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Abstract 

Background 

Alternative splicing is the major post-transcriptional mechanism by which gene expression is 

regulated and affects a wide range of processes and responses in most eukaryotic 

organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of 

individual transcript isoforms to identify changes in expression and alternative splicing. RNA-

seq is an essential modern tool but its ability to accurately quantify transcript isoforms 

depends on the diversity, completeness and quality of the transcript information.  

Results 

We have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-

seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts 

originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at 

least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 

protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More 

than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was 

generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data 

sets obtained from 129 RNA-seq libraries and merged along with the previous version, 

AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts 

and through application of stringent filters represents the most extensive and accurate 

transcript collection for Arabidopsis to date. We have demonstrated a generally good 

correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and 

experimental data from high resolution RT-PCR. However, we have observed inaccurate 

quantification of transcript isoforms for genes with multiple transcripts which have variation in 

the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis 

programmes and will therefore impact RNA-seq analyses generally. To address this, we 

have tested different genome-wide modifications of AtRTD2 to improve transcript 

quantification and alternative splicing analysis. As a result, we release AtRTD2-QUASI 

specifically for use in Quantification of Alternatively Spliced Isoforms and demonstrate that it 

out-performs other available transcriptomes for RNA-seq analysis. 

Conclusions 

We have generated a new transcriptome resource for RNA-seq analyses in Arabidopsis 

(AtRTD2) designed to address quantification of different isoforms and alternative splicing in 
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gene expression studies.  Experimental validation of alternative splicing changes identified 

inaccuracies in transcript quantification due to UTR length variation. To solve this problem, 

we also release a modified reference transcriptome, AtRTD2-QUASI for quantification of 

transcript isoforms, which shows high correlation with experimental data.   

 

Key words: RNA-seq; Alternative splicing; Arabidopsis thaliana; Cufflinks; StringTie; 

Salmon; Kallisto; high resolution RT-PCR  

 

Background 

In plant and animal genomes, the majority of intron-containing genes undergo alternative 

splicing (AS). AS of precursor messenger RNAs (pre-mRNAs) can generate different 

transcript isoforms by selection of different splice sites [1-3]. A major consequence of AS is 

that mRNA AS variants are translated to produce different protein isoforms often with 

different or even antagonistic functions [1, 2]. In addition to increasing protein complexity, AS 

can regulate protein (and transcript) abundance by switching to production of transcript 

isoforms which are degraded by the nonsense-mediated decay (NMD) pathway [4-7]. 

In higher plants, AS is important in normal growth and development as well as in 

responses to biotic and abiotic stresses [8-13]. The significance of AS as a key regulator of 

gene expression is illustrated by 60-70% of intron-containing genes undergoing AS [14, 15]. 

Its functional importance is demonstrated in, for example, development, flowering time, the 

circadian clock, light signalling, seed dormancy, disease resistance and abiotic stress [16-

28]. It is therefore essential that gene expression studies in plants take full account of the 

diversity of AS transcripts and assess the dynamic changes in expression at the individual 

transcript level to better understand how plant processes are controlled. 

RNA-sequencing (RNA-seq) allows the assessment of differential expression of 

genes and transcripts through quantification of transcripts across a broad dynamic range. 

Nevertheless, accurate genome-wide identification and quantification of transcript isoforms 

from RNA-seq data remains a substantial challenge. With an available genome sequence 

the quantification of transcripts usually involves mapping of RNA-seq reads to the genomic 

reference and then construction of transcript isoforms as the first steps. Transcript 

expression levels are then inferred based on the number of aligned reads. Current analysis 

tools that identify and quantify transcripts from reads mapped to a genome include 

TopHat2/Cufflinks [29-32], RSEM [33, 34], eXpress [35], Bayesembler [36] and StringTie 

[37]. However, the determination of transcripts from short reads is inaccurate and generates 

incorrect, mis-assembled transcripts and misses bona fide transcripts that impacts the 

accuracy of transcript quantification [37-39]. For example, the assembly functions of two of 

the best performing programmes, Cufflinks and StringTie, generate 35-50% false positives, 
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and quantification based on these transcript annotations often leads to inaccurate results 

[37]. In particular, for genes with multiple isoforms, the accuracy of transcript inference and 

quantification is poor [39]. Therefore, assembled transcripts and their quantification require 

rigorous experimental validation. 

Rapid and accurate quantification of known transcripts can be achieved using 

programmes such as Sailfish and Salmon [40, 41] or Kallisto [42], which use lightweight 

algorithms to quantify the abundance of previously annotated RNA isoforms [40]. To analyse 

AS data in Arabidopsis thaliana we previously developed an Arabidopsis Reference 

Transcript Dataset (AtRTD) (now referred to as AtRTD1), and showed high correlation of AS 

using individual transcript abundances from Sailfish and Salmon and experimental data from 

high resolution (HR) RT-PCR [43]. AtRTD1 was made up of transcripts identified during 

RNA-seq analysis of a normalised library from 10-day old seedlings and flower tissue [14] 

and from transcripts in The Arabidopsis Information Resource version 10 (TAIR10) [44]. 

Here, we describe AtRTD2 where we have increased the number and diversity of 

Arabidopsis transcripts (over 82k unique transcripts from around 34k genes) by assembling 

ca. 8.5 billion 100 bp pairs of reads from RNA-seq libraries of a diverse range of plant 

material and incorporating transcripts from Araport11 Pre-release 3 [45, 46], hereafter 

Araport11. AtRTD2 contains higher confidence transcripts through the application of 

stringent filtering and quality control measures based on our knowledge of plant intron and 

splicing characteristics to reduce the number of probable false positive transcripts and other 

factors which could perturb quantification. Good correlation of quantification of AS using 127 

AS events in 62 genes was observed between Salmon/AtRTD2 data and HR RT-PCR. 

However, for genes with transcripts which have variation in the lengths of their  5’ and 3’ 

untranslated regions (UTRs), quantification of transcript isoforms was often inaccurate. To 

reduce effects of this variation on the accuracy of quantification, we tested different 

modifications of AtRTD2 specifically for their ability to quantify AS accurately. As a result, we 

provide AtRTD2-QUASI (Quantification of Alternatively Spliced Isoforms) for use with 

programmes such as Sailfish, Salmon and Kallisto [40-42] and downstream AS analysis 

programmes such as SUPPA [47] to analyse or re-analyse RNA-seq data. 

 

Results 

Generation of AtRTD2 

The main objective of generating AtRTD2 was to provide a new transcriptome for 

Arabidopsis for gene expression and, in particular, alternative splicing analysis. Well-

annotated genomes and transcriptomes generally improve quantification of transcript 

isoforms, especially using RNA-seq analyses. We therefore wished to produce a reference 

transcript dataset that was as comprehensive and diverse as possible in terms of AS 
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isoforms and contained the highest quality of supported transcripts. The quality of transcripts 

was achieved by applying stringent criteria to minimise the number of false, mis-assembled 

and poorly supported transcripts, and transcript fragments. To provide diversity of 

transcripts, two different extensive datasets of ca. 8.5 billion pairs of reads obtained from 

285 RNA-seq runs of 129 libraries (Methods and Supplemental Methods: Table S1) were 

assembled into transcripts and merged with our previous AtRTD1 [43] and the recently 

released Araport11 transcript set [45, 46] (Figure 1). The two datasets were analysed 

separately in the different research groups and used different mapping programmes (STAR 

and TopHat2) but both used the transcriptome assembly functions in Cufflinks and StringTie 

and similar filtering approaches.  

 To generate the AtRTD2 two different series of quality control filters were applied; the 

first at the transcript assembly stage and the second at the transcriptome merge stage  (see 

Supplemental Figure S1). The assembly functions of Cufflinks and StringTie can generate 

large numbers of false positives [37, 38]. Following mapping of reads to the genome with 

STAR and TopHat2, we identified that both Cufflinks and StringTie generated novel splice 

junctions which were unsupported by reads. Therefore, the resulting transcriptome 

assemblies were initially filtered on the basis of splice junction quality. To this end, we 

combined the splice junction reads mapped by STAR and TopHat2 and kept only those with 

canonical splice sites (GT..AG, GC..AG and AT..AC) which were present in at least ten 

reads in at least three sequencing samples/replicates (Dataset 1) or in three independent 

samples (Dataset 2), generating around 220k unique splice junctions. Applying these splice 

junctions to the transcript assemblies resulted in the removal of 49.0% and 28.3% of the 

transcripts from the initial Cufflinks and StringTie assemblies for Dataset 1 (see 

Supplemental Figure S1a). Similarly, using TopHat2/Cufflinks and TopHat2/StringTie on 

Dataset 2, 33.5% and 33.6% of assembled transcript models contained introns which were 

not supported by splice junction reads and were removed. Therefore, substantial numbers of 

transcripts assembled by both programmes here contained at least one intron with either 

non-canonical splice sites or with insufficient support by splice junction reads. The prediction 

of such “introns” by these programmes highlights the need to quality control assembled 

transcripts prior to quantification of transcript isoforms. Following the splice junction quality 

filter, antisense transcripts that were completely contained within an annotated gene in 

TAIR10 were removed along with transcripts from unknown genes and transcripts with no or 

very low expression (see, for example, Supplemental Figure S1a). The latter were removed 

on the basis that they likely represent mis-assembled transcripts. To this end, RNA-seq read 

data were analysed using Salmon, and only the transcripts which had a TPM >1 in at least 

three sequencing samples were kept. RNA-seq from Dataset 1 generated a transcriptome of 

48,509 transcripts with Cufflinks and 50,942 with StringTie, of which 38,133 transcripts were 
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identical (representing 78.6% and 74.9% of the Cufflinks and StringTie assemblies 

respectively) (see Supplemental Figure S2a). The remaining 10,376 and 12,809 transcripts 

were found in only the Cufflinks and StringTie transcriptomes, respectively (see 

Supplemental Figure S2a). For Dataset 2, the Cufflinks and StringTie assemblies contained 

52,984 and 47,816 transcript models, respectively, of which 37,903 (71.5% for Cufflinks and 

79.3% for StringTie) were identical between the two assemblies (see Supplemental Figure 

S2b).  

To generate the final AtRTD2, the various total transcriptomes were merged together 

in a step-wise manner (Figure 1), and a second set of splicing and redundancy filters was 

applied after each merge (see Supplemental Methods and Supplemental Figure S1b). The 

application of the stringent filters will result in the loss of some transcripts with alternative 

transcription start sites or polyadenylation sites and of some bona fide transcripts which may 

be only expressed at very low levels or in a small number of specific cells. However, they 

have been removed currently for the purpose of generating a robust core dataset for 

transcript quantification and alternative splicing analyses in Arabidopsis. The AtRTD2 

contains 82,190 transcripts where each transcript model represents a unique transcript 

isoform. Finally, to show that the introns in the AtRTD2 transcripts predicted by the splice 

junction reads were bona fide introns, we searched for sequence signatures of plant U2 and 

U12 introns using position weight matrices (PWMs) [14, 48]. The majority of introns 

(>99.8%) define typical plant introns with PWM values at both 5’ and 3’ splice sites of >60 

(74.8% with PWM values >65 at each site) (data not shown). In addition, we identified 41 

putative U12 AT..AC and 589 putative U12 GU..AG introns in 156 and 2,152 transcripts, 

respectively (PWM values of >75 and >65 at 5’ and 3’ splice sites, respectively).  

 

AtRTD2 has greater transcript diversity than AtRTD1  

AtRTD2 was generated from assembly of two RNA-seq datasets (8.5 Bn paired end reads) 

and merger with transcript sets from Marquez et al [14], AtRTD1, TAIR10 and Araport11. 

Redundancy filters removed transcripts with the same intron co-ordinates which were shorter 

than other transcripts. The final AtRTD2 was made up of 33,674 unique transcripts from 

AtRTD1, of which 18,801 came from TAIR10 and 14,872 from Marquez et al. [14]; 7,518 and 

10,460 new transcripts from Datasets 1 and 2, respectively, and 30,538 transcripts from 

Araport11 reflecting the extended 5’ and 3’ UTR sequences generated in Araport11 

compared to TAIR10. The overall number of transcripts in AtRTD2 was increased by ~18k 

transcripts in comparison to AtRTD1 (after removal of transcripts from AtRTD1 which were 

unsupported by splice junction reads – see Methods and Supplemental Methods). AtRTD2 

has transcripts from over 34k genes which include non-coding (nc) RNA genes such as 

microRNA (miRNA), spliceosomal small nuclear RNA, small nucleolar RNA, transfer RNA 
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genes etc. The majority of these genes do not undergo AS and will have a single transcript  

isoform. However, although some miRNA and long ncRNA precursors are alternatively 

spliced [49-51], our main focus is on alternatively spliced protein-coding genes. For the 

27,667 protein-coding genes currently annotated in Araport11, AtRTD2 has a total of 74,197 

transcript isoforms. Thus, there is an average of 2.68 transcripts per protein-coding gene in 

AtRTD2 reflecting higher transcript isoform complexity than found previously for all genes in 

TAIR10 (1.24), Marquez et al. [14] (2.40), and AtRTD1 (2.21) and for protein-coding genes in 

Araport 11 (1.75) (Table 1). The increased transcript complexity in AtRTD2 compared to 

TAIR10 and AtRTD1 is also shown by the increased number of genes with higher numbers 

of transcripts (see Supplemental Figure S3). A total of 13,524 protein-coding genes have at 

least one AS transcript in AtRTD2 (see Supplemental Figure S3) such that 60.23% of the 

22,453 protein-coding, intron-containing genes in Arabidopsis undergo AS. Thus, AtRTD2 

represents a non-redundant transcript dataset highly enriched in AS transcripts.  Although 

different sources of transcripts have been used to generate the AtRTD2, all possible 

developmental stages and environmental conditions are not covered such that it is likely that 

some AS transcripts are missing. Therefore, new releases of AtRTD will be generated as 

other high quality RNA-seq data becomes available. 

  

Quantification of transcripts with Salmon and AtRTD2 

To demonstrate the utility of the AtRTD2, we have used it to quantify transcripts in RNA-seq 

data with the Salmon quantification tool [41]. To validate the quantification of the resulting 

changes in AS transcript ratios, we have compared the RNA-seq data to HR RT-PCR data 

generated using the same RNA samples. Previously, HR RT-PCR [52] proved to be 

instrumental for validating transcript assemblies from RNA-seq data: HR RT-PCR and 

Sanger sequencing of amplicons confirmed >90% of 586 assembled AS transcripts for 256 

genes in the Arabidopsis normalized library RNA-seq [14]. Here, AtRTD2 transcript 

structures were compared to the amplicons in HR RT-PCR and the TPMs of individual 

transcripts used to calculate splicing ratios for each of the AS events or event combinations 

in that region (see Supplemental  Figures S4, S7, S9-11). To directly compare the output 

from Salmon with HR RT-PCR, we analysed a total of 762 data points derived from 127 AS 

events from 62 genes and three biological replicates of the two time-points (T1 and T2, see 

Methods). In some cases, HR RT-PCR detected relatively low abundance AS transcripts 

which were not identified in RNA-seq and, therefore, to make direct comparisons, we 

calculated a splicing ratio by comparing the abundance of individual AS transcripts to that of 

the fully spliced (FS) transcript, which is usually the most abundant transcript and codes for 

the full-length protein. The Pearson’s correlation coefficient was 0.722 and the Spearman's 

rank correlation coefficient was 0.804 for AtRTD2 (Figure 2a). These correlation coefficients 
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were unexpectedly less than those observed with AtRTD1 – 0.905 and 0.907 respectively 

[43]. In general, the ratios using AtRTD2 tended to over-estimate the abundance of AS 

transcripts, and we observed that some genes with transcripts with variation in their 5’ and/or 

3’ UTR lengths tended to show discrepancies between the splicing ratios obtained from HR 

RT-PCR and Salmon/AtRTD2.  

To show that the quality of AS change quantification depends on the completeness 

and diversity of transcript models in a reference transcriptome, we also compared the AS/FS 

splicing ratios obtained with HR RT-PCR to those derived from TPMs generated by 

analysing the same RNA-seq data using Araport11 as the reference transcriptome. We 

predicted that the smaller number of transcripts in Araport11 (ca. 48.4k transcripts) would 

impact transcript quantification and AS. We observed a Pearson’s correlation coefficient of 

0.374 and a Spearman's rank correlation coefficient of 0.565 (Figure 2b). The lower 

correlation with Araport11 reflects the fact that many AS events/transcripts are not present in 

the Araport11 transcriptome. At an individual gene level, the impact of missing transcripts is 

shown for TRFL6 – AT1G72650 (Figure 3) and FRS2 - AT2G32250 (see Supplemental 

Figure S4). In TRFL6, the transcript with retention of intron 4 makes up around 30% of 

expressed transcript isoforms but its absence in Araport11 affects the quantification of 

transcripts and thereby AS (Figure 3). In contrast, in FRS2, Araport11 uniquely provides a 

novel transcript (retention of intron 6) which represents around 25% of the transcript 

expression from this gene. Analysis of RNA-seq data using AtRTD2 minus Araport11 

transcripts shows large changes in the relative abundances of the transcripts and in AS (see 

Supplemental Figure S4). Therefore, it is clear that the more comprehensive a reference 

transcriptome is, the better will be the accuracy of measuring AS isoforms and their 

contribution to gene expression. 

 

Variation in UTR length among transcripts affects accuracy of quantification of isoforms and 

AS events 

To address whether variation in UTRs affected quantification of transcript isoforms, we 

investigated the genes/AS events used in the HR RT-PCR analysis. Such UTR variation 

may be due to genes which have bona fide alternative transcription start sites or 

polyadenylation sites. Alternatively, they may reflect stochastic transcription start variation 

[53], artefacts of reverse transcription or internal priming in cDNA/EST cloning and 

sequencing  or in library preparation for RNA-seq (e.g. in TAIR10; [54]), variation due to in 

vivo or in vitro RNA degradation or differences in transcript assembly. We made the 

assumption that much of the variation in 5’ and 3’ UTR length of transcripts is likely to be due 

to transcripts being incomplete and missing terminal regions (i.e. not full-length) or to local 

variation or heterogeneity in transcription starts [53] or cleavage/polyadenylation sites [54]. 
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We reasoned that modifying transcripts so they had the same start and end co -ordinates 

should improve quantification of isoforms. Therefore, to demonstrate that UTR length 

variation impacted quantification of such genes, we took two approaches: 1) we trimme d 

transcripts from the 5’ and 3’ ends to the co-ordinates of the transcript(s) that covered the 

smallest region of the gene (see Supplemental Figure S5a and S5b) or 2) we padded 

genomic sequence from the ends of the shorter transcripts up to the co-ordinates of the end 

of the transcript(s) that covered the biggest region of the gene (see Supplemental Figure 

S6a and S6b). These modifications were performed genome-wide on AtRTD2 to generate 

AtRTD2-trimmed and AtRTD2-padded, and the RNA-seq data were analysed with Salmon 

and the modified AtRTD2 datasets. Splicing ratios were again calculated and compared to 

HR RT-PCR for the 127 AS transcripts. Both the trimmed and padded versions of AtRTD2 

improved the Spearman’s rank correlation (0.824 and 0.864 respectively) compared to 

AtRTD2 (Figure 2). The Pearson’s correlation also improved with the AtRTD2-padded 

version (0.937) but was greatly reduced for the trimmed version (0.421). Although trimming 

of 5’ and 3’ ends for many genes resulted in a higher correlation with  HR RT-PCR, 

correlations for some genes were markedly different. By examining the effects of trimming in 

detail for these genes, we identified cases where trimming gave rise to new UTR sequence 

length variation affecting quantification (see Supplemental Figure S5c and S5d). For 

example, when the 5’ end of a shorter transcript corresponded to a position in a 5’ UTR 

intron (see Supplemental Figure S5c), trimming to this position often resulted in the longer 

transcripts losing exon sequences and becoming shorter, thereby introducing new UTR 

variation (see Supplemental Figure S5d). The impact on isoform quantification is illustrated 

for AT3G23280 (XBAT35) where trimming to the length of the shortest transcript 

(AT3G23280.s1) removes exons 1 and 2 of the other transcripts, generating new UTR 

variation and causing large changes in the TPM values of the transcripts (see Supplemental 

Figure S7). 

 We found an overall increased correlation of AS/FS ratios from HR RT-PCR with the 

AtRTD2-padded version (Figure 2). To examine whether the effect was due to quantification 

using Salmon, we also analysed our RNA-seq data with Kallisto using both AtRTD2 and 

AtRTD2-padded. We found that Kallisto generated very similar results and also showed an 

improved correlation of HR RT-PCR data with the AtRTD2-padded version (see 

Supplemental Figure S8). We examined the effects of padding of AtRTD2 in detail for some 

genes/transcripts. TPM values were similar using AtRTD2 and AtRTD2-padded for genes 

where transcripts had little or no differences in their 5’ or 3’ ends (for example see 

AT5G05550 (VFP5) - Supplemental Figure S9). For genes with 5’ and 3’ end variation in the 

first and/or last exon, AtRTD2-padded gave more accurate TPM values. This was clearly 

shown by the three-way corroboration of AS/FS values from HR RT-PCR, from TPMs from 
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analysing the RNA-seq data with Salmon and Kallisto using AtRTD2-padded, and from 

manual counting of splice junction reads in a read alignment viewer. For example, there is a 

10-fold difference in the AS/FS splicing ratios of the Alt3’ss event in CRY2 between the HR 

RT-PCR data, Salmon/AtRTD2-padded and read counts when compared to analysis with 

AtRTD2 or Araport11 (Figure 4). Further examples are shown for genes encoding a RING/U-

box superfamily protein and HSF3 (see Supplemental Figures S10 and S11). While trimming 

involving an intron (e.g. in the 5’ UTR) had negative effects on accuracy of transcript 

quantification (Figures S5, S7a and S7b), padding of a shorter transcript which ended within 

an intron did not appear to affect quantification greatly. For example, a transcript ending 

within a 5’ UTR intron is indicative of an intron retention event and padding effectively 

generates the full intron retention (Figures S6c and S6d). This is illustrated by AT4G35800 

which has an intron in the 3’ UTR (intron 13) and a transcript which terminates in the intron. 

Padding generates a transcript with retention of intron 13 which has been shown to occur 

and to be up-regulated in the cold [55] (data not shown).  

To elucidate the effect of 5’ and 3’ UTR variation on accuracy of transcript 

quantification among all of the genes/transcripts analysed by HR RT-PCR, we measured the 

length of padding for each gene by calculating the difference between the 5’ and 3’ ends of 

each transcript and shortest transcript of the gene and then adding the 5’ UTR and 3’ UTR 

variation together (see Supplemental Figure S12a and S12b). We divided these into three 

size classes: 0-100 nt, 101-600 nt and >600 nt and compared the correlation between HR 

RT-PCR and AtRTD2 or AtRTD2-padded (see Supplemental Figure S12c). In particular, we 

observe greatly improved correlation for transcripts where padding has added between 100 

and 600 nt at the 5’ and 3’ ends. When the UTR variation is >600 nt, there is still an 

improvement in the correlation with padding but the underlying correlation with AtRTD2 is 

poor. Thus, variation at the 5’ and 3’ UTRs among transcripts from the same gene can 

greatly affect accuracy of transcript quantification. We therefore suggest that AtRTD2-

padded is a useful tool in quantification of AS transcript isoforms for many genes and 

release it here as AtRTD2-QUASI specifically for use in Quantification of Alternatively 

Spliced Isoforms. AtRTD2-QUASI overcomes problems of local variation and heterogeneity 

in the 5’ and 3’ ends of transcripts. The caveat to its utility is that, because of the assumption 

on which it is based, it may not be appropriate for quantification of transcripts with bona fide 

alternative transcription start sites or functionally different polyadenylation sites.  

 Finally, the AtRTD2-QUASI modified reference set improves the accuracy of isoform 

quantification and thereby differential expression analyses. Why artificially extended shorter 

transcripts delivers this increased accuracy is unclear. Most transcript quantification and 

differential expression programmes have algorithms to correct for read distribution variation 

based on the effective length of transcripts and for bias of read distribution towards the ends 
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of transcripts. The effective length of a transcript is defined as the convolution of fragment 

length distribution and transcript length+1 [29, 30], which essentially represents the positions 

in the transcript that can generate a valid fragment. Its value is equal to the transcript 

length+1 minus the mean fragment length. Given that the mean fragment length is the same 

for an experiment, the effective length correction is a universal shift of length for all 

transcripts. The differences of start and end site of the transcripts, due to incompleteness or 

false extension of the transcripts of a gene, are not accounted for by effective length 

correction. Fragment bias is characterized in two ways [56]: 1) positional bias, which 

describes a local effect that fragments are preferentially located towards either the beginning 

or end of the transcripts, and 2) sequence-specific bias, which is a global effect where some 

nucleotides at the beginning or end of transcripts affect their chances of being selected for 

sequencing. The second aspect is unlikely to be affected by the different length of 5’ and 3’  

UTRs in the transcript annotations. However the positional bias is a statistical measure that 

is estimated based on all transcripts, or a few transcript bins segregated by transcript length 

[56]. For isoforms with different lengths of 3’ or 5’ UTRs, the positional bias at the same 

corresponding genomic location within the isoforms, which should be the same, could be 

characterised and quantified very differently such that, again, differences in 3’ and 5’ UTRs 

due to incompleteness or false extension are not well accounted for by the positional bias 

corrections. We therefore tested these functions to see their effect on the improved accuracy 

obtained with padding by analysing the RNA-seq data using Salmon with the 

EffectiveLengthCorrection function turned off and using Kallisto with the read bias correction 

turned off using both AtRTD2 and AtRTD2-QUASI as references. The values of TPMs and of 

AS/FS splicing ratios were similar to the inaccurate results obtained with AtRTD2 when 

these corrections in operation (see Figure 4 and Supplemental Figures S10 and S11). This 

suggests that the phenomenon that we have observed has a different basis. Examination of 

the transcript structures in the examples used here identifies three features which may be 

responsible for the less accurate quantification of transcripts when transcripts show 5’ and/or 

3’ UTR variation: longer transcripts containing unique sequences, the different degrees of 

overlap among multiple transcripts or the inconsistency between read coverage from the 

experimental data and the longer transcripts from the AtRTD (see Supplemental Figure 

S13).   

 

Translation of AtRTD2 for proteomic analyses 

An important question in alternative splicing is to what extent it generates proteome 

complexity. To date, this has been difficult to assess because of our relatively limited 

knowledge of AS isoforms. AtRTD2 contains a diverse set of supported transcripts. We 

therefore characterised the coding capacity of the AtRTD2 transcripts. Instead of translating 
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the transcripts in all six reading frames to derive peptide sequences,  we used an algorithm 

which fixed the translation start site AUG for each gene on the basis of the annotated 

reference gene model in TAIR10 such that translations terminated at the first stop codon 

from the AUG. This process thereby takes into account the real coding capacity of different 

transcript isoforms such as transcripts containing premature termination codons (PTCs) or 

changes of open reading frame (ORF) caused by AS [57]. In silico trypsin digestions 

generated peptides from each transcript and identified 399,701 peptides of which 200,867 

are unique to specific AS isoforms.  

 

Discussion 

In this paper we report a new Arabidopsis thaliana Reference Transcript Dataset (AtRTD2) 

for use in quantification of individual transcript abundances using the lightweight alignment 

programmes such as Salmon and Kallisto. The new AtRTD2 release contains around 82k 

non-redundant transcript isoforms where each transcript from a gene represents a different 

alternatively spliced transcript with at least one different splic ing event. In addition to 

increased diversity of isoforms, stringent criteria have been applied to support the AtRTD2 

transcripts. The AtRTD2 resource contains a significantly higher number of transcript 

isoforms than other current collections such as TAIR10 and Araport11. Accurate 

quantification of transcripts is essential for downstream differential expression analyses and 

depends on the diversity, quality and completeness of the reference transcripts (missing and 

mis-assembled can severely affect quantification) and thereby the transcriptome. Here, we 

have shown the drastic effects on quantification of missing transcripts both at the individual 

gene and transcriptome reference levels. Although AtRTD2 is likely to still be incomplete, 

further short and long read data can be continually incorporated to eventually generate a full 

A. thaliana transcriptome. Finally, extensive validation of transcripts and their abundance is 

important in assessing the quality of RNA-seq data and its analysis. Previously, we 

developed HR RT-PCR for analysis of changes in alternative splicing [5, 19, 24, 52, 58, 59] 

and have used it to validate transcript assemblies from RNA-seq data [14]. Here, we have 

performed extensive validation with HR RT-PCR and showed good correlation between 

splicing ratios calculated from TPMs from RNA-seq data analysed with both Salmon and 

Kallisto and the HR RT-PCR. However, this detailed analysis also identified inaccurate 

quantification for genes with variation in the lengths of their 5’ and 3’ UTRs and we have, 

therefore, generated another resource, AtRTD2-QUASI, which greatly improves the 

accuracy of quantification for many genes (see below).  

RNA-seq is now widely used in transcriptome/expression analyses in plants to 

examine a wide range of developmental and environmental questions. In Arabidopsis, most 

RNA-seq data has been analysed with the TopHat/Cufflinks/Cuffdiff pipeline using TAIR9 or 
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TAIR10 as references, despite the knowledge that these datasets are relatively poor in their 

coverage of AS transcripts. In addition, recent comparisons of different assembly and 

quantification programmes have pointed to the high degree of inaccuracy in transcript 

assembly of the most widely used programmes [37, 38]. There is wide variation in the 

performance of different computational methods for detection of plant AS in RNA-seq data, 

and the quality of annotation can have a major impact [60]. RNA-seq analysis using the 

combination of the AtRTD2 transcriptome with Salmon and extensive validation has allowed 

us to identify a major issue in the accuracy of quantification due to transcripts from the same 

gene having different lengths of 5’ and/or 3’ UTRs and that correction functions within 

quantification programmes do not appear to deal effectively with this problem. Thus, current 

methods of RNA-seq analysis in Arabidopsis are likely to be inaccurate at a number of 

different levels which represents a major problem for plant RNA-seq given that Arabidopsis 

has the most advanced genome and transcriptome annotation. 

The effects of transcript length variation (edge bias) have been observed for some 

human transcripts in quantification of AS [47]. For example, when different transcripts of the 

same gene contain or do not contain UTR sequences, reads from the UTRs are 

disproportionately assigned to the transcript containing the UTR sequence and therefore can 

greatly affect the accuracy of quantification [47]. Here, we observe an opposite effect where 

variation in 5’ or 3’ UTRs is often associated with few or no reads and accuracy of 

quantification of isoforms is affected. There are a number of possible sources of such UTR 

variation. Firstly, some will reflect the use of bona fide alternative transcription start sites 

(TSS). Methods such as 5’ RACE have demonstrated alternative TSS for a small number of 

genes but genome-wide information is not extensive. Transcription can be stochastic, often 

starting in a region of the promoter with no one single nucleotide being the transcription start 

site such that transcripts may already have variation in the 5’ UTR [53]. Variation in the 3’ 

UTR can be generated by alternative polyadenylation. In Arabidopsis, genome-wide 

information is available from direct RNA sequencing and ca. 75% of genes have more than 

one polyadenylation site but most reads were associated with a preferred site  [54]. Indeed, 

variation in polyA sites is often associated with multiple overlapping polyA signals perhaps 

ensuring termination in the compact genome [54]. Legacy transcripts, such as those in 

TAIR10, are derived from cDNA/EST cloning and sequencing and some contain no 

annotated UTRs, beginning with the translation start site and ending with the stop codon , 

although much of this latter variation has been re-annotated [54] and incorporated in the 

Araport11 transcripts. Variation of a few to tens of nucleotides may arise from artefacts of 

reverse transcription, priming of oligo-dT to internal sequences such that full-length cDNAs 

are not produced or different protocols of cDNA library preparation prior to RNA-seq. Finally, 

variation may be due to in vivo or in vitro RNA degradation. 
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As much of the variation in UTRs is likely to be due to uncertainty of the 5’ and 3’ 

ends of a transcript and as the discrepancy in quantification using AtRTD2 suggests that 

many of the most widely used RNA-seq analysis programmes are unable to take UTR length 

variation into consideration effectively, we have also developed AtRTD2-QUASI for accurate 

quantification of AS isoforms. We propose that RNA-seq data is analysed with Salmon or 

Kallisto using AtRTD2-QUASI because quantification data agrees well with data obtained 

experimentally (HR RT-PCR) and data derived from manually counting splice junction reads. 

The three-way corroboration of results suggests that AtRTD2-QUASI is a practical solution 

to obtaining good quantitative data on transcript isoforms. Although AtRTD2-QUASI 

improves the quantification markedly for the majority of genes, particular gene arrangements 

may not be reported on accurately and data should be treated with caution. For example, if 

quantification of genes with different bona fide transcription start sites and with different 

polyadenylation sites is performed by Salmon/Kallisto with AtRTD2-QUASI, experimental 

data will be required to decide on which output to use or  whether either is appropriate. 

Finally, we have translated the >82k unique transcripts from the authentic 

translational start site to reflect the most realistic open reading frames in different AS 

isoforms (e.g. AS events that are in frame, change frame or generate PTCs). This approach 

differs from the method of translating transcript isoforms in TAIR, based on the longest ORF 

which often results in the depiction of aberrant ORFs beginning at an AUG downstream of 

the authentic translation start site, instead of depicting the presence of PTC(s) [57]. Fixing 

the translational start site provides the means to identify peptides which are unique to 

specific AS isoforms which will benefit proteomic analyses.  

 

Conclusions 

In this study we have developed a new Reference Transcript Dataset for A. thaliana 

(AtRTD2) for quantification of transcripts and changes in alternative splicing. We have 

demonstrated the impact that incomplete transcriptomes can have on quantification and that, 

therefore, transcriptomes need to be constantly refined with new data. Our analysis has also 

demonstrated the value of extensive experimental validation of RNA-seq data. In addition, 

we found that variation in the lengths of 5’ and 3’ UTRs of transcripts from the same genes 

perturbed accurate transcript quantification, and that current programmes appear unable to 

correct for such variation. This is likely to impact RNA-seq analyses of all organisms. We 

have generated AtRTD2-QUASI as a practical solution for quantifying transcript splice 

isoforms in Arabidopsis. 
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Methods 

Plant material for RNA-seq and datasets 

Two different extensive RNA-seq datasets were generated for a range of diverse genetic 

lines and treatments in the Arabidopsis thaliana Col-0 background (see Supplemental 

Methods: Table S1). These two combined datasets included 285 RNA-seq runs obtained 

from 129 libraries. Dataset 1 was from samples of a time-course of adult Arabidopsis plants 

(5 weeks old) transferred from 20°C to 4°C (unpublished data). Plants were sampled every 

three hours for the 24 h period at 20°C directly before transfer to 4°C, and for the first and 

fourth days following transfer (26 time-points in 78 libraries - a total of 234 total 

biological/sequencing repeats) (see Supplemental Methods: Table S1). Dataset 2 consisted 

of RNA-seq data from 51 libraries generated from samples of over-expression and mutant 

lines, some of which were treated with flagellin 22 (flg22) or mock-treated with water 

(unpublished data) (see Supplemental Methods: Table S1). The genetic lines were over-

expression lines and knockout mutants of the serine-arginine-rich (SR) splicing factor genes, 

At-RS31 (AT3G61860) and At-RS2Z33 (AT2G37340); the mutant of the DNA cytosine 

methyltransferase MET-1 (AT5G49160), met1-3; and mutants of three MAP kinase genes 

(AT3G45640, AT4G01370 and AT2G43790), mpk3, mpk4 and mpk6. The latter were treated 

with flg22 or mock-treated, and wild type Col-0 controls were included for all of the above. 

Dataset 2 also included transcripts from TAIR10 and from RNA-seq from a normalised 

library of wild-type flowers and 10 day old seedlings [14] used in the construction of AtRTD1 

[43]. The total number of 100 bp paired-end reads generated in the two datasets of RNA-seq 

was 4.76 and 3.73 Bn pairs of reads, respectively, such that a total of ca. 8.5 Bn pairs of 

reads (17 Bn paired-end reads) entered the assembly pipeline.  

 

Generation of AtRTD2 

A detailed description of the transcript assembly and parameters used, merging with the 

original AtRTD1 [43] and Araport11 is given in Supplemental Methods and shown 

schematically in Figure 1. Briefly, RNA-seq reads from Datasets 1 and 2 were mapped to the 

genome using STAR and TopHat2 respectively, and transcripts for both datasets were 

assembled with both Cufflinks and StringTie. Transcripts supported by non-canonical 

junctions or low abundance splice junction reads were removed. Transcripts from unknown 

genes, antisense transcripts and low abundance transcripts were also filtered out. The 

resulting Cufflinks and StringTie transcriptome assemblies were merged and redundant 

transcripts were removed. AtRTD1 was re-assessed using the splice junction sequence set 

generated here and 10,397 transcripts deriving from Marquez et al. [14] were removed. The 

modified AtRTD1 was then merged with the Dataset 1 transcriptome and then with that of 

Dataset 2, with a series of quality filters being applied at each step (see Supplemental 
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Methods). Finally, the resulting transcriptome was merged with Araport11 transcript 

assemblies [45, 46] and filtered again to give the new Arabidopsis transcriptome, AtRTD2. 

 

Experimental validation of the quantification of splicing ratios by High Resolution RT-PCR 

To validate the quantification of splicing ratios from transcript isoforms, HR RT-PCR [52] was 

performed on RNA from two different time-points (each with three biological repeats): dawn 

at 20°C (T1) and in the middle of the dark period four days after transfer to the low 

temperature (T2). T1 and T2 are from the same plant material as used for RNA-seq of 

Dataset 1.  A total of 762 data points (127 AS events from 62 genes and three biological 

replicates of the two time-points) were analysed by HR RT-PCR using gene-specific primers 

(Table S2). Primer pairs covering the AS events in these genes, where the upstream primer 

was end-labelled with a fluorescent tag, were used in RT-PCR reactions with 24 cycles of 

PCR as described previously [5, 14, 24, 52] and separated on an ABI 3730 automatic DNA 

sequencing machine. The abundance of RT-PCR products was analysed with GeneMapper 

software and splicing ratios were calculated from peak areas of each product. We analysed 

the RNA-seq data from the same regions of these 62 genes and used the transcripts per 

million (TPM) values of the transcripts generated by Salmon on the RNA-seq data to 

calculate splicing ratios. For comparison with HR RT-PCR, Spearman and Pearson 

correlations were computed on splicing ratios. 

 

Modification of AtRTD2 for quantification of transcript abundances and generation of 

AtRTD2-QUASI 

The AtRTD2 was modified to examine the effects of transcript 5’ and/or 3’ end length 

variation in genes on isoform quantification. Transcripts were trimmed at the 5’ end and 3’ 

ends. Trimming was to the end co-ordinates of the transcript that covered the shortest region 

of the gene and was achieved using in-house scripts (see Supplemental Figure S5). 

Alternatively, transcripts in AtRTD2 were padded to give the transcripts of each gene the 

same 5’ and 3’ ends. Shorter transcripts were extended to the co-ordinates of the transcript 

that covered the longest region on the gene by adding the cognate genomic sequence by in -

house scripts (see Supplemental Figure S6). The AtRTD2-padded version was called 

AtRTD2-QUASI.  

 

Translation of AtRTD2 and new peptide database 

The main consequences of AS are either to alter the protein-coding sequence to generate 

protein variants or introduce premature stop codons/long faux 3’UTRs which can target 

transcripts to the NMD pathway. In order to assess the consequences of an AS event(s),  

translation of the transcript from the authentic translation start site is required [57]. We 
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therefore developed an algorithm which defined the position of the translation start AUG in 

the transcripts of a gene (usually that of the TAIR reference gene model) and used this 

translation start site as the reference point for translation of all of the transcripts. This 

generated realistic translations which were used in in silico trypsin digestions to generate a 

peptide database consisting of nearly 400k peptides of which half could be assigned to 

specific AS isoforms. 

 

Availability of data and materials 

The datasets supporting the conclusions of this article are available in the James Hutton 

Institute repository, [http://ics.hutton.ac.uk/atRTD/]. Datasets are: AtRTD2, AtRTD2-QUASI 

and can now be used to analyse or re-analyse Arabidopsis RNA-seq data. 

 

Supplemental Files 

Supplemental Methods:  File contains supplemental methods.  

Supplemental Figures: File contains supplemental figures.  
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Table 1. Number of Arabidopsis thaliana genes and transcripts in different datasets. Number 

of transcripts and the average number of transcripts per gene are based on the total number 

of genes (TAIR10, AtRTD1 and AtRTD2) or the total number of genes detected [14] or on 

protein-coding genes (Araport11 and AtRTD2). 

 Number 

of Genes 

Number of 

Transcripts 

Average Number 

of Transcripts  

per Gene 

All genes    

TAIR10 33,602 41,671a 1.24 

Marquez et al (2012) 23,905 57,408 2.40 

AtRTD1  33,625 74,216b 2.21 

AtRTD2 34,212 82,190 2.40 

Protein-coding genes    

Araport11  27,667 48,389 1.75 

AtRTD2 27,667 74,194 2.68 

a contains redundant transcripts which differ only by lengths of 5’ and 3’ UTRs 

b merged, non-redundant transcripts 
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Figure 1. Construction of AtRTD2. a) The original AtRTD1 was generated from the merge 

of transcripts from TAIR 10 and from Marquez et al [14] and filtered to remove redundancy 

[43]. Using the splice junction data from the assemblies in b) and c), probable mis-

assembled transcripts were removed; b) the dataset 1 RNA seq reads were mapped with 

STAR and then assembled using Cufflinks and StringTie. The assemblies were merged and 

filtered to give a transcriptome; c) the Dataset 2 RNA-seq reads were mapped with TopHat2, 

assembled, merged and filtered as above; d) Araport11 transcripts were then merged. 

Following each transcriptome merge, further filters (e.g. to remove redundancy) were applied 

(see Supplemental Figure 1); e) this generated the final AtRTD2.  
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Figure 2.  Correlation of splicing ratios calculated from the RNA-seq data and the High 

Resolution Reverse Transcription PCR (HR RT-PCR). Splicing ratios for 127 alternative 

splicing events from 62 Arabidopsis thaliana genes (three biological replicates of the time 

points T1 and T2) generated 762 data points in total. The splicing ratio of individual AS 

transcripts to the cognate fully spliced (FS) transcript was calculated from TPMs generated 

by Salmon and a) AtRTD2, b) Araport11, c) AtRTD2-trimmed, and d) AtRTD2-padded and 

compared to the ratio from HR RT-PCR. These AS/FS splicing ratios were calculated in this 

way to allow direct comparison with RNA-seq generated TPMs because for some genes, HR 

RT-PCR detected usually low level products representing AS events which were not present 

in the AtRTD2,. Correlation coefficients are given for each plot. Note that for clarity of the 

figures, 3, 7, 9 and 5 data-points with values that lie substantially outside the range of the 

graphs are not included in a)-d), respectively, but are included in the correlations. 
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Figure 3. Missing reference transcripts affect transcript and AS quantification. a) 

AT1G72650 (TRFL6) has four different alternative splicing events (an Alt5’ss in exon 4; two 

Alt3’ss in exons 7 and 8, and intron retention of intron 4 (I4R) contained in seven transcripts. 

HR RT-PCR across exons 4 and 5 detects the fully spliced product, Alt5’ss and I4R (red 

box). Blue arrow – direction of transcription. b) AS splicing ratios calculated from TPMs of all 

seven transcripts from analysis of RNA-seq data (T1) using Araport11, AtRTD2 and 

AtRTD2-padded (see main text) as reference transcriptomes and compared to HR RT-PCR 

(T1 of dataset 1). The absence of a transcript with I4R in Araport11 (ID32 in AtRTD2 – green 

box) affects the quantification of transcripts and AS.  
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Figure 4. Variation in UTR lengths affects transcript and AS quantification.  a) 

AT1G04400 (CRY2; CRYPTOCHROME 2) has two different AS events (an Alt3’ss exon 2 

and Alt3’ss exon 4). The difference between shortest (ID6) and longest (P1) transcripts is 

237 and 43 nt at the 5’ UTR and 3’ UTR, respectively. b) Read alignment showing the 

relatively low level of Alt3’ss splice junction reads. c) Average TPMs of the 3 transcripts 

using Salmon and Kallisto and the AtRTD2 and AtRTD2-padded; d) Splicing ratios of the 

Alt3’ss in exon 2 to FS (fully spliced) transcripts with HR RT-PCR, manual counting of splice 

junction reads in this region using a read alignment viewer [61], Salmon and Kallisto with 

AtRTD2-padded and AtRTD2, Salmon and Kallisto with uncorrected functions with AtRTD2, 

and Salmon with Araport11.  
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