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Abstract 

    Noninvasive prenatal diagnosis (NIPD) poses a promising solution for 

detecting genetic alterations in fetus genome. However, inference the 

maternal allele inheritance of monogenic autosomal recessive disease is still 

challenging. We perform the null hypothesis testing of haplotype frequency 

using a hierarchical Bayesian model to deduce the allele inheritance. The 

Bayesian approach, which does not depend on the fetus DNA proportion in 

maternal plasma, provides accurate estimations on real and simulated 

datasets, moreover, it is most robust than current methods in analyzing noisy 

or even erroneous datasets.  

Introduction 

    The discovery of free fetal DNA in maternal plasma starts a new era of non-

invasive prenatal diagnosis (NIPD).1 The placenta origin cell-free DNA could 

make up to 19% of total cell-free DNA in plasma, providing necessary 

materials for enormous applications.2 For example, sex determination by RT-

PCR could achieve near 100% sensitivity and specificity.3,4 More recently, 

with the advent of next generation sequencing, NIPD of aneuploidy and 

subchromosomal abnormalities are feasible or even recommended for high 

risk patients in the clinical practices. 5–7 

    Based on the causative mutations identified in monogenic autosomal 

recessive diseases, NIPD is of great value in clinical diagnoses and 

treatments by determining the parental alleles inheritance in fetus genome.10 
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However, it is still challenging to infer the inheritance of heterogeneous 

maternal alleles in recessive disease. Relied on the imbalance of maternal 

haplotypes in maternal plasma DNA mixed with fetus DNA, relative haplotype 

dosage analysis (RHDO)8–10, haplotype counting analysis11 and hidden 

Markov model (HMM)12 have been employed in the maternal alleles 

inference. However, the proportion of fetus DNA of total cell-free DNA in 

mother plasma, which is a key parameter in above methods, might not be 

accurately estimated. 

    In the framework of RHDO, the sequential probability ratio test (SPRT)8 is 

employed to perform the hypothesis testing that the haplotype frequency of 

heterozygous SNPs is not significantly different from 0.5, and the over-/under-

representation of heterozygous SNPs suggest which allele is inherited in fetus 

genome. The data and procedure used by SPRT reminds us the classical coin 

bias problem in Bayesian applications, where several coins minted in a factory 

are tossed and the head/tail data are used to deduce the mint bias of the 

factory. A Head biased factory tends to produce in more heads in the tossing 

procedure. Analogous to coin bias problem, we could consider SNPs as 

coins, the haplotype of heterozygous maternal SNPs as the mint, the 

haplotype frequency as the mint bias. The null hypothesis is that the 

haplotype frequency is equal to 0.5, indicating there is no fetus DNA in 

maternal plasma. We then deduce the maternal allele inheritance via the null 

hypothesis testing procedure based on the relative location between the 

region of practical equivalence (ROPE) and high density interval (HDI). We 

showed that the Bayesian approach provides informative results and has 

excellent performance on real and simulated data. More importantly, this 

approach does not depend on the fetus DNA fraction in plasma, thus it is 

more robust to noisy or even erroneous datasets. This Bayesian approach is 

implemented in an R package (maIHB, https://github.com/ccshao/maIHB) to 

facilitate its usage. 

Methods 

Relative haplotype dosage analysis 

    Relative haplotype dosage analysis (RHDO), which makes use of next 

generation sequencing data of heterozygous maternal SNPs and 
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homozygous paternal SNPs flanking interested alleles, aims to identify the 

subtle haplotype imbalance caused by the mixture of fetus DNA and 

thereafter deduces maternal alleles inheritance in fetus genome9. Briefly, type 

α or type β SNPs are selected from maternal haplotypes (HapI and HapII) 

based on their identity to corresponding paternal alleles, where maternal 

SNPs in HapI that are same to the paternal SNPs are identified as type α 

SNPs, and maternal SNPs in HapII that are same to the paternal SNPs are 

identified as type β SNPs. Then the sequential probability ratio test (SPRT),8,9 

which cumulatively tests the haplotype imbalance against predefined 

threshold, is used to determine if the proportion of either haplotype is 

significantly different from 0.5. This method has been extended to the 

scenarios where both maternal and paternal SNPs are heterozygous9.  

Hierarchical Bayesian model 

    Thinking of a classical application of Bayesian analysis: several coins, 

which are independently minted in the same factory, are tossed a certain 

number of times to calculate the bias, i.e., the probability that coins comes up 

heads. The bias values are likely to be different for each coin but will be close 

to the mint bias. The hierarchical Bayesian model is showed to be a mature 

and powerful tool in estimating the distribution of mint bias from coins tossing 

data via specifying the dependence of coin bias on mint bias with 

hyperparameters13. It is interesting to consider the RHDO analysis in the 

simple coin flipping setting, where the plasma DNA is regard as the “mint”, 

type α or type β SNPs are “coins”, read counts of SNPs on HapI and HapII 

are numbers of heads and tails of tossing respectively, and the proportion of 

HapI or HapII could be viewed as the “mint bias”. If there is no fetus DNA in 

maternal plasma, the estimated distributions of HapI and HapII will be 

centralized on 0.5, and shift to higher value or lower value if fetus DNA are 

mixed. We refer the proportion of HapI as HapBias in the following analysis 

hereafter.  

    The structure of hierarchical Bayesian model is summarized in Figure 1 in a 

bottom-up way. For each SNP, the read counts assigned to SNPs could be 

viewed as numbers of heads or tails generated in a series of Bernoulli 

process with a SNP specific bias θs respectively, which is commonly modeled 

by a beta distribution with mode ω and concentration κ, i.e., beta(ω(κ-2)+1, 
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(1-ω)(κ-2)+1). The individual value of θs will be near to ω, and κ controls how 

close θs is to ω. Thus ω represents the HapBias, and κ expresses the 

certainty on the dependence between θs and ω. The interested 

hyperparameter ω is further modeled by a beta distribution, and κ-2 is usually 

modeled by a gamma distribution. We set the prior distribution of ω to be 

beta(2, 2) to reflect the fact that the HapBias is close to 0.5 and let the data 

play a major role in determining the posterior distribution. The Markov chain 

Monte Carlo simulation is used to approximate the posterior distribution of θs, 

κ and ω. 

    Two outputs are possible for type α SNPs based analysis: HapBias is very 

close to 0.5 or HapBias is much larger than 0.5, and the latter scenario 

indicates that HapI is overrepresented and hence inherited by the fetus. 

Similarly, two outputs are possible for type β based analysis: HapBias is very 

close to 0.5 or HapBias is much smaller than 0.5, which indicates HapI is 

underrepresented and HapII is inherited by the fetus. The significance of 

over/under-represention of haplotype frequency is determined by the null 

hypothesis testing based on the relative location between high density interval 

(HDI) of the distribution of HapBias ω and region of practical equivalence 

(ROPE), which described in the next section.  

Null hypothesis testing in Bayesian analysis 

    In the context of the allele inheritance deducing, the null condition is that 

the HapBias ω is equal to 0.5. In Bayesian analysis, a common approach to 

perform the null hypothesis testing is to examine the relative location between 

highest density interval of posterior distribution (HDI) and region of practical 

equivalence (ROPE).13,14 Parameter values inside HDI have higher probability 

density comparing with values outside this region, and sum to a defined 

probability (95% in our analysis).13 ROPE, or alternatively named indifference 

zone, is popularized by Freedman et al. as the counterpart to the single null 

value used in frequentist field.15 ROPE means the parameter values within 

this range are recognized to be practically equivalent for the null value. We 

denote (ΔL, ΔH) as the limits of HDI and (δL, δH) as the limits of ROPE. Six 

types of relation location between HDI and ROPE exist (Fig. 2).16 We reject 

the null hypothesis that the HapBias is equal to 0.5 if there is no intersection 

between the HDI and the ROPE, and accept the null hypothesis if the ROPE 
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completely contains the HDI. We make no decision for the other three types of 

relations and need to collect more data.  

Limits of ROPE of the null hypothesis 

    The limits of ROPE vary according to practical purposes and overall 

considerations of experiments. In principle, wider ROPEs lead to the 

acceptance of null value, and vice versa for narrower ROPEs. We calculated 

the ROPE limits from the perspective of next-generation sequencing error. 

Assuming the error rate of sequencing platform is e, the total read counts for a 

single SNP on both HapI and HapII is C. In the null condition, the lower and 

upper limits of read counts of a SNP on HapI is C/2 - C*e/2 and C/2 + C*e/2, 

respectively. Therefore, independent of the sequencing depth, the proportion 

of reads on HapI of a single SNP lies in the range [1/2 – e/2, 1/2 + e/2]. As the 

sample principle applies to all SNPs, the range is considered to be true for the 

haplotype as well. Thus the range [1/2 – e/2, 1/2 + e/2] is used as the ROPE 

limits of HapBias of the null hypothesis. 

Simulation 

    We simulated the read counts data of haplotypes via the following steps: 1) 

we focused on the type α SNPs in the scenarios that the HapI was 

overrepresented; 2) the proportion of fetus DNA was set to be p; 3) the 

sequencing depth is set to be C for all SNPs, here we set C to be 200 4) we 

used 500 SNPs and 1000 SNPs in the simulations; 5) the read counts for 

SNPs on HapI and HapII are (1+p)*C/2 and (1-p)*C/2, respectively; 6) we 

sampled data from the pool of HapI and HapII with replacement to reflect the 

stochastic noise in the real data. We simulated another dataset with p was set 

to be 0 to reflect that there is no fetus DNA in the maternal plasma.  

Results 

Application of the hierarchical Bayesian model on read data sets 

    We evaluated the hierarchical Bayesian model on noninvasive prenatal 

data sets to access its accuracy. The data are from two β-thalassemia patient 

families where SNPs flanking interested genes are sequenced to generate 

read counts on HapI and HapII.9 To obtain the posterior distribution of 

HapBias, we performed 100,000 MCMC simulations with four chains (i.e., four 

individual simulation with difference initiation value). The ROPE of (0.49, 0.51) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/051995doi: bioRxiv preprint 

https://doi.org/10.1101/051995
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6

(the rationale will be discussed in a later section) and the 95% HDI of HapBias 

posterior distribution were used to perform null hypothesis testings. In the first 

family the fetus inherited the HapII, and there are five type α and 46 type β 

SNPs available. The posterior distribution of HapBias using type β SNP 

demonstrated a 95% HDI region with limits of (0.435, 0.478), lied completely 

downstream of the ROPE, indicating HapI is underrepresented and HapII 

inherited in fetus, consistent with the publication results (Fig. 3A). In fact, the 

simulation results suggested that there is no HapBias value locating in the 

ROPE. On the other hand, the posterior distribution of HapBias based on type 

α SNPs showed that the ROPE completely fall within the HDI region, thus no 

conclusion could be drawn (Supplementary Fig. 1).  

    As Majority of analyzed SNPs in both parents in the second family are 

heterozygous, additional tagging SNPs were used to identify 24 type α SNPs.9 

The hierarchical Bayesian model revealed that the ROPE lied completely 

upstream of 95% HDI, indicating the HapI was inherited in the fetus, 

consistent with known results (Fig. 3B). Taken together, the hierarchical 

Bayesian model correctly deduced the maternal allele inheritance and 

represented the results in an intuitive way. 

Examination of Markov chain Monte Carlo simulation 

    It is important to check the quality of MCMC simulations used in the 

Bayesian model. We employed various visualization methods to examine two 

critical characters, convergence and accuracy, in above examples. The trace 

plot, which shows the parameter in simulated chain steps, is useful to provide 

an overview of the convergence.17,18 If MCMC simulations converged for the 

posterior distribution, the parameter value estimated from different chains 

should largely overlap. The existing of orphan chains are alarms of lack of 

convergence. The overlapping of trace plots suggested the MCMC 

simulations converged in both family one data and family two data (Fig. 4A, 

Supplementary Fig. 2A). Meanwhile, we summarized the parameter value 

sampled in individual chains as density plot. The overlapping of density plot 

suggests convergence of simulation (Fig. 4B, Supplementary Fig. 2B). In 

addition, we could see there are slightly difference of 95% HDI among chains. 

As the limits of HDI will converge to the same value in the condition of infinite 

sample sizes, the difference of HDI provides hints on how the finite samples 
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sizes influence posterior estimation. In other words, the largely overlapping of 

95% HDI in our results suggests that the sample sizes are sufficient. The 

shrink factor, which reflects the ratio between between-chain variance and 

within-chain variance during simulation, is a commonly used numerical 

measurement for convergence. The shrink factor is equal to one if all chains 

converged, and larger than one if orphan chains exist.19 Practically, the 

MCMC simulations with the shrink factor greater than 1.1 indicate lack of 

convergence.13 The mean and 97.5% quantile value of shrink factors gets 

close to 1 very quickly after the initial burn-in period in our data (Fig. 4C, 

Supplementary Fig. 2C), indicating the convergence is archived. 

    Another goal is to generate enough simulation steps to accurately 

represent the parameter distribution. One problem in the simulation is clumpy 

chains, in which successive steps are partially redundant in exploring the 

parameter space, and do not provide independent estimation. The 

autocorrelation plot, calculated as the average correlation between data and k 

steps ahead data, provides hits on level of clumpiness. Based on the value of 

autocorrelation, we could further calculate the effective sample size (ESS), 

which summarize how many completely non-autocorrelated steps in our 

simulation.20 Heuristically, an ESS of 10,000 is recommended for many 

MCMC simulations.13 In our results, we could see autocorrelation value gets 

close to 0 very quickly for k great than 6, while 37881 ESS were achieved 

(Fig. 4D, ESS is 34887 in Supplementary Fig. 2D). Together with the 

overlapping of HDI of individual chains in Figure 4B, we could see that the 

simulated posterior distributions have sufficient accuracy for tested data sets. 

Calculation the limits of the region of practical equivalence 

    We discuss the rationality of determining ROPE in this section. ROPE, 

which is alternatively named “indifference zone” or “range of equivalence”, 

means the parameter values within this range are considered to be practically 

equivalent for the null value15. Small difference between null value and 

estimated value are most likely caused by sampling variation or data error, 

rather than true difference. In our work, the null hypothesis is that HapI and 

HapII are equally presented and HapBias is 0.5. For the data generated by 

next generation sequencing methods, we assumed that the ROPE limits are 

mainly influenced by sequencing errors,21 while higher sequencing error rates 
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lead to wider ROPE. Currently the error rate of next-generation sequencing 

platform is around 10-2,21,22 and an error rate of 0.303% has been reported in 

one NIPD study.8 We applied a ROPE of (0.49, 0.51) in the tested data sets, 

reflecting an error rate of 2% (See Methods). Interestingly, even with this 

rather conservative ROPE limits, we still successfully inferred the allele 

inheritance in the real data sets, suggesting the sensitivity of the hierarchical 

Bayesian model. 

Simulation 

     To further explore the performance of the hierarchical Bayesian model, we 

generated the sequencing data in silico. Briefly, we sampled the SNPs counts 

for HapI and HapII according to the proportion of fetus DNA from a pool of 

reads, with 500 and 1000 SNPs used, respectively. In the condition of 3% 

fetus DNA, the Bayesian approach correctly detected the maternal allele 

inherited in all samples using 1000 SNPs, while the detection rate reduced to 

76% using 500 SNPs, suggesting the benefits of larger data (Supplementary 

Table 1). SPRT could correctly deduce the maternal allele inheritance in 80% 

of simulated samples with as low as 0.8% fetus DNA using 1000 SNPs, 

showing a higher sensitivity (Supplementary Table 2). Taken together, both 

Bayesian approach and SPRT have great sensitivity in deducing the true 

maternal allele inheritance. 

    We next asked how robust these methods are in the existence of 

measurement errors. The fetus DNA proportion is a key parameter in SPRT 

procedure as it affects the low and up-boundary of the test statistic under null 

hypothesis. However, the fetus DNA proportion might not be accurately 

estimated. We counts data of 500 SNPs in the conditions that the true fetus 

DNA proportion was set to be 0% or 10%, and the measured fetus DNA 

proportion varied from 1% to 20%. In the scenarios that the true fetus DNA 

proportion is 0%, SPRT provided the wrong inference in all tested data sets 

as it relied on the fetus DNA proportion for the significance test (Figure 5A). In 

the condition that the true fetus DNA proportion is 10% but the estimated 

value is 20%, SPRT inferred 61% of test samples inherited HapII or 

undetermined inheritance (Supplementary Table 3). On the contrast, the 

Bayesian approach does not depend on the fetus DNA proportion. When the 

Bayesian approach applied to the simulated data with 0% true fetus DNA 
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proportion, the HDI of HapBias posterior distribution fell completely within the 

ROPE, indicating that the HapBias was equal to 0.5 and there is no fetus DNA 

in the sequenced data (Fig. 5B).  

Discussion 

    Although several methods are available to analyze the cell-free DNA 

sequencing data, inference the inheritance of heterogeneous maternal alleles 

in fetus genome from NIPD sequencing data is a challenging task.23 

Haplotypes based approaches which uses the imbalance representation of 

SNPs introduced by fetus DNA provide convincing results9,12,24. However, the 

performance of these methods relies on the value of fetus DNA proportion, 

which might be not feasible to accurately estimate. We introduced a 

hierarchical Bayesian model under the framework of RHDO that is 

independent of fetus DNA proportion to inference the inherited maternal 

alleles in fetus genome. To test the null hypothesis that the haplotype 

frequency is equal to 0.5, we established the posterior distribution of Hapbias 

(proportion of HapI) based on high throughput sequencing data of individual 

SNPs, and compared the HDI of HapBias distribution with predefined ROPE 

to determine which allele is inherited in fetus genome. This method correctly 

deduced maternal allele inheritances on experimental data, and the results 

are summarized as intuitive graphs, together with various diagnoses plots.  

    We evaluated the performance of the Bayesian approach and another 

widely used approach, SPRT, on simulated data. Both methods could 

successfully identify the inherited alleles in all samples containing as low as 

3% fetus DNA, and SPRT performs well even in samples with 0.8% fetus 

DNA. Moreover, we found that the Bayesian approach is more robust in 

conditions where the fetus DNA proportion is not correctly measured. In the 

extreme case where there is actually no fetus DNA in the plasma but 

incorrectly recorded, SPRT could provide misleading test results. In contrast, 

the Bayesian model showed that the HDI of HapBias posterior distribution 

falls completely within ROPE, corresponding to the hypothesis that there is no 

fetus DNA in the plasma. Taken together, the hierarchical Bayesian model is 

a robust tool in deducing the allele inheritance in NIPD. 
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Figures Legends 

 

Figure 1. A scheme describes the hierarchical Bayesian model used to infer 

maternal alleles inheritance. The read counts for HapI and HapII are assumed 

to be generated in a Bernoulli process with a SNP specific bias θs, which 

depends on a beta distribution with hyperparameter ω and κ. The parameter 

ω, which is referred as HapBias as well, has a prior beta distribution, whereas 

κ has prior gamma distribution. Names of probability distribution are 

highlighted with red. 

 

Figure 2. The Null Hypothesis testing based on ROPE and HDI. (ΔL, ΔH) and 

(δL, δH) are the limits of HDI and ROPE of 0.5, respectively. We reject the null 

hypothesis if there are no intersection between HDI and ROPE (highlighted in 

red). If ROPE contains HDI completely, we accept hypothesis that HapBias is 

equal to 0.5 (highlighted in orange). We make no decision for three other 

conditions (highlighted in blue). 
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Figure 3. Posterior distribution of HapBias by the hierarchical Bayesian 

approach. (A) 95%HDI locates completely downstream of ROPE region for 

type β SNP in family one; 0% of  posterior parameter value locates within the 

ROPE. (B) 95%HDI locates completely upstream of ROPE region for type α 

SNP in family two, 1% of  posterior parameter value locates within the ROPE. 

 

Figure 4. Diagnosis plots of HapBias distribution for type β SNP in family one.  

(A) The trace plot shows the sampled HapBias value of four independent 

chains in MCMC simulations. (B) HapBias density distributions of four chains. 

The limits of 95% HDI are labeled. (C) The trend of shrink factor along 

increased iteration in simulations, median and 95% quantile values are 

showed. (D) Autocorrelation calculated with various lags for four chains. Total 

ESS is showed in the plot. Lag, the number of iterations between the chain 

and the superimposed copy. 

 

Figure 5. Compare the performance of SPRT and Bayesian model on 

erroneous data. (A) The SPRT classification incorrectly shows that HapII is 

inherited in fetus even there is no fetus DNA in sample. (B) Hierarchical 

Bayesian model correctly shows that the true HapBias is equal to 0.5, 

indicating there is no fetus DNA in samples 
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Figure 3 
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Figure 4 
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