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Septic shock is a major medical problem with high morbidity and mortality and

incompletely understood biology. Availability of genome-wide expression data

from different studies on septic shock empowers the quest for hitherto unidenti-

fied pathways by integration and meta-analysis of multiple data sets. Electronic

search was performed on medical literature and gene expression databases. Selec-

tion of studies was based on the organism (human subjects), tissue of origin (cir-

culating leukocytes) and the platform technology (gene expression microarray).

Gene-level meta-analysis was conducted on the six selected studies to identify

the genes consistently differentially expressed in septic shock. These genes were

then subjected to pathway analysis. The identified up-regulated pathway hsa04380

(Osteoclast Differentiation) was validated in an independent cohort of patients.

A simplified model was generated showing the major gene-modules dysregulated

in SS.
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Introduction

Septic shock (SS) is a serious medical condition that claims many lives every year worldwide. Approx-

imately 2% of the patients admitted to the hospital are diagnosed with SS. Of these patients, half are

treated in the intensive care unit (ICU), representing 10% of all ICU admissions (2,29). Approximately

40-60% of the SS patients die within 30 days (2). The number of cases in the USA exceeds 750,000 per

year (2), but the incidence of SS is largely unknown in those parts of the world with scarce ICU care.

Extrapolating from treated incidence rates in the USA, Adhikari et al. estimated up to 19 million cases

worldwide per year (1). However, the true incidence is expected to be far higher. Incomplete grasp of SS

biology is compounded by the lack of specific drug for treating the condition. With a number of failed

clinical trials, there is urgent need for new directions in research (5). Genome-wide expression profiling

offers a complete picture of the condition and enables identification of genes and pathways of diagnostic,

prognostic or therapeutic relevance (37).

The purpose of this study was to investigate genome-wide host response to SS by combining the power

of multiple studies. Analysis was performed at two levels: genes and gene sets. A “gene set” or pathway

consists of a set of functionally related genes, and provides higher-order information about gene expression

and valuable insights into the biology of a disease. Accordingly, we have laid emphasis on discovery of

pathway(s) enriched among the genes consistently differentially expressed among the multiple data sets

from studies on SS.

A biological process involves a group of genes. The principle of enrichment analysis is that if a bio-

logical process is abnormal in a given condition, the co-functioning genes should have a higher (enriched)

potential to be implicated as a relevant group. Because the analytic conclusion is based on a group of

relevant and functionally related genes instead of on individual genes, it increases the likelihood of iden-

tifying the biological process(es) pertinent to the disease condition under study. A variety of methods

are available for testing differential expression of gene sets. We started with the most popular method

that takes a list of differentially expressed genes and tests whether the gene set is over-represented in

this list. This was followed up and validated by other methods to discover a pathway that is consistently

perturbed in SS.
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Methods

Search strategy and selection criteria

We searched the popular online database PubMed with the search string (“Systemic Inflammatory Re-

sponse Syndrome”[MeSH] OR “septic shock”[MeSH] OR “Shock, Septic”[MeSH] OR “Endotoxemia”[MeSH])

AND (“gene expression profiling”[MeSH] OR “transcriptome”[MeSH] OR “microarray analysis”[MeSH]

OR “Oligonucleotide Array Sequence Analysis”[MeSH]) with “Human” filter. Additionally, we searched

the following gene expression databases: (1) National Centre for Biotechnology Information Gene Ex-

pression Omnibus (GEO) and (2) European Bioinformatics Institute ArrayExpress. All the queries were

made on the 30th Aug, 2013. Entries from the gene expression databases were then cross-referenced with

publications retrieved from PubMed. Selection of studies was based on the organism (human subjects),

tissue of origin (circulating leukocytes) and the platform technology (gene expression microarray). The

process of selection of the six studies of SS is described in Fig. 1. Only data sets published as full re-

ports and meeting the previous three criteria were selected (Table 1). These data sets were subjected to

systematic analysis, as described below.

Pre-processing of data

Series matrix files (containing normalized gene expression data) for all six studies were downloaded and

read with the function getGEO of the bioconductor package “GEOquery” (7). All data were transformed

to logarithmic scale (base 2). The function nsFilter of “genefilter” package (8) was applied to remove the

probe sets with incomplete or duplicate gene annotation, and those carrying low expression signal. Each

probe set ID was mapped to the corresponding Entrez gene ID. Genes common to all six studies were

included in the analysis. These common genes were extracted and all further analyses were performed

only on this list of common genes across all the studies. Some of the studies included samples from cases

other than SS in the data set. However, these samples were excluded from analysis. For each study,

control samples were retained for comparison with the cases of SS.

Identification of differentially expressed genes

For all genes within each study, we applied a Welch’s 2-sample t-test (36) to compare expression values

in samples of SS with that in samples of control subjects. A single overall p-value was then computed

for each gene by meta-analyzing individual study level t-statistic using the following procedure.
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We first transformed each individual t-statistic to a Z-score Zi retaining its sign by using the quantile

transformation:

Zi = Φ−1(Ft
nSS
i

+nCON
i

−2
(ti)) (1)

We then followed a fixed effects meta-analysis (11) approach, where the Z-scores are combined using

an optimal linear combination with weights equal to square root of the effective sample size of each study

(i.e. the harmonic mean of case and control sample sizes). This gave the combined meta-analyzed Z-score

Zmeta.
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Thus the final overall 2-sided p-value pmeta was obtained by:

pmeta = 2× Φ(1− |Zmeta|) (3)

The p-values for all genes were then adjusted for multiple testing using the method of Benjamini and

Hochberg (1995) (3) by a call to the function p.adjust of the R package “stats” (28). For each gene, mean

log-fold change in gene expression was computed by averaging the log-fold changes over the six studies.

Differential expression was detected by applying two thresholds: p-value < 0.01 and 2 fold or greater

change in expression in SS compared to control.

Over-Representation Analysis (ORA)

The set of up-regulated genes was then subjected to over-representation analysis by applying hypergeo-

metric test which is briefly described here. Let us consider two lists of genes: the first list being the set

of up-regulated genes, and the second, genes that are part of a given KEGG pathway (14). The task is

to find out if genes belonging to this pathway are also likely to be part of the list of up-regulated genes.

This is captured in a 2×2 contingency table as shown in Table 2.

Over-representation analysis tries to capture whether n11 and n22 are larger than expected relative

to the other two cell numbers; in other words do genes belonging to the KEGG pathway also “tend to be

in the up-regulated category.”
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Hypergeometric testing was applied to detect if a significant association exists between the two at-

tributes of a gene: being up-regulated in SS and being member of a particular pathway. A significant

association was detected at threshold of p < 0.001. Over-representation analysis was implemented by

applying the function hyperg of the “Category” package (9).

Gene Set Enrichment Analysis (GSEA)

GSEA focuses on cumulative changes in the expression of multiple genes as a group, which shifts the

focus from individual genes to groups of genes. By looking at several genes at once, GSEA identifies

pathways with coordinated change in expression of the member genes. The following steps were taken.

First, genes were mapped to pathways on an incidence matrix. Then gseattperm function from the

“Category” (9) package was used for the permutation test. The function received the following as input:

the gene expression data, sample phenotypic data, and the incidence matrix representing the gene sets of

interest. Then it created a version of the data set with phenotype labels randomly scrambled, producing

the corresponding ranked list, and computed the enrichment score (ES) of the gene set for this permuted

data set. This process of scrambling the labels and re-computation of ES was repeated 10000 times

to produce an empirical null distribution of the ES scores. The observed ES for each pathway was

compared against the null distribution. Pathways with observed ES very different (p = 0.0) from the null

distribution were considered significant. For each pathway a meta-analyzed GSEA p-value was obtained

using Fisher’s p-value product method (38).

Signaling Pathway Impact Analysis (SPIA)

Impact Factor analysis combines both over-representation analysis and functional class score (gene set

enrichment analysis) approach, taking into account fold-change in gene expression, gene-gene interactions

such as activation and inhibition, and the topology of the pathway (33). By combining two different

evidences (one from the analysis using the hypergeometric model and the other from the probability of

perturbation that takes the pathway topology into account), a pathway-level score was computed. For

each gene, t-test between SS and control was performed. Log-fold changes of the differentially expressed

(p < 0.05) genes were passed to the function spia of the package “SPIA” (33). This was repeated for

each study separately, each time returning a list of pathways and associated p-values. For each pathway,

Fisher product of the six p-values (one for each study) was calculated to return one p-value for pathway.

The ten most significantly perturbed pathways were considered.
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Validation cohort

Blood samples were collected from the patients of SS and healthy subjects after obtaining approval from

the Institutional Ethical Committees of the National Institute of Biomedical Genomics, Kalyani, India

and SCB Medical College Hospital, Cuttack, India. All the methods were carried out in accordance

with the approved guidelines. Informed consent was obtained from all subjects who participated in the

study. 12 healthy control and 9 cases of SS were included in the study. Whole blood was collected from

the subjects in PAXgene Blood RNA tubes (BD/Preanalytics) and incubated at ambient temperature

for at least 2 hours. RNA was isolated using PAXgene Blood RNA kit (Qiagen) as per manufacturer’s

instructions. Total RNA yield and quality were checked in Nanodrop 2000 spectrophotometer and Agilent

Bioanalyzer RNA Nano 6000 chip. RNA samples with a RIN number ≥ 6 were converted to cRNA and

hybridised onto either HumanHT-12 v4 BeadChip (Illumina) or Human Gene 2.0 ST Arrays (Affymetrix).

Gene expression intensities were read using the standard protocol provided by the manufacturer.

Raw data files from the platform HumanHT-12 v4 BeadChip (Illumina) were read with the function

read.ilmn of the package “limma” (32). After reading the raw data the background correction and

normalization using the control probes were done by the help of function neqc of the package “limma”.

For the samples processed on Human Gene 2.0 ST Arrays (Affymetrix), RMA-normalized data were

read with the function read.table. Each probe ID was mapped to its corresponding Entrez gene ID from

the gene symbol by the help of “org.Hs.eg.db” package. In case of duplicated/multiple probes for a

single Entrez gene id, the probe with the highest variance was retained (and others dropped from further

analysis using the function nsFilter of the package ”genefilter”). Correction of batch effect was performed

with the ComBat function of “sva” (41) package. Genes of the pathway hsa04380 were extracted and

mean gene expression computed. Scatter plot of SS versus control was generated for visual inspection of

the data.

Permutation test for enrichment

We performed a permutation-based enrichment test to provide evidence for overall up-regulation of the

pathway hsa04380 in SS (validation cohort). For this, we used the function permutationTest of the

package“resample” (39) to calculate the permutation-based p-value accounting for correlation among the

pathway genes. First, we calculated the proportion of significantly up-regulated (p < 0.05) genes in the

pathway by using a two-sample t-test to test for up-regulation of each pathway gene. This was observed
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to be 0.447. Next, we reshuffled the sample groups (i.e. case control status) 100000 times and similarly

calculated the proportion of up-regulated genes for each permutation replicate. Finally, the permutation-

based p-value was obtained as the proportion of replicates where the simulated proportion was greater

than the observed value.

Gene-level analysis: We then looked at the individual genes in the pathway that were significantly up-

regulated after multiple-testing correction at an FDR level of 0.05. We further filtered the resulting gene

list to include only genes that showed a high fold-change (2 or more) and were expressed in significant

amounts (intensity of 100 or more).

Software used

All analyses except Ingenuity Pathway Analysis (described later) were done with R version 3.1.0 imple-

mented under GNU/Linux operating system on a 32-bit i686-computer system. The analysis work flow

is presented in Fig. 2.

Ingenuity Pathway Analysis of the up-regulated genes

Mean log-fold change in expression was calculated for the 200 genes up-regulated in SS, and submitted to

the Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City, www.qiagen.com/ingenuity). Core IPA

analysis was performed without applying any threshold or cutoff. IPA performed a right-tailed Fisher’s

Exact Test and calculated a p-value for over-representation of a priori defined biological pathways in

the data submitted. It also corrected the p-value to account for multiple testing by Benjamini-Hochberg

method (FDR). IPA generated molecular networks with algorithmically generated pathways which were

over-represented in the submitted data. Similarly it identified diseases and biological functions that were

over-represented in the data. The three broad categories returned by IPA were interpreted.

Availability of data and materials

The dataset(s) and the R code supporting the conclusions of this article are available under the project

nibmgss in the SourceForge repository

https://sourceforge.net/projects/nibmgss.
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Results

Selection of studies and meta-analysis

By systematic search of literature, NCBI GEO and other gene expression databases, we selected six

studies of SS (Fig. 1, Table 1). Normalized gene expression data of the studies were retrieved from GEO

and analyzed to detect differentially expressed genes (Fig. 2). Differential expression was measured in

terms of both log-fold change and p-value. For each gene, SS was compared with control and the six

p-values were combined and adjusted for multiple testing (detailed meta-analysis procedure provided in

the Methods section) to generate a single p-value per gene. For each gene, the six log-fold changes were

averaged to produce a single log-fold change. Using stringent criteria (adjusted p-value < 0.01, fold

change of 2 or more), we discovered 200 genes that were consistently up-regulated in SS. We did not

discover any gene that was down-regulated at this level of significance, i.e., p < 0.01 and fold change of

half or less (Supplementary Fig. S1).

The 200 genes up-regulated in SS

These included genes associated with inflammation and innate immunity (SERPINB1, S100A12, SLC11A1,

TLR5, PADI4, CLEC5A, TLR8, LILRA5), critical illness (ANKRD22, CEACAM1, CLEC5A, G0S2,

BCL-6, MMP8, TREM1, CCL4), anti-microbial activity (ADM, BP1, DEFA4, RNASE3), complement

and coagulation systems (C1QB, F5, CR1, C3AR1 , CR1, C3AR1, CD59, SERPINA1), carbohydrate

and lipid metabolism (PFKB2, PFKB3, SLC2A3, GYG1, PYGL, ACSL1, HGF, FAR2, DGAT2), and

others. While many of these systems are known to be involved in SS, there were some surprises, such as,

up-regulation of genes of bone metabolism (CPD, MAPK14, FOSL2, IL1R1, MAP2K6, SOCS3, OSCAR,

SIRPA, ALPL, BST1, CA4, TNFAIP6) in SS (Supplementary Table S1). With strong evidence in favour

of altered expression at gene level, we proceeded to analyse the data at pathway (gene set) level.

Pathway analysis: ORA, GSEA, SPIA, IPA

A pathway is a set of genes that participate in a single functional module. When a large number of

genes in the same pathway are perturbed (or up-regulated, in this case), then the pathway itself may

be inferred to be perturbed. Secondly, small changes in gene expression are usually not detectable with

standard methods. However, if the changes happen in a co-ordinated fashion over a set of functionally

related genes (i.e., a pathway), then the cumulative effect of the small gene-level changes shall result in a
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large and detectable perturbation at the pathway-level. Lastly, the gene set in a pathway has a specific

network structure or topology, such that, the nodes proximal to the point of origin (for example, the

signal from the membrane), has a greater regulatory impact compared to the distal nodes. All these

considerations were taken into account in the current analysis.

Kyoto Encyclopedia of Genes and Genomes (KEGG) (14) is a database of gene sets (pathways) ar-

ranged by function. Each pathway consists of multiple genes and a gene may belong to more than one

pathway. We reasoned that, for a pathway to be up-regulated in SS, a large number of genes in the path-

way need to be up-regulated. In other words, we sought to find the pathway(s) that is (are) significantly

“enriched” with the genes in our list of 200. Using the method of “Over-Representation Analysis” (ORA;

described in detail in the Methods section), three pathways were identified: hsa04610 - Complement and

Coagulation Cascades, hsa04380 - Osteoclast Differentiation, and hsa05202 -Transcriptional Misregula-

tion in Cancer (Supplementary Table S2). The complement system is a proteolytic cascade in blood

plasma participating in innate immunity. When activated, it leads to recruitment of inflammatory cells

and elimination of pathogens. Dysregulation of the complement system (especially activated C3 and C5)

is known to occur in SS (23). Similarly, blood coagulation is an essential defense mechanism for blocking

off the pathogen and preventing spread of inflammation, in the initial phase. However, the inflammatory

state found in SS alters the hemostatic balance in favour of a procoagulant state, with disseminated in-

travascular coagulation (DIC) (17). The other two pathways are not commonly associated with sepsis or

SS, although osteoclasts arise from differentiation of blood monocytes and cause bone resorption, which

is markedly increased in critically ill patients (31). The third pathway hsa05202 consists of many genes

that are transcriptionally altered in different malignancies.

We next applied two other tools, “Gene Set Enrichment Analysis” (GSEA) and “Signaling Pathway

Impact Analysis” (SPIA), that are methodologically independent of ORA, and provide additional support

to our finding (Fig. 2). GSEA calls upon a global (i.e., genome-wide, not limited to any pre-selected

list) search strategy to detect the KEGG pathway (s) with significant up-regulation in SS compared

to control. SPIA combines elements of ORA and GSEA, with attention to gene-gene interactions and

pathway topology. There was a single pathway (hsa04380) that was common to the results from the three

approaches (ORA, GSEA, SPIA). Further, we performed Ingenuity Pathway Analysis (IPA) with the top

200 up-regulated genes, that returned a list of pathways. Two pathways among the top ten were related

to bone loss in Rheumatoid Arthritis. This and the presence of other pathways, such as, p38 MAPK
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signaling, complement system and TLR signaling, were similar to the results from KEGG analysis. IPA

discovered the following diseases and functions enriched among the up-regulated genes: Infectious Disease,

Connective Tissue Disorder, Inflammatory Diseases and Skeletal and Muscular Disorders. The network

with significant biological function termed “infectious disease, inflammatory response, connective tissue

disorders” was discovered to be differentially regulated in SS (Supplementary Fig. S2). Over all, IPA

results were similar to the pathway analysis with KEGG, and generally consistent with the finding of

altered skeletal function in SS. Thus, multiple analytic approaches, ORA, GSEA, SPIA and IPA, together

revealed hsa04380 (Osteoclast Differentiation) with unequivocal transcriptional up-regulation in SS. We

then sought to validate the pathway up-regulation in an independent set of SS cases.

Validation of hsa04380 in an independent cohort

Batch-corrected whole blood gene expression data (Supplementary Fig. S3) of the pathway hsa04380

was obtained from an independent set of human subjects (Supplementary Table S3). Mean expression

values (for the two groups: control and SS) were calculated and a scatter-plot generated (Fig. 3). In

this plot, each point corresponds to a single gene. The points near the identity line (the diagonal in the

Figure), correspond to genes with similar expression level in control and SS groups. The genes that are

up-regulated in SS are expected to be significantly deviated from the diagonal toward the SS axis. Indeed,

for most of the genes, there is much higher expression in SS, as shown in Fig. 3. Additional evidence

for up-regulation of the pathway hsa04380 was obtained from the permutation-based enrichment test,

where we resampled (reshuffled) the case/control labels of the samples and calculated a permutation-

based p value for the proportion of up-regulated genes in the pathway. We observed that up-regulation

of the pathway was highly significant (permutation p = 0.00028; 100000 replicates). On looking at

individual genes, we found that 60 genes were FDR significant and 25 genes passed the expression filters.

Supplementary Fig. S4 shows the boxplots of these highly significant genes in the validation cohort.

The 25 highly significant genes of the pathway are well-connected in the pathway map, and known to

be expressed in neutrophils and monocytes, which are the two abundant sub-types of leukocytes. These

25 genes are not only sgnificantly up-regulated in the validation cohort but also significantly (p< 0.05;

in gene level metaanalysis) up-regulated in the Discovery cohort (6 SS datasets).
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Significant genes of the pathway in SS

Of these 25 key genes of this pathway (Supplementary Table S4), there were genes whose encoded proteins

form a signal transduction cascade from the plasma membrane to the nucleus. There were genes coding

for proteins situated on the plasma membrane (IL1R, TNFα, TGFβ), or belonging to MAP Kinase

group (Rac1, MKK6 and p38), AP1 transcription factor complexes (JUNB, FOSL2). This suggested

that a signal starting from the membrane may be transduced through the MAP kinase subnetwork to

the nucleus culminating in transcriptional regulation of osteoclast differentiation-specific genes. The list

also included other genes (OSCAR, TREM2, SIRPB1, NFATC1) that suggested a parallel path from the

membrane leading to up-regulation of the transcription factor PU.1 and expression of genes for osteoclast

differentiation. Based on these 25 genes, a simple model of osteoclast differentiation in SS was proposed

(Fig. 4).

Since our analysis was performed on whole blood expression data, we were also interested in the

cellular and plasma distribution of the gene products. A literature search for tissue specific expression

revealed that many of these genes are expressed in neutrophils and monocytes, two important leukocyte

sub-types. Additionally, almost all of the gene products have been reported to be detectable in plasma

(Supplementary Table S4).

Discussion

In contrast with gene-level analysis, pathway analysis strives to identify a perturbed pathway (a set

of functionally related genes) whose transcriptional alteration is significantly associated with the given

condition. There exist several approaches to this end, such as ORA, GSEA, or SPIA, each with its

own advantages (15). ORA considers the number of genes differentially expressed, but ignores any value

associated (such as fold-change). GSEA considers all genes in a pathway and is more likely to detect

coordinated changes in gene expression. SPIA, in addition, takes the topology of the pathway into

account. Here, combination of three different methods gives leverage in finding the pathway that is

unequivocally altered in SS.

In order to discover the stable blood transcriptional changes in SS, we conducted three different

analyses (ORA, GSEA, SPIA) and intersected the resulting lists to obtain a single KEGG pathway

(hsa04380 - Osteoclast Differentiation Pathway) as a stable expression signature of SS in circulating
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leukocytes. We confirmed this result in an independent validation cohort and demonstrated that up-

regulation of the pathway is distinct in SS compared to controls. Further, we subjected the list of up-

regulated genes to Ingenuity Pathway Analysis and observed broad agreement with this finding. To our

knowledge, this is the first time that osteoclast differentiation pathway has been shown to be significantly

perturbed in SS.

The skeletal and the immune systems are known to interact with each other. For example, in im-

mune disorders, such as rheumatoid arthritis, the ratio of bone resorption to bone formation is skewed

toward the former. This ratio is balanced by the activity of two groups of cells: osteoclasts and os-

teoblasts. Osteoclasts are specialised bone cells of monocyte-macrophage lineage (10,34) responsible for

bone resorption whereas osteoblasts are responsible for bone formation. It was earlier shown that there

is increased bone resorption in critically ill patients (31). However, our finding suggests that the role of

this pathway may be more specific in SS.

We propose a simplified model of transcriptional changes in hsa04380 during SS, as described below

and shown in Fig. 4. The Osteoclast differentiation pathway may be conceptualised in terms of interac-

tions among a few key processes or subnetworks. Firstly, pro-inflammatory cytokine-receptor complexes

(such as, TNFα-TNFR and IL1-IL1R) can cause osteoclast differentiation with the help of MITF and

MAPK, NFκB signaling (16, 18). In parallel, IL-1 and TNFα activate NFκB to up-regulate expres-

sion of osteoclast specific genes CD40LG (also known as TRAP), CTSK (cathepsin K) and OSCAR

(osteoclast associated receptor), three important regulators of bone mass. It is worth mentioning that

IL1-mediated osteoclast differentiation is distinct from the well-known RANKL-RANK signaling medi-

ated activation (16). We observed significant up-regulation of CD40LG, cathepsin K and OSCAR, but not

RANKL or RANK. The association of TNFα, IL-1, IL-6 and IL-7 has been detected in a variety of chronic

inflammatory bone diseases such as rheumatoid arthritis, osteoarthritis, and periodontal diseases. These

cytokines are produced by macrophages, lymphocytes, osteoblasts and bone marrow stromal cells under

the regulation of NFκB, and also stimulate NFκB signaling in the target cells by positive feedback (20).

These genes are significantly up-regulated in SS.

The second subnetwork starts with a set of closely related and functionally similar immunoglobulin-

like receptors among which the most prominent one is OSCAR (6). Each receptor molecule bears ITAM

transmembrane domains that transduce signal from plasma membrane to the nucleus through second

messenger molecules, such as Syk (a tyrosine kinase) and BLNK, which carry the signal to PLCγ, resulting
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in intracellular calcium release, that is known to activate transcription factors. Two transcription factors

PU.1 (a well-known biomarker for osteoclast differentiation) (30) and AP1 (JUN, FOSL) (35) form a

complex that results in transcription of osteoclast-specific genes in the precursor cells. Both PU.1 and

AP1 are significantly up-regulated in SS.

It is also interesting, that AP1 is involved in cellular proliferation, transformation and death. There

is also a report that apoptotic cell death (mostly of lymphocytes) is observed in patients suffering from

SS (42). An alternative interpritation would suggest prognosis towards severe diease phenotype (i.e., SS)

by AP1-induced excessive lymphocyte apoptosis.

Thirdly, the MAPK module (includes genes such as MAP2K6, JNK, p38 along with Reactive Oxygen

Species (ROS) genes NCF2, NCF4) plays an important role in activating AP1 transcription factor com-

plex and regulates genes responsible for the differentiation process (22). Generation of reactive oxygen

species and MAP kinase pathway signaling play a critical role in this pathway. IL1R1, a prominent medi-

ator involved in many cytokine-induced immune and inflammatory responses, and genes of MAP kinase

pathway (MAPK14, MAPK26, FOSL2, IL1R1, CA4), all associated with inflammation, are up-regulated

in SS. The signalling molecule p38, known to be essential for osteoclast differentiation (24), is sensitive

to activation by ROS in bone marrow monocyte-macrophage lineage (BMM) cells (21). Mitochondrial

dysfunction in SS causes generation of various reactive oxygen (and nitrogen) species, contributing to

activation of MAP kinase pathway and subsequent osteoclastogenesis (21). Although little attention has

been paid to the role of ROS in differentiation of macrophages and monocytes into osteoclasts, we ob-

served that MAP kinase pathway and genes associated with ROS generation are significantly up-regulated

in SS. Additionally, both MKK6 and p38 (up-regulated in SS) cause transdifferentiation of neutrophils

to monocyte or dendritic cells, which is of relevance during inflammation (13,19).

In most studies, discharge from the ICU is considered the survival end-point. However, the survivors

themselves are prone to many long term complications including musculoskeletal ones. By rigorous

analysis, we show that patients of SS have increased osteoclast differentiation. Long term follow-up of

the critically ill patients after discharge might reveal new insights into the biology of SS and provide

fresh directions for therapeutic innovation. Since excessive osteoclast activity contributes to enhanced

bone resorption, patients of SS (especially those that survive the acute episode) are likely at risk for

bone loss and fracture. Therefore, this pathway is a potential target for therapeutic intervention. There

already exists a molecule Simvastatin (25), which inhibits osteoclast differentiation by scavenging reactive
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oxygen species. Zinc is known to inhibit osteoclast differentiation in some other model systems (12,27).

It is interesting that prophylactic zinc supplementation improves treatment outcome in human infants

aged 7–120 days with probable serious bacterial infection (4). We think that zinc supplementation

might also play a role in lowering the osteoclastogenic bone loss in SS patients, which might contribute

to patient survival and long term recovery (12). Antioxidants could also be useful in limiting osteoclast

differentiation. However, the value of any therapeutic intervention on the pathway needs to be ascertained

through independent testing. Lastly, we have shown in our study that there are 25 genes of the pathway

which are significantly differentially expressed in SS (Supplementary Table S4) compared to controls.

Since their protein products are detectable in peripheral circulation, it is plausible to suggest these genes,

singly or in combination, as plasma biomarkers of SS.

Conclusion

Firstly, systematic analysis of multiple data sets enabled identification of the core set of genes that

are consistently up-regulated in SS. Secondly, we applied three different methods (Over-Representation

Analysis, Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis) to arrive at the pathway

hsa04380 (Osteoclast Differentiation) with consistent and significant up-regulation in SS. We validated

this result with additional bioinformatic analysis and pathway gene expression assay in an independent

cohort of SS. Thirdly, we established that the expression signature is distinct in SS compared to control.

The 25 genes short-listed, either singly or in combination, may serve as an expression signature of SS. It

should be noted that, we do not claim causality, but simply an association of up-regulation of hsa04380

with SS. However, in the light of this finding, altered osteoclast differentiation in septic shock deserves

greater attention.
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Figure 1: Selection of studies. Electronic search on the Gene expression and Literature databases
was performed to identify the 213 Pubmed records and 69 gene expression data sets. These records
were manually screened to select the studies that were done in human subjects, on circulating leukocytes
and gene expression profiling done using gene expression microarray platform, resulting in 91 combined
(Pubmed and expression data) records. Duplicate records were removed, and records without data from
human sepsis or SS, were deleted. One record was added from a source outside those mentioned above.
Of the resulting 34 data sets (cross-referenced with Pubmed articles), six were derived from studies on
SS. These six data sets were selected for meta-analysis.
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Figure 2: Overview of the analysis work-flow. First, gene-level analysis was performed by comparing
SS with control. The p-values from multiple studies were combined to compute a single p-value per genes.
The p-values were adjusted for multiple testing (FDR). 200 genes with low p-value (p < 0.001) and large
fold change (2 or greater) were considered significantly differentially expressed (up-regulated) in SS. The
200 up-regulated genes were then subjected to three pathway analysis methods [Over-Representation
Analysis (ORA), Gene Set Enrichment Analysis (GSEA) and Signaling Pathway Impact Analysis (SPIA)].
A single pathway (hsa04380 - Osteoclast Differentiation) was returned as the common result of the three
approaches. Up-regulated gene expression of hsa04380 in SS was validated in an independent patient
cohort.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/051706doi: bioRxiv preprint 

https://doi.org/10.1101/051706


2 4 6 8 10 12 14

2
4

6
8

10
12

14

Control (Log 2 scale)

S
ep

tic
 S

ho
ck

 (
Lo

g 
2 

sc
al

e)

●

●
●

●

●

● ●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

MAPK1MAPK3

PIK3CG

IFNGR1

IFNGR2

IL1B

NFKBIA

JUNB

NCF2

NCF4

OSCAR
LILRB2

LILRA3

LILRA2
LILRA6

FCGR1A

FCGR2A

SIRPA

TYROBP

SYK

PLCG2

SPI1

IFNAR1

IFNAR2

GAB2

p = 0.00028

Figure 3: Up-regulation of Osteoclast Differentiation pathway in septic shock. Scatter plot of
hsa04380 (Osteoclast Differentiation) pathway genes from expression data generated in an independent
validation cohort. Each point corresponds to a single gene, and its coordinates reflect mean gene expres-
sion in healthy controls (x-axis) and SS (y-axis). The points close to the identity line (the diagonal in the
figure), correspond to genes with similar expression level in the control and the SS groups. Points away
from the diagonal represent genes that are differentially expressed in SS (up-regulated if the points are in
the upper half of the plot area; down-regulated otherwise). Many of the genes are up-regulated in SS as
shown by a large number of points deviated from the diagonal toward the SS-axis. The up-regulation of
these genes in SS is statistically significant (p = 0.00028, permutation test for enrichment). Additional
testing was performed for each gene (unpaired t-test between control and SS) leading to selection of in-
dividual genes in the pathway that were significantly up-regulated after multiple-testing correction at an
FDR level of 0.05. An expression filter was applied to identify the genes that showed a high fold-change
(2 or more) and were expressed in significant amounts (intensity of 100 or more). These genes have been
shown in red on the plot.
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Figure 4: A simplified model of the pathway. A simplified model of the Osteoclast Differentiation
Pathway up-regulation in SS. Sustained inflammation leads to activation of osteoclast differentiation
through proinflammatory cytokines TNFα and IL1, followed by MAP Kinase and Calcium signaling.
Reactive Oxygen Species (ROS) play a major role in activation of MAP Kinase. OSCAR is an important
receptor on the membrane that causes signal transduction via calcium-signaling. AP1 and PU.1, two
important transcription factors, integrate multiple signals and induce expression of osteoclastogenesis-
specific genes.
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Study
ID

Author-Year PMID Study De-
sign

Total
No. of
Sam-
ples

Mean
Age (yr)

Clinical
Set-
ting

Inclusion
Crite-
ria

Control
Group

Tissue Sample
collec-
tion and
RNA
isolation
method

Platform Data
nor-
mal-
ization

GSE4607
Wong2007
Cvijanovich2008
Wong2012

17374846
18460642
23107287

Observational
study

84 Children
<10 years
of age

PICU Septic
Shock

Healthy
controls

Whole
blood

PAXgene Affymetrix
Human
Genome
U133
Plus 2.0
Array

RMA

GSE8121 Shanley2007 17932561 Longitudinal 75 Children
<10 years
of age

PICU Septic
Shock

Healthy
controls

Whole
blood

PAXgene Affymetrix
Human
Genome
U133
Plus 2.0
Array

RMA

GSE9692 Cvijanovich2008 18460642
Retrospective
observational
study

45 Children
<10 years
of age

PICU Septic
Shock

Healthy
controls

Whole
blood

PAXgene Affymetrix
Human
Genome
U133
Plus 2.0
Array

RMA

GSE13904 Wong2009 19325468
Prospective
observational
study

124 Children
<10 years
of age

Paediatric
wards

Septic
Shock

Healthy
controls

Whole
blood

PAXgene Affymetrix
Human
Genome
U133
Plus 2.0
Array

RMA

GSE26378 Wynn2011 21738952
Prospective
observational
study

103 Children
<10 years
of age

Paediatric
wards

Septic
Shock

Healthy
controls

Whole
blood

PAXgene Affymetrix
Human
Genome
U133
Plus 2.0
Array

RMA

GSE26440 Wong2009 19624809
Prospective
observational
study

130 Children
<10 years
of age

Paediatric
wards

Septic
Shock

Healthy
controls

Whole
blood

PAXgene Affymetrix
Human
Genome
U133
Plus 2.0
Array

RMA

Table 1: SS Study Characteristics. The table shows characteristics (such as sample size, study design, clinical parameters for inclusion
criteria and details about the platform technology used to generate the data) of the six selected gene expression studies of septic shock
(SS). Each row represents one study.
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Number of genes in the
given KEGG pathway

Number of genes NOT in
the given KEGG pathway

Number of genes up-
regulated in SS

n11 n12

Number of genes NOT
up-regulated in SS

n21 n22

Table 2: A 2 × 2 contingency table. The table shows the four quantities of interest while estimating
if a pathway is over-represented (enriched) among the set of differentially expressed genes.
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Supplementary Fig.S1:This is a dot plot representing log fold change in gene expression for all the filtered and quantile-
normalised genes of each study. Green and Red dots represent down-regulated and up-regulated genes respectively. Any
up-regulated gene, i.e., with expression higher in SS compared to healthy controls is shown as a red point, and a down-
regulated gene is shown as a green point. The base line at 0 corresponds to “no change” in gene expression. The 2 dotted
lines correspond to the threshold of 2-fold change (i.e., log-fold change of 1) in expression. Any point above the top
dotted line represents a gene whose expression level is twice or more in SS compared with healthy controls. Similarly,
any point below the bottom dotted line represents a gene whose expression level is at least half (or lower) in SS compared
with healthy controls. Note that a change of 2 in the linear scale corresponds to a change of 1 in the log-2 scale. There
are far more up-regulated genes (red points) than down-regulated genes (green points). Additionally there are many
up-regulated genes with 2-fold or greater change in gene expression. This figure provides compelling visual evidence of
high-intensity gene up-regulation in SS.
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Supplementary Fig.S2: Network “Infectious Disease, Inflammatory Response, Connective Tissue Disorders”, generated
by Ingenuity Pathway Analysis with top 200 up-regulated genes with mean log-fold change in gene expression.
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Supplementary Fig.S3: ComBat function (of sva package) was used to remove the batch effect from validation cohort
samples as shown in the box plots above, from left(Uncorrected) to right (Corrected).
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Supplementary Fig.S4: Box plots of the highly significant 25 genes of the pathway hsa04380 up-regulated in SS. Green
color corresponds to the control subjects while the red color corresponds to the cases of SS. Gene symbols are shown at
the bottom. For each gene, log-intensity of gene expression has been normalized to the median expression of the control
group.
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Biological  function Genes

Septic Shock[1],[2] ANKRD22, CEACAM1, CLEC5A, G0S2, BCL-6, MMP8, 
TREM1, CCL4

Inflammation & Innate Immunity [3] SERPINB1,  S100A12,  SLC11A1,  TLR5,  PADI4, 
CLEC5A, TLR8, LILRA5

Anti Microbial Activity [3] ADM, BP1, DEFA4, RNASE3

Complement System [3]  C1QB, F5, CR1, C3AR1

Coagulation System [3] CR1, C3AR1, CD59, SERPINA1

Carbohydrate Metabolism [4] PFKB2, PFKB3, SLC2A3, GYG1, PYGL

Lipid Metabolism [5]
 ACSL1, HGF, FAR2, DGAT2

Bone Metabolism [3] 
CPD,  MAPK14,  FOSL2,  IL1R1,  MAP2K6,  SOCS3, 
OSCAR, SIRPA, ALPL, BST1, CA4, TNFAIP6

Calcium Signalling [3] S100A12, DYSF, MRVI1, LILRA5

Cytoskeletal And Cell Adhesion [3] LIMk2, DSC2

Cancer-associated Genes [3] 
BCL2A1,  BCL6,  CEACAM1,  CD63,  DACH1,  DSC2, 
ELANE, ETS2, HPGD, IL1RN, LMO2, MMP8, MMP9, 
MPO, NQO2, IL1R2, PLXNC1, OLFM4, RAB20

1 Mizock, B. A. (2001). Alterations in fuel metabolism in critical illness: hyperglycaemia., Best Pract Res Clin Endocrinol  

Metab 15 : 533-551.

2 Rival, T.; Cinq-Frais, C.; Silva-Sifontes, S.; Garcia, J.; Riu, B.; Salvayre, R.; Genestal, M. and Caspar-Bauguil, S. 

(2013). Alteration of plasma phospholipid fatty acid profile in patients with septic shock., Biochimie 95 : 2177-2181.

3 http://www.ncbi.nlm.nih.gov/gene/

4 Wong, H. R. (2013). Genome-wide expression profiling in pediatric septic shock., Pediatr Res 73 : 564-569.

5 Wong, H. R.; Shanley, T. P.; Sakthivel, B.; Cvijanovich, N.; et al. (2007). Genome-level expression profiles in pediatric 

septic shock indicate a role for altered zinc homeostasis in poor outcome., Physiol Genomics 30 : 146-155.

Supplementary Table S1: Annotation of top 200 genes identified after ORA, as significantly up-

regulated in septic shock into associated principal biological functions.
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KEGG ID p odds ratio Pathway Name

hsa04610 0.00001 11.5 Complement and coagulation cascades

hsa04380 0.00006 6.59 Osteoclast differentiation

hsa05202 0.00046 4.77 Transcriptional misregulation in cancer

Supplementary Table S2: Top 3 enriched KEGG pathway selected after Over Representation 

Analysis with top 200 genes.

ID Age SEX Vasopressors Infective focus

5 70 M Septic Shock Dopamine NA

6 55 F Septic Shock Dopamine Right middle lobe pneumonia

19 14 F Septic Shock NA Right lower lobe pneumonia

21 20 M Septic Shock NA NA

34 32 M Septic Shock Dopamine Left lower lobe pneumonia

50 38 M Septic Shock Noradrenaline Right leg abscess

53 75 M Septic shock Dopamine Right lower lobe pneumonia

54 38 F Septic Shock Noradrenaline Right lower lobe pneumonia

56 63 F Septic shock Dopamine NA

Primary 

Diagnosis

Supplementary Table S3: Clinical characteristics of SS patients in Validation Cohort.
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[1] http://www.biogps.org
[2] http://www.genecards.org/
[3] http://www.plasmaproteomedatabase.org/

Entrez Ids Gene Symbols

2209 FCGR1A NK Cells Detected

2534 FCGR2A  Monocyte, Whole Blood Detected

9846 GAB2 Detected

3454 IFNAR1 NK Cells Detected

3455 IFNAR2 Dendritic Cells Detected

3459 IFNGR1 Whole Blood, Monocyte Detected

3460 IFNGR2 Detected

3552 IL1A Monocyte Detected

3726 JUNB Myeloid Detected

11027 LILRA2 Monocyte Detected

11026 LILRA3 Monocyte Detected

79168 LILRA6 Monocyte Detected

10288 LILRB2 Monocyte Detected

5594 MAPK1 Detected

5595 MAPK3 Whole Blood, Monocyte Detected

4688 NCF2 Whole Blood, Monocyte Detected

4689 NCF4 Whole Blood, Monocyte Detected

4792 NFKBIA CD33+ Myeloid Detected

126014 OSCAR Neutrophil Detected

5294 PIK3CG Detected

5336 PLCG2 NK Cells Detected

140885 SIRPA Whole Blood Detected

55423 SYK Whole Blood, Monocyte Detected

6688 SPI1 Whole Blood, Monocyte Detected

7305 TYROBP Monocyte Detected

Gene expressed in 

Tissues[1,2]

Protein levels in plasma 
[2,3]

CD14+ Monocyte, Whole 
Blood

NK cells , Monocyte, 
Whole Blood

CD56+ NK cells, 
Monocyte, Whole Blood

NK cells, Monocyte, Whole 
Blood

Supplementary Table S4:  Annotation of 25 genes of the pathway hsa04380 that are significantly up-

regulated in SS.
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