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ABSTRACT 

Whole Exome Sequencing (WES) is a powerful clinical diagnostic tool for discovering the 

genetic basis of many diseases. A major shortcoming of WES is uneven coverage of sequence 

reads over the exome targets contributing to many low coverage regions, which hinders accurate 

variant calling. In this study, we devised two novel metrics, Cohort Coverage Sparseness (CCS) 

and Unevenness (UE) Scores for a detailed assessment of the distribution of coverage of 

sequence reads. Employing these metrics we revealed non-uniformity of coverage and low 

coverage regions in the WES data generated by three different platforms. This non-uniformity of 

coverage is both local (coverage of a given exon across different platforms) and global (coverage 

of all exons across the genome in the given platform). The low coverage regions encompassing 

functionally important genes were often associated with high GC content, repeat elements and 

segmental duplications. While a majority of the problems associated with WES are due to the 

limitations of the capture methods, further refinements in WES technologies have the potential to 

enhance its clinical applications.   
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INTRODUCTION 

Whole Exome Sequencing (WES) is a high throughput genomic technology that sequences 

coding regions of the genome selectively captured by target enrichment strategies1-3. Target 

enrichment is achieved by oligonucleotide probes that selectively hybridize and capture the 

entire coding region of the genome, referred to as the exome1,3,4. Since the exome represents 

approximately two percent of the genome, WES technology provides high coverage at a lower 

cost and in a shorter time than Whole Genome Sequencing (WGS) technology5. From its first 

successful application in discovering the candidate gene associated with Miller syndrome6, WES 

has been used to study a number of Mendelian7 and complex disorders8-11. WES is used in the 

1000 Genomes Project, the Exome Aggregation Consortium (ExAC), and the NHLBI GO exome 

sequencing projects to catalog variants in the population and to identify rare variants associated 

with diseases12-16. Since 2011, WES has also been routinely offered as a diagnostic tool in 

clinical genetics laboratories17-19. A recent study reported that in a large cohort of patients 

referred by a physician to receive genetic testing, 25% of patients received a genetic diagnosis, 

including diseases such as neurodevelopmental disorders, cancer, cardiovascular disease, and 

immune-related diseases20.  

 Several target enrichment strategies to capture exomes are available, including the widely 

used Agilent SureSelect Human All Exon capture kit, Roche NimbleGen SeqCap EZ Exome 

capture system, and the Illumina TruSeq Exome Enrichment kit. While the basic sample 

preparation protocols are similar among these platforms, major differences lie in the design of 

the oligonucleotide probes, including selection of target genomic regions, sequence features and 

lengths of probes, and the exome capture mechanisms21-24. This may lead to some differences in 

genes captured on each chromosome by the different platforms. In spite of its extensive use, the 
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analysis of WES data still presents considerable challenges. There are significant concerns 

regarding unevenness of sequence read coverage, which affects downstream analysis. For 

example, even in samples with high average read depth (>75X), some regions are captured 

poorly (with coverage as low as 10X), potentially resulting in missed variant calls25. Similar 

issues with uneven coverage can also affect studies with target sequencing strategies, where 

genomic regions with low read coverage (5X) has decreased sensitivity for detecting variants 

than regions with higher coverage (20X)3,4,26.  Studies examining the overall quality of WES data 

have focused on comparing the performance of a single DNA sample or a small number (n≤6) of 

samples in different capture technologies22,23,27. While these studies have focused on the GC 

content and overall coverage differences between different platforms, the intra-platform variation 

in sequence coverage, characteristics of the low-coverage regions, and variation of coverage 

across the exome have not been quantitatively evaluated. We undertook a comprehensive 

assessment of sequence coverage in the human exome, and examined the variance in read depth 

both between samples and across the exome. We evaluated the sequence content and 

characteristics of the genomic regions contributing to systematic biases in exome sequencing 

using WES data from a total of 169 individuals obtained from three different platforms. Our 

study provides quantitative metrics for systematic analysis of different parameters that could 

potentially impact WES analysis, and confirms the association between low coverage regions 

and occurrence of duplicated sequences and high GC content.  
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RESULTS 

To assess the coverage distribution of reads, we selected 169 out of 184 exome sequence samples 

obtained from NimbleGen, Agilent and Illumina TruSeq platforms, with an average target 

coverage of at least 75X (Figure S1, Table S1). The coverage at specific positions in the exons 

varied among different samples for each of the three platforms tested. For example, the average 

read depth of exon 16 of TP53BP2 in two samples sequenced with NimbleGen at a similar 

average coverage (92X) was 48X and 92X, respectively. This inconsistency in coverage 

distribution resulted in a range of 10X-500X read depth at several regions in the exome when 

multiple samples were run on the same platform. Such regions of highly variable read coverage 

mapping within disease-associated genes can affect the accuracy of current variant calling 

algorithms in genetic studies. To characterize the distribution of sequence reads along the exome, 

we developed two metrics, Cohort Coverage Sparseness (CCS) and Unevenness (UE) scores. The 

CCS score provides an assessment of coverage of all exons across the genome (global) in the 

given platform, while the UE score provides an assessment of coverage of a given exon (local) 

across different platforms. 

 

Coverage deficiencies determined by CCS Score 

Read coverage of a position in the genome is considered deficient if the number of reads mapped 

to that position is less than 10 reads21. The CCS score is defined as the percentage of low 

coverage (<10X) bases within a given exon in multiple WES samples. The CCS score is 

estimated by first calculating the read depth for each base position in a given exon, and then 

determining the median percentage of samples with low coverage at that region (see Methods). 

The resulting CCS score may vary between 0 and 1, with high CCS scores indicating low 
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sequence coverage. We plotted CCS scores for all genes against the chromosome positions in a 

modified Manhattan plot (Figure 1). As shown in the figure, a majority of genes (>88%) were 

clustered in the low CCS score region (<0.2), indicating good coverage in all three platforms 

(Figure 1A-C). The remaining genes with CCS scores >0.2, which contain low coverage 

regions, were scattered throughout the plot. In those low coverage genes, CCS score >0.5 

indicates nearly half of the regions have less than 10X read depth. The distribution of CCS 

scores is skewed to the right when plotted as a histogram (Figure S2), consistent with the pattern 

shown in Figure 1. Further, the data generated from Illumina TruSeq have the lowest percentage 

of low coverage genes (~7%), compared with data generated by the capture kits from NimbleGen 

(~10%) and Agilent (~11%), as shown in Table 1. The differences in these percentages could be 

due to differences in the design of probes that target the exome in these platforms23. Table S2 

lists all autosomal low coverage genes identified in the three WES platforms compared to a 

WGS dataset. 

 The low coverage regions (CCS>0.2) varied significantly across all chromosomes in the 

three platforms analyzed (Table S3; chi-square test p-value <2.2×10-16). Chromosomes 6 and 19 

have a higher proportion of low coverage genes compared to other chromosomes. A low 

coverage gene cluster on chromosome 6 (cytobands 6p21.33 and 6p21.32) corresponded to the 

genes encoding human leukocyte antigen, which are known to be polymorphic and have alleles 

showing high sequence identity28,29. Similarly, chromosome 19 is known to carry a high 

proportion of tandem gene families, repeat sequences, and segmental duplications (SD)30. These 

sequence features potentially affect accurate mapping of reads, leading to low coverage regions. 

 

Coverage non-uniformity determined by UE Score  
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The UE score provides a measure of non-uniformity calculated after smoothing the coverage 

distribution curves and identifying peaks and troughs along the curve (Figure 2, see Methods). It 

is calculated based on the number and structural features (height, width, base) of the coverage 

peaks. The UE score increases with an increase in the number and relative height of peaks within 

a given exon. For regions with uniformly distributed coverage, the UE score is 1; for regions with 

uneven coverage, the UE score is greater than 1. To illustrate how UE score varies among 

different platforms, we chose the last coding exon of ZNF484, which had high (CCS scores < 

0.01) but variable (UE score 72.2-141.9) coverage across the different platforms, indicating 

inconsistent coverage (Figure 3).  

 We also observed a positive association between exon length and the UE score in all three 

platforms as shown in the scatter plot (Figure 4).  The Pearson correlation coefficient for all 

platforms was ≥0.7 (NimbleGen, 0.80, Agilent, 0.71; TruSeq, 0.70). The UE score was 

significantly different for longer exons (>400 bp) among the three platforms tested (Friedman 

test, p-value <2.2×10-16). When the coverage distribution of the neighboring exons was 

examined, we found inconsistencies in the rank order of read coverage among samples tested on 

the same platform (Figure S3). Since most of the current methods for calling copy number 

variations (CNVs) are based on detecting continuous depletion or enrichment after normalizing 

for coverage of adjacent exons31-33, this lack of consistency of rank orders between closely 

occurring exons could affect CNV calling from exon read depths. 

 

Low coverage regions are enriched within repeat elements 

Since chromosomes 6 and 19 contain repeat elements and clustered gene families that accounted 

for specific regions showing low coverage, we checked if these sequence features globally 
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correspond with the occurrence of low coverage. In one study, SD regions from the Agilent WES 

dataset and the Segmental Duplication Database (http://humanparalogy.gs.washington.edu) were 

cross-referenced with the low coverage genes obtained from our analysis, and examined for the 

percentage of reads that mapped unambiguously to off-target regions. The percentage of off-

target reads with multiple hits in SD regions (50%) was about double that of those found in 

unique regions (26%). These results suggest that the mapping method may also contribute to the 

missing coverage.   

 Because SD regions share similar features with repeat elements, we next tested if low 

coverage regions were associated with underlying repeat sequences. We first examined the 358 

bp exon 1 of MAST4, which contains a 22 bp low complexity repeat element predicted by 

RepeatMasker (http://www.repeatmasker.org)34, in four samples sequenced with the NimbleGen 

platform with highly variable overall coverage (75X-200X). As shown in Figure 5, the coverage 

was high (30X) for sequence base positions 1-200 in samples with high average coverage. The 

read depth at each nucleotide in this region remains high. In contrast, the coverage falls 

dramatically (to <10X) between base positions 200-358, with corresponding low read depth at 

each nucleotide in this region. The low coverage region is greater than a typical exome capture 

probe size (50-150 bp), indicating that influences of a repeat element can extend beyond its 

location. This shows that even when using a platform with high variability in coverage across 

samples, some genomic regions associated with repeat sequences can consistently show low 

coverage.  

 To test for a global association between the occurrence of repeat elements and low 

coverage, we examined all the troughs (from UE score calculations) in coverage in the 169 

samples studied. Repeat elements predicted by RepeatMasker coincided with extremely low 
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troughs (median coverage <10X) for a majority of the exons (60% to 69% of exons tested on the 

three platforms), especially for exons >200 bp in size. For example, as shown in Figure S4, 

multiple repeat elements occur in the extremely low trough region (positions 1 to 400 bp) in the 

last coding exon of CASZ1. This suggests that coverage troughs are highly associated with repeat 

sequences. However, we also find that several troughs contain repeat elements that are not 

annotated by RepeatMasker when default parameters are used (Figure S5). 

 

Negative association between GC content and sequence coverage 

Since GC content is one of the major factors contributing to low coverage in WES data23,35-37, we 

investigated whether there is an association between GC content and CCS score. We used a 

density curve plot and a modified density plot, which visualizes the distribution of GC content of 

genes with the corresponding CCS scores (Figure 6, Figure S6). Based on GC content, we were 

able to clearly distinguish exons with CCS score <0.2 from exons with CCS score >0.2. Thus, 

high GC content correlated with high CCS scores, and therefore with lower coverage regions. 

Exons with good sequence coverage (CCS<0.2) were clustered in the intermediate GC content 

regions (between 30 -70%). In contrast, a higher density of low coverage exons (CCS>0.2) was 

observed in regions with relatively high GC content (>70%). Very few good coverage exons 

were present in regions with less than 20% or more than 80% GC content (Table S4). However, 

some poorly covered exons (CCS>0.8) were found in the intermediate GC content regions 

(<70% and > 30%), suggesting that there may be other factors contributing to the low coverage 

within these regions.  

 

Low coverage regions contain functionally relevant genes  



 
 

10 

To examine whether low coverage regions had functional significance, we conducted Functional 

Disease Ontology Annotations (FunDO)38 of 832 low coverage genes that were common to all 

three platforms (Figure 7A). Result showed enrichment of genes implicated in leukemia, 

psoriasis, and heart failure (Figure 7B). We also examined the coverage of genes that American 

College of Medical Genetics and Genomics (ACMG) recommends for pathogenic variant 

discovery and clinical reporting39,40. Of the 59 genes examined, six genes, including, KCNH2, 

KCNQ1, SDHD, TNNI3, VHL, and WT1, mapped within low coverage regions in one or more 

samples (with average coverage >75X) (Figure S7). These results suggest that low coverage 

regions within functionally important genes could affect variant discovery and subsequent 

clinical diagnosis.    

 

Low coverage is more of an issue for WES than WGS based platforms 

We examined differences in the exon coverage between the WES and WGS datasets to test 

whether mapping issues were common to both platforms. We examined the CCS scores for all 

genes (Figure 1D), and the UE scores (Figure 4) and GC content (Figure 6D) for all exons. For 

WGS datasets with an average coverage of about 60X (Table S2), only 15 genes with high CCS 

scores were observed in the modified Manhattan plot (Figure 1D). In contrast, for WES 

platforms with an average coverage of >75X, over 1,000 genes with high CCS scores were 

observed (Figure 1A-C). Similarly, the UE score for all exons in the WGS analysis was 

significantly lower compared to the WES analysis (Friedman’s test, p<2.2×10-16). As shown in 

Figure 4, the UE score increased slightly with increased size of the exon. To examine how GC 

content affects coverage in the WGS dataset, we generated probability density curves for GC 

content for different gene groups (Figure 6). In all the three WES platforms, we found a 
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dramatic shift in the density plots for high coverage genes compared to low coverage genes 

based on GC content. In comparison, for the WGS platform, the shift in GC content between the 

exons with high and low CCS scores was minimal. Thus, GC content appears to have less 

influence on sequence coverage in WGS than WES analysis. These results suggest that problems 

of low coverage are specific to WES platforms, and these limitations could be contributed by 

technological differences (such as capture bias) in WES 41-43. Therefore, the methods developed 

for WGS analysis require further modifications before application to WES platforms. 

 

DISCUSSION 

WES is a powerful clinical diagnostic tool for identifying disease-associated variants in 

patients44,45. Since most known Mendelian disorders are associated with mutations in the coding 

regions, focusing on sequencing exomes rather than whole genomes is efficient in terms of time, 

expense and coverage5. Recent studies have successfully used WES technology to identify 

variants that strongly correlate with disease phenotypes19,20,46,47. However, high-resolution 

examination of different WES datasets shows uneven coverage along the length of exons, which 

could cause possible problems in variant calling analysis. This affects identification of de novo 

variations that may be clinically important.  In this study, we systematically examined different 

parameters that could potentially impact WES analysis and identified key issues associated with 

sequence architecture contributing to the low coverage. 

 We analyzed WES data captured by three major platforms: NimbleGen CapSeq V2, 

Agilent SureSelect V2 and Illumina TruSeq. All three platforms are based on similar target 

enrichment protocols and cover >95% of RefSeq48 coding region with >88% low CCS scores. 

These platforms differ from one another in the layout and length of probes. Most importantly, 
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while NimbleGen uses overlapping probes, Agilent uses tiling probes, and Illumina uses gapped 

probes21-24,37. This difference in probe design contributes towards inconsistency in the coverage, 

creating systematic biases and preventing the combining of datasets from different platforms for 

SNV and CNV detection21-24,37. This is a major concern, especially with large cohort studies 

involving multiple centers using different platforms. While the heterogeneity of the cohorts and 

the differences in the number of samples in each cohort could potentially affect our conclusions 

on the evaluation of the WES platforms (for example, cancer samples in the TruSeq data versus 

samples from the developmental disorder cohort in the NimbleGen data), we find a common set 

of genes that are affected by low coverage irrespective of differences in protocols, tissue 

samples, and sequencing and platform biases. In fact, 832 genes are covered at low depth in all 

the three platforms (Figure 7).   

 Even in the data generated by a single platform, the coverage distribution varied among 

different exons. Several factors including size of the exon, GC content, presence or absence of 

repeat elements, and segmental duplications affect the coverage. The uniformity of coverage 

distribution decreases for longer exons. For a given exon, the pattern of coverage varied among 

different platforms even for genes with high coverage (Figure 3), making it difficult to 

normalize the background coverage for CNV calling. As shown in our study, coverage in regions 

with extremes of GC content (<30%; >70%) was low reflecting poor capture efficiency. In 

contrast, no such correlation was observed for regions with moderate GC content (30-70%). The 

coverage was also affected by the presence of repeat elements. Even simple repeat elements as 

small as 22 bp may contribute to low coverage. Those platforms, which use RepeatMasker in 

probe design, are likely to miss exonic regions containing repetitive elements. We also note that 

while the CCS and UE metrics are useful in identifying areas of the genome with uneven 
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coverage across multiple samples, they will miss genomic regions that have consistently low 

coverage across all tested samples.  

 Several studies comparing technologies have found WGS to be superior to WES41,49,50. 

The parameters affecting coverage including GC content, uniformity of the coverage, and read 

depths were examined. Our results are consistent with these findings. Although WGS data has 

lower average coverage, the coverage depth along exons is more uniformly distributed.  WGS 

data have fewer sparse regions, which may contribute to lower numbers of false negative variant 

calls. However, with more than 100,000 exomes sequenced to date, WES has become the major 

genetic tool in several diagnostic centers45,51. A thorough understanding of the limitations of each 

of the WES platforms is thus important. Modifications in the design of the targeted sequence 

capture technology and improvements in mapping algorithms are essential for accurate calling of 

variants and filling the gaps in heritability estimates of genetic disease.  
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MATERIALS AND METHODS 

Datasets and Pre-processing 

Datasets:  WES data generated from NimbleGen SeqCap, Agilent SureSelect, and Illumina 

TruSeq were obtained for analysis from the dbGaP (the database of Genotypes and Phenotype)52 

and SRA (Sequence Read Archive) databases53. WGS sample data were obtained from the 1000 

Genomes Project, Phase 3 analysis 54. Detailed information for each dataset is listed in Table S1.  

 

Mapping of reads: All SRA files of exome samples downloaded from different databases were 

first converted to FASTQ files using the SRA Toolkit53. Then, raw sequence reads were mapped 

to the reference genome using Bowtie2 version 2.1.0, with default parameters55. We used the 

hg19/GRCh37 assembly of the human genome as the reference sequence throughout the 

analysis, and SAMtools version 1.2 was used to sort reads and remove PCR duplicates56. The 

WGS dataset was downloaded as raw FASTQ files from the 1000 Genomes servers, and were 

mapped using Bowtie2 version 2.1.0, with parameter –X 1500 to adjust the maximum insert size 

for valid paired-end alignments55.  Mapping statistics for each data set, including average library 

size, number of mapped reads, percent PCR duplicates, and coverage are listed in Table S5. 

 

Reads with low mapping qualities were retained in order to identify all regions with low 

coverage. We note that Bowtie2, like other alignment software, randomly assigns reads to a 

location if multiple optimal locations are identified55. As we retained such reads, coverage of 

highly homologous genomic regions may differ between multiple alignments of the same 

sample. However, when we compared the average mappability of each region57 to both CCS and 

UE metrics, we found no statistical correlation to our metrics (Figure S8). 
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Exome and gene sets annotation: Overlapping exons of the same gene from different transcripts 

were merged to create a consensus exome annotation file from the RefSeq database using an in-

house pipeline. Target regions obtained from three different capture kits were mapped and 

intersected with the consensus exome annotation file. These target regions were then sorted by 

genomic coordinates on chromosomes and defined as target exon regions. For WGS data 

analysis, all exons in the consensus exome annotation file were used as target exon regions. Only 

autosomal chromosomes 1 to 22 were included in this analysis. 

 

Coverage calculation: BEDTools version 1.v2.18.258 was used to calculate the single base pair 

coverage of all BAM files at all positions covered in the exome annotation file.  

 

Metrics to Evaluate Low Coverage Regions 

CCS score: The CCS score for all exons and genes was calculated with the ExomeCQA program. 

The CCS score provides a measure of percentage of base pairs in a given region for which 

coverage is less than 10 reads in multiple samples (see Figure S9). The CCS score is calculated 

by the formula: 

CCS = ��������#�������	�
) 

where, N is the total number of samples; # is the count of the genomic positions with read depth 

less than 10X; ci is the coverage at genomic position I; and LR is the length of the region of 

interest.  
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UE of coverage: The UE metric was introduced to measure the non-uniformity of the coverage 

over targeted regions, and is calculated using ExomeCQA. The score is based on peaks and 

troughs in the coverage. For a targeted region, the median coverage at each genomic position is 

computed from all the samples. The median coverage is smoothed against base position using the 

LOWESS (locally weighted scatterplot smoothing)59 method with an empirically selected span 

0.03, which dampens the locus-to-locus variability of the curve so that local trends can be 

detected. Here we defined “span” as a parameter that represents the proportion of the total 

number of base positions of the exon region that contribute to each locally fitted coverage value. 

We used a percentage-based span parameter instead of a constant base-pair parameter in the 

LOWESS method, as we wanted to consider the length of the peak in relation to the length of the 

exon after smoothing. Using a percentage-based span will allow smaller peaks and troughs in the 

shorter exon, while in longer exons small peaks and troughs will be smoothed over. This justifies 

considering all peaks when calculating the UE formula. Peaks and troughs of the median 

coverage were identified by a Hill Climbing local optimization algorithm60, which was 

implemented by scanning all base positions and identifying the positions without increasing or 

decreasing neighbors in the smoothed coverage curve. The height and width of the peaks were 

then used to calculate the unevenness score by the following formula: 

U
 	
 H/B
W/L�

�

�

 

where UE is unevenness score, N is number of peaks, H is height of the peak, B is base of the 

peak, and W is width of the peak. 

 

We note that the library size is not considered in UE score calculation. When the local coverage 

is proportional to the library size, samples with (for example) double the coverage should have 
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peaks that are twice as high. In the high coverage regions, we expect the coverage to be 

proportional to the library size. If the low coverage regions are also proportional to the library 

size, then height and base will change proportionally and UE will remain the same.  However, we 

have already seen (Figure 6) that there are some exonic regions in which no reads map.  In that 

case, the height of the peak increases but the height of the base does not, increasing UE.  This 

adaptation to library size seems appropriate, since in the former case the relative size of the 

peaks is maintained, whereas in the latter case, the higher peaks do actually lead to less even 

coverage. 

Program ExomeCQA: ExomeCQA was written to calculate different metrics of cohort exome 

sequencing data from coverage files input. This program was written in C++ and can be 

downloaded at http://exomecqa.sourceforge.net. 

 

Statistical Methods  

All the statistical tests were conducted in R. The Manhattan plots of CCS scores in all 

chromosomes were generated with the “GWASTool”61 package. The density plot of GC content 

and low coverage regions was generated with the package “GenePlotter”62. Both packages are 

hosted in Bioconductor63.  
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Table 1. Low coverage genes with high CCS scores in three different datasets 

Platforms     Genes* 
Genes with CCS > 

0.2 (%) 
Genes with CCS > 

0.5 (%) 

NimbleGen 18,024 1,819 (10%) 428 (2%) 

Agilent 17,780 2,025 (11%) 374 (2%) 

Illumina TruSeq 17,866 1,252 (7%) 228 (1.3%) 

*Gene sets in different platforms were defined as described in the Methods section. 
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FIGURE LEGENDS 

Figure 1:  CCS scores of targeted RefSeq genes along the whole chromosome in WES and WGS 

datasets. The CCS values are plotted along the length of each chromosome in a modified 

Manhattan Plot for WES datasets obtained from (A) NimbleGen, (B) Agilent, (C) Illumina 

TruSeq, and (D) WGS dataset from 1000 Genomes project. 

 

Figure 2:  Characterizing the coverage distribution with the Unevenness (UE) score. (A) The 

coverage distribution from multiple samples is plotted against the exon length. (B) The smoothed 

median coverage plotted against the exon length, obtained by first calculating median coverage 

for each position and then using LOWESS smoothing. Peaks and troughs were then identified by 

using a local optimization algorithm. Arrows indicate peaks identified in the curve: B, base, W, 

width and H, height of the peak, LR, length of the region analyzed 

 

Figure. 3:  Base coverage distribution along the length of the last coding exon of gene ZNF484 

from WES datasets obtained from (A) NimbleGen, (B) Agilent, and (C) Illumina TruSeq. 

 

Figure 4:  Scatterplot of Unevenness (UE) scores against exon size in WES and WGS datasets. 

 

Figure. 5:  Concurrence of repeat elements and coverage sparseness.  (A) Base coverage 

distribution along the length of the first coding exon of MST4.  WES samples from the 

NimbleGen platform with different average coverage ranging from 75X to 200X are shown in 

different colors. Arrow indicates the point at which coverage falls sharply. (B) UCSC browser 

screen shot of MST4 genomic region, black bar indicates the position of the repeat element. 
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Figure. 6:  The probability density curves showing GC content in sets of genes with different 

coverage.  The distribution of GC content of all genes (black), high coverage genes with CCS 

score < 0.2 (green), low coverage genes with CCS score > 0.2 (blue) are represented. 

 

Figure. 7:  Genes with low coverage in three different datasets. (A) Venn diagram showing 

number of low coverage genes (CCS score > 0.2) across three different platforms. There are 832 

genes with low coverage in common across all platforms. (B) Network diagram showing disease 

ontology analysis of the 832 low-coverage genes showing associations with leukemia, psoriasis, 

heart failure, and mucocutaneous lymph node syndrome. 
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