based presence of M2 macrophages and CD4+ T cells 344 

(CD4+ T memory resting and CD4+ follicular helper cells) in 75 IDHwt GBM pairs whom 345 

received radiotherapy, we observed no significant difference between primary tumors 346 

with short-term and long-term relapse but found a significant increase after radiation at 347 

recurrence (Figure 7C, D, E). M2 macrophages have been speculated to play a role in 348 

resistance to radiotherapy(Meng et al., 2010; Ruffell and Coussens, 2015) and 349 

macrophage targeting immunotherapy (Pyonteck et al., 2013; Ries et al., 2014) may 350 

play a radiosensitizing role. The increasing of CD4+ T cells at recurrence for short term 351 

relapse tumors points towards inhibiting CTLA-4 as adjuvant therapy to radiation. 352 

  353 
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DISCUSSION 354 

Transcriptome profiling of tumor samples is a commonly used modality for interrogating 355 

pathway functionality and phenotype based patient classification. The transcriptional 356 

footprint left by the tumor microenvironment, which may constitute 10-80% of cells in a 357 

tumor biopsy(Yoshihara et al., 2013), can obscure the true activity of the signaling 358 

network(Isella et al., 2015; Kim and Verhaak, 2015). Here, we employed in silico 359 

methods to integrate mRNA expression profiles from glioma samples and glioma cell 360 

culture models to provide insights into glioma-intrinsic pathway activities and 361 

classification, and to deconvolute the glioma associated stroma into its immunological 362 

cellular components.  363 

GBM expression subtype classification has emerged as an important concept to 364 

better understand the biology of this devastating disease (Dunn et al., 2012; Huse et al., 365 

2011; Sturm et al., 2014). Robust classification of new GBM tumors is therefore critical 366 

to ensure consistency in reporting between different studies. The transcriptional glioma 367 

subtypes we discovered using tumor-intrinsic gene expression values strongly 368 

overlapped with the proneural, classical and mesenchymal subtypes but identified the 369 

neural class as normal neural lineage contamination. Our updated methods, released 370 

through a R-library, were found to be highly robust and provide the community with a 371 

standardized strategy for classification of gliomas. 372 

 Through re-classification of primary GBM samples from TCGA and despite using 373 

tumor-only transcripts, we observed that the mesenchymal GBM subtype associated 374 

with the presence of tumor-associated glial and microglial cells. Mesenchymal glioma 375 

cell differentiation status has been found to correlate with enrichment of 376 
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macrophages/microglia (Bhat et al., 2013; Kreutzberg, 1996). Through in silico cell type 377 

identification we additionally detected enrichment of various adaptive immunity cell 378 

types, including CD4+ T lymphocytes.  379 

Longitudinal analysis of tumor samples is complicated by the lack of tissue 380 

collections including such pairs. Through aggregation of existing and novel datasets we 381 

compiled a cohort of 124 glioma pairs, including 91 pairs of IDH wild type tumors. 382 

Comparison of pairs of initial gliomas and first disease recurrence did not identify the 383 

trend of proneural GBM transitioning to a mesenchymal phenotype that has often been 384 

suspected (Phillips et al., 2006). Mesenchymal subtype at diagnosis and at disease 385 

recurrent correlated with relatively poor outcome. The recurrent IDH wild type GBM  386 

immuno environment showed fewer blood derived monocytes which may reflect lower 387 

penetration through the blood brain barrier. While the frequency of M2 388 

macrophage/microglia was increased in recurrent mesenchymal GBM compared to 389 

primary non-mesenchymal GBM, the overall fraction of M2 macropage/microglia 390 

remained stable. This possibly suggests that the majority of these cells are derived from 391 

resident CNS macrophages than through active recruitment from the circulation.  392 

  In summary, our study defines a new strategy to determine transcriptional 393 

subtype, and associated expression classes to the tumor-associated immuno-394 

environment. Our findings may aid in the implementation of immunotherapy approaches 395 

(Blank et al., 2016) in a disease type with very limited treatment options. Collectively, 396 

our results have improved our understanding of determinants of GBM subtype 397 

classification, the critical impact of the tumor microenvironment, and provide new 398 

handles on the interpretation of transcriptional profiling of glioma.  399 
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EXPERIMENTAL PROCEDURES 400 

Collection of pairs of primary and recurrent glioma samples 401 

U133A array profiles for 543 primary GBM, and RNA-Seq data for 166 primary and 13 402 

recurrent GBM were obtained from the TCGA portal https://tcga-data.nci.nih.gov/tcga/. 403 

Mutation calls and DNA copy number profiles were obtained for all samples, where 404 

available. Tissues from 20 additional initial GBM and matched recurrent tumor were 405 

obtained from Henry Ford Hospital (n = 9) in accordance with institutional policies and 406 

all patients provided written consent, with approval from the Institutional Review Boards 407 

(Henry Ford Hospital IRB protocol #402). All RNA samples tested were obtained from 408 

frozen specimens. All of the recurrent GBMs had been previously treated with 409 

chemotherapy and radiation. Three cases had a history of lower grade astrocytoma 410 

prior to the first GBM (HF-2869/HF-3081/HF-3162). Tumors were selected solely on the 411 

basis of availability. RNA-Seq libraries were generated using RNA Truseq reagents 412 

(Illumina, San Diego, CA, USA) and paired-end sequenced using standard Illumina 413 

protocols. Read length was 76 base pairs for cases sequenced by TCGA and from 414 

Henry Ford (processed at MD Anderson). RNA-Seq data on frozen tissue from 44 415 

patients with initial and recurrent GBM that received resection at Samsung Medical 416 

Center and Seoul National University Hospital were provided by Dr. Nam’s lab. Surgery 417 

specimens were obtained in accordance to the Institutional Review Board (IRB) of the 418 

Samsung Medical Center (No. 2010-04-004) and Seoul National University Hospital (No. 419 

C-1404-056-572). Affymetrix CEL files of 39 pairs of initial and recurrent glioma were 420 

retrieved from the Gene Expression Omnibus (GEO accession GSE4271, GSE42670, 421 

GSE62153)(Joo et al., 2013; Kwon et al., 2015; Phillips et al., 2006). The expression 422 
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profiles of the 23 pairs from GSE4271 were determined using Affymetrix HG-U133 423 

GeneChips, the 1 pairs from GSE42670 were analyzed using the Affmetrix HuGene-1-424 

0-st platform, the 15 pairs from GSE62153 were analyzed using Illumina Human HT-12 425 

V4.0 expression BeadChip. The RNA sequencing data of 14 and 5 pairs of primary and 426 

recurrent low grade glioma were from TCGA LGG cohort and 427 

EGAS00001001255(Mazor et al., 2015), respectively.  428 

Genome wide DNA copy number profiling and exome sequencing on thirteen 429 

TCGA tumor pairs and nine of ten Henry Ford tumor pairs were performed and data 430 

was analyzed using standard protocols and pipelines as previously described (Kim et al., 431 

2015).  432 

 433 

Data for multiplatform classification comparison 434 

RNA sequencing data was available for 162 primary GBMs(Brennan et al., 2013) for 435 

which an Affymetrix HT-U133A gene expression profile was also available. We 436 

observed a low Pearson Correlation Coefficient (< 0.15) between RNA sequencing 437 

based reads per kilo base of transcript per million reads (RPKM) and Affymetrix HT-438 

U133A profiles in eighteen cases and these were removed from further analysis. In 439 

summary, in order to assess the concordance between classification results of the new 440 

70-gene signatures and previously published 210-gene signatures (Verhaak et al., 441 

2010b), 144 GBMs which were profiled in both RNA sequencing and Affymetrix U133A 442 

platforms were used in our further analyses. 443 

 444 

Transcriptome Data processing 445 
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The latest version custom CDF files (Version19, http://brainarray.mbni.med.umich.edu) 446 

(Dai et al., 2005; Sandberg and Larsson, 2007) were used to map probes from the 447 

Affymetrix HG-U133A and HuGene-1_0-st GeneChip platforms to the Ensemble 448 

transcript database, combined in one probe set per gene and normalized using the 449 

AROMA package with default parameters, resulting in RMA normalized and log 450 

transformed gene expression values (Bengtsson et al., 2009). All RNA sequencing data 451 

was processed by the PRADA pipeline (Torres-Garcia et al., 2014). Briefly, reads were 452 

aligned using BWA against the genome and transcriptome. After initial mapping, the 453 

aligned reads were filtered out if their best placements are only mapped to unique 454 

genomic coordinates. Quality scores are recalibrated using the Genome Analysis 455 

Toolkit (GATK), and duplicate reads are flagged using Picard. Mapped features were 456 

quantified and normalized per kilo base of transcript per million reads (RPKM) and were 457 

converted to a log2 scale to represent a gene expression level. RPKM values 458 

measuring the same gene that mapped to the Ensemble transcript with longest size 459 

were selected to obtain one expression value per gene and sample. RPKM values were 460 

converted to a log2 scale to represent gene expression level. The statistical 461 

environment R was used to perform all the statistical analysis and graph plots.  462 

 463 

Deriving new gene signatures 464 

A pair-wise gene expression analysis identified 5,334 genes which are significant higher 465 

expressed in glioma bulk samples compared to their derivative GSCs. These genes 466 

were discarded from the gene list for developing tumor-specific molecular subtypes. 467 

Consensus non-negative matrix factorization (CNMF) clustering method identified three 468 
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distinct subgroups among the 369 IDHwt primary GBMs. A set of 270 GBMs was 469 

recognized as core samples based on a positive silhouette width. The gene expression 470 

values of each subtype were compared with those from the other two subtypes 471 

combined (Verhaak et al., 2010b). Signature genes per cluster were selected on the 472 

basis of differences in gene expression level and were considered significant if they 473 

reached the cut-off value with t-test p-value< 1E-3 for higher expressed in this class, 474 

while also showing a significant lower expression with t-test p-value<1E-3 in the other 475 

two classes. In the original gene signatures, genes could be either down-regulated or 476 

up-regulated, while only up-regulated genes (n=70 per gene signature) were selected 477 

for revised gene signatures. Only genes measured on both RNAseq and U133A 478 

platforms were considered, and the U133A data from 162 GBM samples measured on 479 

both platforms (which included the 144 cases used to compare U133A and RNAseq 480 

results) was used in the final comparative analysis. 481 

 482 

Molecular classifications based on ssGSEA enrichment scores 483 

Single sample gene set enrichment analysis was performed as follows. For a given 484 

GBM sample, gene expression values were rank-normalized and rank-ordered. The 485 

Empirical Cumulative Distribution Functions (ECDF) of the signature genes and the 486 

remaining genes were calculated. A statistic was calculated by integration of the 487 

difference between the ECDFs, which is similar to the one used in GSEA but is based 488 

on absolute expression rather than differential expression (Barbie et al., 2009). Since 489 

the ssGSEA test is based on the ranking of genes by expression level, the uncentered 490 

and log-transformed U133A and RPKM expression levels were used as input for 491 
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ssGSEA. Since the scores of the three signatures were not directly comparable, we 492 

performed a resampling procedure to generate null distributions for each of the four 493 

subtypes. First we generated a large number of virtual samples in which each gene 494 

obtains its expression level by randomly selecting an expression value of the same 495 

gene in the remainder of the samples. Then, the three ssGSEA scores for each 496 

signature were calculated. Following this procedure we generated a large number 497 

(>1,000,000) of random ssGSEA scores for each subtype, to build the null distribution 498 

and to give empirical p-values for the raw ssGSEA scores of each sample. By testing on 499 

multiple datasets with different sample sizes, we found the resampling generated 500 

distribution could be replaced with Student-T distribution (sample size>30) or Normal 501 

distribution (sample size>50) for getting very similar results. R-library with the code and 502 

expression matrices used is provided as supplementary file.. 503 

 504 

Evaluate the simplicity of subtype activation 505 

For a single sample, we decreased rank the empirical p-values for each subtype to 506 

generate order statistics as ����, ����  … ��, ��. In particular, �� equals to the minimum 507 

empirical p-value and points to the dominant subtype, i.e., the most significantly 508 

activated subtype. The accumulative distance to the dominant subtype (ADDS) was 509 

defined as: 510 

���� � 	
�� � ���
���

���

 

Similarly, the accumulative distance between non-dominant subtypes (ADNS) as: 511 

��
� � 	 
�� � ���
�	�	�
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Obviously, the ADDS and ADNS are positive and negative correlated with single 512 

activation, respectively. Hence, we defined the simplicity score by combing ADDS and 513 

ADNS together and corrected with a constant 

��������

���
 as follows: 514 

���������� ����� � ����� � ��
�� � 
���� � ���

 � 1 . 

 515 

Tumor purity assessment  516 

The ESTIMATE package was used to evaluate tumor purity on the basis of the 517 

expression level of marker genes in stromal and immune cells (Yoshihara et al., 2013), 518 

where the fraction of stromal cells and immune cells in each sample were represented 519 

by stromal score and immune score respectively, and the mixed fraction of both stromal 520 

and immune cells was represented by estimate scores. The ABSOLUTE package was 521 

used to confirm the tumor purity on the basis of chromosome copy number and allele 522 

fraction ratios on samples for which single nucleotide polymorphism array data were 523 

available (Carter et al., 2012). 524 

 525 

Sample collection and Neurosphere Cultures 526 

After obtaining approval from the institutional review board of The University of Texas 527 

M.D. Anderson Cancer Center, glioblastoma tumor tissues were collected and named in 528 

the order that they were acquired. Each tissue was enzymatically and mechanically 529 

dissociated into single cells and grown in DMEM/F12 media supplemented with B27 530 

(Invitrogen), EGF (20 ng/ml), and bFGF (20 ng/ml), resulting in neurosphere growth. All 531 

cell lines were tested to exclude the presence of Mycoplasma infection. To minimize 532 

any batch effect the downstream molecular analyses were performed on identical cell 533 
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culture batches. Total RNA from formalin fixed, paraffin embedded tumor tissues and 534 

matching neurospheres was prepared using the Masterpure complete DNA and RNA 535 

isolation kit (Epicenter) after proteinase K digestion per to the instructions from the 536 

manufacturer. Paired-end Illumina HiSeq sequencing assays were performed resulting 537 

in a medium number of 50 million 75bp paired end reads per sample. We employed the 538 

PRADA pipeline to process the RNA sequencing data (Torres-Garcia et al., 2014). In 539 

short, Burroughs-Wheeler alignment, Samtools, and Genome Analysis Toolkit were 540 

used to map short reads to the human genome (hg19) and transcriptome (Ensembl 64) 541 

and RPKM gene expression values were generated for each of the 135,994 transcripts 542 

of 21,165 protein coding genes in Ensembl database. 543 

 544 

Western blotting 545 

Lysates were prepared from fresh frozen sections using RPPA lysis buffer (1% Triton X-546 

100 50mM HEPES pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 547 

10mM Na pyrophosphate, 1mM Na3VO4, 10% glycerol, plus protease and phosphatase 548 

inhibitors cocktails from Roche Applied Science #05056489001 and 04906837001), with 549 

sonication and clearing by centrifugation at 10,000g. Protein concentration was 550 

measured using the BCA kit (Thermo Scientific - Pierce #23225). SDS-PAGE and 551 

western blotting was performed using Midi gel system (Life Technologies - #WR0100) 552 

and NuPage-Novex 4-12% Bis-Tris Midi (20-well) Protein Gels (Life Technologies - 553 

#WG1402) using the following antibodies: ITGAM (CD11B) (Sigma Aldrich – 554 

#HPA002274), IBA1 (AIF1) (Sigma Aldrich – #HPA049234), GFAP (Cell Signalling – 555 
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#3670), YKL40 (CHI3L1) YKL40 (CHI3L1, Santa Cruz Biotechnology - #sc-30465) a-556 

actinin (Sigma Aldrich A5044) and Tubulin (Sigma Aldrich T9026). 557 

 558 

Immunohistochemistry 559 

Formalin-fixed, paraffin-embedded tissue sections (4 µm thick) were collected on 560 

Superfrost plus slides. Briefly, tissue sections were deparaffinized with xylene and 561 

ethanol and re-hydrated with 95, 70 and 50% ethanol. Sections were antigen unmasked 562 

using citrate buffer (Vector Labs #H-3300) and heating. Peroxidase block was 563 

conducted with 3% H2O2 and blocking was with 5% goat serum (Vector Labs #S-1000). 564 

Primary rabbit polyconal antibody against IBA1 (AIF1)(WAKO #016-20001) at 1:400 565 

was used overnight. Secondary antibody was done using with the Rabbit-on-Rodent 566 

HRP-Polymer (Biocare #RMR622L) for 1 hr at room temperature. The slides were 567 

developed with Nova-red (Vector Labs #SK-4800) and counterstained with 568 

haematoxylin, mounted and scanned with Pannoramic 250 slide scanner (Caliper Life 569 

Sciences). Unbiased quantification of microglial (IBA1+) percentage in primary and 570 

recurrent GBMs was performed using the Caliper Vectra image system and InForm 571 

analysis software. Thirty scan fields were automatically selected on from entire tumor 572 

section. Nineteen scan fields were select from the primary tumor of patient #2 due to the 573 

small size of tumor section. Percentages of the median and high levels (2+, 3+) of IBA1 574 

were used for the comparison.  575 

  576 
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 753 

Figure 1. Molecular classification of IDHwt GBMs. (A) Filtering tumor associated 754 

microenvironment genes. (B) Discarding IDH mutation related GBMs. (C) Overview of NMF 755 

clustering. (D) Heatmap of 70-gene signatures by gene expression subtype were developed 756 

based on 270 GBMs. Top ten genes are shown for each subtype. (E) Frequency of subtype 757 

related somatic genomic alterations. Chi-square test was used to calculate the distribution 758 

difference among three subtypes per genomic variant. 759 
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 761 
Figure 2. Multi activation of transcriptional subtypes associated with intratumoral 762 

heterogeneity. (A) The expression profiles of 369 IDHwt GBMs were analyzed using Affymetrix 763 

U133A. The empirical -log(empirical P-value) of raw ssGSEA enrichment scores at each 764 

signature are shown as heatmaps, with dark blue representing no activation and bright red as 765 

highly activated. Yellow star indicates the secondary activated subtype (empirical p-value<0.05).  766 

For each panel, the first row shows simplicity score, and the second row indicates 767 

transcriptional subtype. (B) Comparison of mutation rate, subclonal mutation rate and subclonal 768 

mutation fraction between IDHwt GBMs with high and low simplicity scores. P-values were 769 

calculated using Wilcoxon rank test and shown at the top of each panel. (C) Kaplan-Meier 770 

survival curve by subtype. (D) Transcriptome classification of five bulk tumor samples and 502 771 

single GBM cells derived from them. The top two row of each panel show the dominant and 772 

secondary subtype of the GBM tumor bulk. The heatmap of each panel shows the empirical -773 

log(P-value) of  the ssGSEA scores of the derived single GBM cells on each of the three 774 

subtype signatures. The bottom row shows the subtype distribution of derived single GBM cells 775 

within the same GBM tumor of origin. 776 
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 777 
Figure 3. Transcriptional subtypes differentially activate the immune microenvironment. 778 

(A, B) Tumor purity of 364 respectively 369 TCGA IDHwt GBM samples was determined by 779 

ABSOLUTE and ESTIMATE. The difference in tumor purity between subtypes was evaluated 780 

using a two-sample heteroscedastic t-test. (C) Comparison of immune cell fractions among 781 

subtypes. Immune cell fractions were estimated using CIBERSORT and corrected using 782 

ABSOLUTE purity scores per sample. The distribution of immune cell fractions of 69 PN, 137 783 

CL and 96 MES IDHwt GBMs with simplicity score>0.1 were shown by purple, skyblue and 784 

green boxplots, respectively. Median value difference of cell fraction among subtypes was 785 

evaluated using Mood’s test. (D) The upper panel shows ssGSEA enrichment scores and 786 

associated expression subtype classifications. Bottom panels display protein expression of the 787 

microglial markers integrin alpha M (ITGAM) and allograft inflammatory factor 1 (IBA1), 788 

astrocyte marker glial fibrillary acidic protein (GFAP) and the loading control tubulin. (E) 789 

Comparison of ITGAM and IBA1 gene expression levels between GBM and derived 790 

neurosphere models. 791 
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 793 
Figure 4. Comparison between transcriptional subtype of primary and paired recurrent 794 

tumors. (A) Rows and columns of the cross table represents subtype distribution frequency of 795 

primary and paired recurrent tumors, respectively. (B) Violin plots show the distribution of 796 

simplicity scores of pairs with (left) and without (right) subtype transition. 797 
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 799 
Figure 5. Microenvironment transition between 91 primary and paired recurrent IDH wild 800 

type GBM. (A) Red and blue boxplots represent the immune cell fraction distribution of each 801 

immune cell type. Immune cell fraction was calculated using CIBERSORT and adjusted using 802 

ESTIMATE purity scores. Difference between cell fraction of primary and paired recurrent 803 

tumors was calculated using Wilcoxon rank test. (B) The blue-to-red heatmap represents 804 
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immune cell fraction changes upon tumor recurrence per subtype transitions which were list on 805 

the left of the heatmap. Fisher exact test was used to evaluate the distribution difference 806 

between patients with higher/lower immune cell fractions at tumor recurrence per subtype 807 

transition. (C) Each dot represents a pair of primary and recurrent GBM with axes indicating M2 808 

macrophage cell fraction. (D) Representative images of IBA1 immunohistochemical staining and 809 

corresponding score map obtained by InForm image analysis in two matched pairs of primary 810 

and recurrent GBM. Scale bar, 25 µm. (E) Unbiased quantification of IBA1+ percentage in 811 

primary and recurrent GBMs. 812 
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 814 
Figure 6. Survival analysis of paired IDH wild type GBM. (A, B) OS and PFS analyses 815 

between samples with different primary subtype. (C) Difference of survival time after secondary 816 

surgery between patients with non-MES and MES in primary tumors. (D) Survival analysis of 817 

time after secondary surgery between patients with non-MES and MES in recurrent tumors. (E, 818 

F) OS and PFS analyses between samples with difference recurrent subtype. 819 
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 821 

Figure 7. Immune cell frequency comparison. (A). Blue and red diamond indicate individual 822 

primary and recurrent tumors. Dash line connects paired primary and recurrent tumors. (B). 823 

Blue and red cycle indicate non-hypermutated and hypermutated primary samples. (C-E). Sky 824 

blue/dark blue and orange/red boxplots indicate short- and long- term relapsed tumors, 825 
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respectively. Wilcoxon rank tests were used to examine the significance of the differences 826 

between groups. 827 
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Supplementary Information 829 

Supplementary Figures and Legends 830 

 831 

Figure S1. Comparison between GCIMP- GBM specific classification and TCGA defined GBM 832 

subtypes. 270 samples were identified as core samples with positive silhouette width core 833 

samples. 97, 94 and 79 samples were unsupervised classified class1, class2 and class3, 834 

respectively. The previous four transcriptional subtypes of these 270 samples were determined 835 

by TCGA Research Network (Brennan et al., 2013). 836 
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 838 

 839 

Figure S2. Concordance of transcriptional classification of GBMs crosses multiple 840 

platforms. Through TCGA, the expression profiles of 144 GBM were analyzed using both 841 

Affymetrix U133A gene expression arrays and RNA sequencing. The empirical -log(P-value) of 842 

raw ssGSEA enrichment scores at each signature are shown as heatmaps, with dark blue 843 

representing no activation and bright red as highly activated. For each panel, the first row shows 844 

U133A based classification, and the second row indicates RNA-seq subtype classification. 845 
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 847 

Figure S3. Genomic alteration patterns for each subtype. Ten prominent GBM somatic 848 

events were manually selected.  Simplicity score and primary subtype were shown by the first 849 

two rows. For samples with simplicity score less than 0.1, the secondary subtype was also 850 

shown by the third row. 851 
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 853 

Figure S4. Patient survival differences between transcriptional subtypes. Samples were 854 

filtered using increased simplicity score as threshold from panel A to D. 855 
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 857 

Figure S5. Overall and event free survival analysis comparison between samples with high and 858 

low simplicity scores in each subtype. 859 
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 861 
 862 

Figure S6. Comparison of tumor purity and immune cell fraction between GBMs with 863 

different NF1 genomic status. P-values were calculated using Wilcoxon rank test between 864 

samples carrying NF1 deletion/mutation and others. 865 
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 867 

Figure S7. Immunohistochemistry staining of the IBA1 imcroglia marker. (A) Representative 868 

images with immunohistochemical staining of the IBA1 and score map obtained by InForm 869 

image analysis tools in four matched pairs of primary and recurrent GBM. Thirty scan fields 870 

were unbiased selected for each tumor by Calipar Vectra pathology imaging system 871 

automatically. (B) IHC staining of the IBA1 in three additional matched pairs of primary and 872 

recurrent GBM. 873 
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 875 

Figure S8. (A, B) Overall and progression free survival analysis between samples in different 876 

recurrent subtypes. (C) Survival after secondary surgery comparison between different 877 

transition types. 878 
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