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Abstract 
Gene products or pathways that are aberrantly activated in cancer but not in normal tissue hold 
great promises for being effective and safe anticancer therapeutic targets. Many targeted drugs 
have entered clinical trials but so far showed limited efficacy mostly due to variability in treatment 
responses and often rapidly emerging resistance. Towards more effective treatment options, we 
will critically need multi-targeted drugs or drug combinations, which selectively inhibit the cancer 
cells and block distinct escape mechanisms for the cells to become resistant. Functional profiling 
of drug combinations requires careful experimental design and robust data analysis approaches. 
At the Institute for Molecular Medicine Finland (FIMM), we have developed an experimental-
computational pipeline for high-throughput screening of drug combination effects in cancer cells. 
The integration of automated screening techniques with advanced synergy scoring tools allows for 
efficient and reliable detection of synergistic drug interactions within a specific window of 
concentrations, hence accelerating the identification of potential drug combinations for further 
confirmatory studies. 
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1. Introduction  
A pressing challenge in the development of personalized cancer medicine is to understand how to 
make the most out of genomic information from a patient when evaluating treatment options. Over 
the past decade, there has been an extensive effort to sequence cancer genomes in large patient 
cohorts, sparking expectations to identify novel targets for more effective and selective treatment 
opportunities. These sequencing efforts have revealed a remarkable degree of genetic 
heterogeneity between and within tumors, which partly explains why the traditional ‘one-size-fits-
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all’ anticancer treatment strategies have produced many disappointing outcomes in clinical trials 
(1). On the other hand, functional studies using high-throughput drug screening have enabled 
linking cancer genomic vulnerabilities to targeted drug responses (2-4). However, complex genetic 
and epigenetic changes may lead to re-activation of multiple compensatory pathways and to 
emergence of treatment-resistant sub-populations (so-called cancer clonal evolution). Therefore, 
to reach effective and sustained clinical responses, one often needs multi-targeted drugs or drug 
combinations, which selectively inhibit multiple cancer driving sub-clones and other escape 
pathways of the cancer cells (5, 6). To facilitate the drug combination discovery, preclinical studies 
often rely on drug combination screening in cancer cell models as a starting point to prioritize the 
most potential hits for further experimental investigation and therapy optimization. Many of the 
existing drug combination studies, however, focus on conventional chemotherapeutic drugs tested 
on a panel of cell lines, for which the drug combination effects might not easily translate into 
treatment options in the clinic (see e.g. (7)). Rather, cancer cells that are derived from patients 
have shown tremendous potential that could enable the rapid assessment of novel drugs or drug 
combinations at the individual level (8). To facilitate clinical translation, an Individualized 
Systems Medicine (ISM) drug combination platform has been established at FIMM that combines 
genomics, drug testing and computational tools to predict drug responses for individual cancer 
patients. The ISM platform has successfully been used to functionally profile primary leukemia, 
ovarian cancer and prostate cancer samples ex vivo so that the drug responses can be translated to 
the in vivo setting (9-12).  
 
The advances in high-throughput drug combination screening has enabled the assaying of a large 
collection of chemical compounds, generating dynamic dose-response profiles that allow us to 
quantify the degree of drug-drug interactions at an unprecedented level. A drug interaction is 
usually classified as synergistic, antagonistic or non-interactive, based on the deviation of the 
observed drug combination response from the expected effect of non-interaction (the null 
hypothesis). To quantify the degree of drug synergy, several models have been proposed, such as 
those based on the Highest single agent model (HSA) (13), the Loewe additivity model (Loewe) 
(14) and the Bliss independence model (Bliss) (15). However, these existing drug synergy scoring 
models, together with their software implementations, were proposed initially for low-throughput 
experiments, with a limited number of drugs being combined with a fixed level of response, e.g. 
at their IC50 concentrations. For example, CompuSyn has become a popular tool to calculate a 
combination index (CI) using the Loewe additivity model (16). However, CompuSyn allows only 
for manual input of one drug combination at a time, which makes it less efficient for analyzing 
multiple drug combinations, particularly when the drug combinations are tested under various 
concentrations, in a so-called dose-response matrix design.  
 
To facilitate the data analysis of high-throughput drug combination screens, more recent tools have 
been made available as R implementations (https://www.R-project.org). For example, mixlow is 
an R package, which utilizes a nonlinear mixed-effects model to calculate the CI (17). However, 
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mixlow works only for an experimental design where the ratio of two drugs in a combination is 
fixed over all the tested concentrations. Therefore, it may not be directly applicable for a dose-
response matrix design, where the ratios of two drugs vary. Another R package, called drc, 
provides an URSA (universal response surface approach) model, which is more suitable for dose-
response matrix data (18). URSA extends the Loewe model by considering the response surfaces 
over all the tested concentrations. In contrast to the CI, which is defined at a fixed response level, 
the URSA model provides a summarized drug interaction score from the whole dose-response 
matrix. However, the URSA implementation in the drc package often leads to fitting errors when 
the dose responses fail to comply with the model assumptions. To evaluate the appropriateness of 
URSA, one needs to trace back to its underlying theoretical paper (19), which becomes rather 
technical for end users. The Bliss model has also been extended recently by incorporating the 
response surface concept, similar as in the URSA model, based on which a contour plot of a Bliss 
interaction index can be constructed (20). We have recently developed a response surface model, 
called Zero Interaction Potency (ZIP), which combines the Loewe and the Bliss models, and 
proposed a delta score to characterize the synergy landscape over the full dose-response matrix 
(21).  
 
Here, we describe a seamless experimental-computational drug combination analysis pipeline that 
has been widely used in Finland and elsewhere to test and score effects of drug combinations in 
cancer cells (22-25). The pipeline includes both an experimental protocol for dose-response matrix 
drug combination assays, as well as computational tools to facilitate the plate design and synergy 
modeling. The pipeline is applicable not only to cancer cell lines but also to patient-derived cancer 
samples for individualized drug combination optimization. With the increasing size of our 
compound library, targeting all the known cancer survival pathways, the drug combination 
discovery is now possible towards more personalized anticancer treatment. We first describe the 
experimental protocol including a computer program, called FIMMcherry, which enables efficient 
production and visualization of combination assay plates, the output of which can be directly 
exported to the robotic system for automated dispensing. To address the lack of tailored software 
tools for high throughput drug combination scoring, we report here a new R package, 
synergyfinder, which provides efficient implementations for all the popular synergy scoring 
models, including HSA, Loewe, Bliss and ZIP. This implementation provides the lab users with 
more flexibility to explore their drug combination data. We expect that the use of synergyfinder 
will greatly improve the interpretation of the drug combination results and may eventually lead to 
the standardization of preclinical drug combination studies. 

2. Materials 

2.1. Cancer cells or patient-derived samples 
1.   Established cancer cell lines are purchased from multiple vendors. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/051698doi: bioRxiv preprint 

https://doi.org/10.1101/051698


4  

2.   Patient-derived samples are obtained with permission from Finnish biobanks, hospitals 
and clinical collaborators (2). 

2.2. Compounds 
The FIMM oncology collection contains both FDA/EMA-approved drugs as well as 
investigational compounds (Fig. 1). The collection is constantly evolving and the current FO4B 
version contains 525 compounds with concentrations ranging typically between 1-10,000 nM. For 
some compounds, the concentration range is adjusted upwards (e.g. platinum drugs, 100,000 nM) 
or downwards (e.g. rapalogs, 100 nM) to better match their relevant concentrations of bioactivity.  
 

1.   The compounds are dissolved in DMSO except for 19 drugs (e.g. platinum drugs) with 
poor DMSO solubility or stability that instead are dissolved in water. All the 525 
compounds are pre-drugged in five concentrations using eight 384-well plates (10).  

2.   The pre-drugged plates are stored in Storage Pods (Roylan Developments Ltd) under 
nitrogen gas at room temperature up to 1 month.  

3.   Quality control. As a regular quality check-up of our compound library, we are testing the 
full FO4B collection set with four assay-ready cell lines (DU4475, HDQ-P1, IGROV-1 
and MOLM-13) every two months. Following the time-dependent reproducibility of the 
drug responses allows us to precisely detect any changes in the compound stability and 
activity. 

 
Fig. 1. An overview of the FIMM oncology compound collection. The drug combination 
platform enables the testing of pairwise drug combinations from 525 small-molecular anticancer 
compounds that cover mainly kinase inhibitors and other signaling transduction modulators. A 
majority of the compounds are either FDA-approved or being evaluated in clinical trials at different 
stages. 
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2.3. Equipment 
1.   Labcyte Echo 550 acoustic dispenser for dispensing compounds in precise volume with 

high accuracy (2.5 nL). 
2.   MultiFlo FX Multi-Mode Dispenser with RAD module (BioTek) or Multidrop Combi 

Reagent Dispenser (Thermo Scientific) for dispensing growth media, CellTiter-Glo 
reagents and seeding cells. 

3.   Beckman Coulter Biomek FXP for dispensing primary cells that tend to grow as aggregates. 
4.   PHERAstar FS (BMG Labtech) or Cytation 5 Cell Imaging (BioTek) multi-mode plate 

readers for CellTox Green (fluorescence) and CellTiter-Glo (luminescence) detection on 
384-well plates. 

5.   384-well tissue culture treated sterile assay plates (Corning). 

2.4. Reagents 
1.   Cell media, serum and supplements recommended by cell line providers. 
2.   CellTox Green Cytotoxicity Assay for measuring dead cells (Promega). 
3.   CellTiter-Glo or CellTiter-Glo 2.0 Assay for detecting cell viability (Promega). 

2.5. Software tools  
Specific software tools are needed in the experimental design stage and in the data analysis stage. 
For the 384-well plate design, once the drugs and the concentration ranges are selected, we use the 
in-house cherry-picking program, FIMMcherry, to automatically generate the echo files needed 
for the Labcyte Access system. When the drug combination dose-response matrix data is ready, 
we then use the synergyfinder R package to score and visualize the drug interactions. The 
synergyfinder is also available as a web-application without the need to install the R environment. 

3. Methods 
The drug combination analysis pipeline starts from sample preparation and compound selection, 
based on which an automated plate design program called FIMMCherry is utilized. The phenotypic 
readout from the plate is then profiled including cell viability, cytotoxicity or other phenotypes. 
The resulting dose-response matrix data is analyzed with the synergyfinder R package for the 
detection of synergistic drug combinations (Fig. 2). 
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Fig. 2. An overview of the drug combination data analysis. (A) A typical high-throughput drug 
combination screen utilizes a dose-response matrix design where all possible dose combinations 
for a drug pair can be tested. Colors in the dose-response matrices indicate different levels of 
phenotypic responses of the cancer cell. (B) Depending on the interaction pattern models derived 
from the dose-response matrices, a drug combination can be classified as non-interactive, 
antagonistic or synergistic. 

3.1. Cell culture 
1.   Dissociation of cells by 0.05% trypsin-EDTA (Gibco) or HyQTase (HyClone) to single 

cell suspension. 
2.   Titrate cells to define optimal density within exponential growth (log phase). Cell seeding 

in 2-fold serial dilution starting from 16,000 cells/well on 384-well plates. For most cell 
lines, the optimal cell number is in the range of 500-2,000 cells/well. 

3.   Cell toxicity and viability detection after 72 h of incubation using CellTox Green and 
CellTiter-Glo reagents (Promega). 

4.   For microenvironment control to minimize edge effect and keep concentrations of solutions 
constant we are using MicroClime Environmental Lids (Labcyte). 

3.2. Drug combination plate design 
We utilize a combination plate layout where six compound pairs can be accommodated on one 
384-well plate. A given pair of drugs is combined in a series of one blank and seven half-log 
dilution concentrations, resulting in an 8 × 8 dose matrix. To be able to transfer the compounds 
according to this matrix format, a pick list defining the source and destination plate locations and 
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transfer volumes for the compounds is needed. An in-house program, called FIMMCherry, has 
been developed to automatically generate these rather complex pick lists effortlessly. 
  
FIMMCherry is a desktop GUI application, which is developed using Python 
(https://www.python.org/) and Qt application development framework (https://www.qt.io/). The 
integration of Python and Qt allows FIMMCherry to run on all the major computer platforms 
including Windows, Linux and Mac OS X. Two tab-delimited text files are needed as input: 

1.   A source plate file provides information of the compound stocks (compound identification, 
available concentration ranges, source plate identification and well identification);  

2.   A drug combination file containing the selected compounds. 
 
After loading the input files, FIMMCherry will show the layout of the plates accordingly (Fig. 3). 
A pick list that is compatible with the Labcyte Echo dispenser is then provided for compound 
dispensing. 
 

 
Fig. 3. Drug combination plate design using FIMMCherry. The graphical user interface 
contains a virtual plate enabling an interactive way of design.  After loading the input files 
including the source, the control and drug pair information (the black inset boxes), the selected 
drug combinations and their dose ranges will be listed in the ‘Drug Pair’ tab, for which an echo 
file will be generated for acoustic dispensing. Each plate can be visualized in a separate tab, named 
by their plate identifiers (the red inset box). The ‘Info’ tab shows the liquids consumption in the 
source plates (the yellow inset box).  
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3.3. Phenotypic readouts 
1.   Transfer 5 uL of media with CellTox Green Cytotoxicity reagent in 384-well pre-drugged 

plate. 
2.   Shake the plates on the plate shaker at 450 rpm for 5 min for proper drugs dissolving.  
3.   Transfer a single cell suspension in 20 uL of media to 384-well plate. Final dilution of 

CellTox Green reagent should be 1:2,000 in 25 uL. 
4.   Incubate cells on the plates during 72 h. 
5.   Shake the plates on the plate shaker at 500 rpm for 30 s. Read fluorescence on the plates 

by plate reader for CellTox Green Cytotoxicity detection.   
6.   Transfer 25 uL of CellTiter-Glo reagent. 
7.   Shake the plates on the plate shaker at 450 rpm for 5 min. 
8.   Read luminescence on the plates for detecting cells viability using CellTiter-Glo assay. 

3.4. Synergy scoring 
1.   Installation of the synergyfinder R package 

After downloading and installing R (https://www.R-project.org) and Bioconductor 
(https://www.bioconductor.org/), the synergyfinder package can be installed automatically by 
typing in the R console as below: 
> source(“https://www.bioconductor.org/biocLite.R”) 
> biocLite(“synergyfinder”)  
 

2.   Input data 
A single csv file that describes a drug combination dataset is provided as the input. The csv file is 
in a list format and must contain the following columns:  
●   BlockID: the identifier for a drug combination. If multiple drug combinations are present, 

e.g. in the standard 384-well plate where 6 drug combinations are fitted, then the identifiers 
for each of them must be unique. 

●   Row and Col: the row and column indexes for each well in the plate. 
●   DrugCol: the name of the drug on the columns in a dose-response matrix 
●   DrugRow: the name of the drug on the rows in a dose-response matrix 
●   ConcCol and ConcRow: the concentrations of the column drugs and row drugs in a 

combination 
●   ConcUnit: the unit of concentrations. It is typically nM or µM. 
●   Response: the effect of drug combinations at the concentrations specified by ConcCol and 

ConcRow. The effect must be normalized to %inhibition based on the positive and negative 
controls. For a well-controlled experiment, the range of the response values is expected 
from 0 to 100. However, missing values or extreme values are allowed. For input data 
where the drug effect is represented as %viability, the program will internally convert it 
to %inhibition value by 100-%viability. 
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Fig.4. Plots for single drug dose-response curves and drug combination dose-response 
matrices. (A) The ibrutinib and ispinesib combination. (B) The ibrutinib and canertinib 
combination. Left panel: single drug dose-response curves fitted with the commonly-used 4-
parameter log-logistic (4PL) function. Right panel: the raw dose-response matrix data is visualized 
as a heatmap.  
 
We provide an example input data in the R package, which is extracted from a recent drug 
combination screening for the treatment of diffuse large B-cell lymphoma (DLBCL) (7). The 
example input data contains two representative drug combinations (ibrutinib & ispinesib and 
ibrutinib & canertinib) for which the %viability of a cell line TMD8 was assayed using a 6 by 6 
dose matrix design. The example data in the required list format can be loaded and reshaped to a 
dose-response matrix format for further analysis by typing: 
> data(“mathews_screening_data”) 
> dose.response.mat <- ReshapeData(mathews_screening_data, data.type = “viability”) 
 
The ‘data.type’ parameter specifies the type of drug response, which can be either ‘viability’ or 
‘inhibition’. We will use these example data to illustrate the main functions of synergyfinder below. 
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More documentation of the input and output parameters for each function can be accessed by 
typing: 
> help(‘ReshapeData’) 
 
3. Input data visualization 
The input data can be visualized using the function PlotDoseResponse by typing: 
> PlotDoseResponse(dose.response.mat) 
 
The function fits a four-parameter log-logistic model to generate the dose-response curves for the 
single drugs based on the first row and first column of the dose-response matrix. The drug 
combination responses are also plotted as heatmaps, from which one can assess the therapeutic 
significance of the combination, e.g. by identifying the concentrations at which the drug 
combination can lead to a maximal effect on cancer inhibition (Fig. 4). The PlotDoseResponse 
function also provides a high-resolution pdf file by adding the ‘save.file’ parameter: 
> PlotDoseResponse(dose.response.mat, save.file = TRUE) 
 
The pdf file will be saved under the current work directory with the syntax: 
“drug1.drug2.dose.response.blockID.pdf”. 
 
4. Drug synergy scoring 
The current synergyfinder package provides the synergy scores of four major reference models, 
including HSA, Loewe, Bliss and ZIP. Let’s consider a drug combination experiment where drug 
1 at dose 𝑥"is combined with drug 2 at dose	  𝑥$. The effect of such a combination is 𝑦& as compared 
to the monotherapy effect	  𝑦"(𝑥") and	  𝑦$(𝑥$). To be able to quantify the degree of drug interactions, 
one needs to determine the deviation of 𝑦& from the expected effect	  𝑦) of non-interaction, which 
is calculated in different ways with the reference models. 
●   HSA: 	  𝑦)is the effect of the highest monotherapy effect, i.e. 	  𝑦)= max (	  𝑦",𝑦$). 
●   Loewe: 	  𝑦)is the effect as if a drug is combined with itself, i.e. 𝑦)=	  𝑦"(𝑥" + 𝑥$) = 𝑦$(𝑥" +

𝑥$). 
●   Bliss: 	  𝑦)is the effect as if the two drugs are acting independently on the phenotype, i.e. 

𝑦)=𝑦" + 𝑦$ − 𝑦"𝑦$. 
●   ZIP: 	  𝑦) is the effect as if the two drugs do not potentiate each other, i.e. both the 

assumptions of the Loewe model and the Bliss model are met. 
 
Once	  𝑦)can be determined, the synergy score can be calculated as the difference between the 
observed effect 𝑦& and the expected effect	  𝑦). Depending on whether	  𝑦& > 𝑦) or 𝑦& < 𝑦)	  the drug 
combination can be classified as synergistic or antagonist, respectively. Furthermore, as the input 
data has been normalized as %inhibition values then the synergy score can be directly interpreted 
as the proportion of cellular responses that can be attributed to the drug interactions.  
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Fig.5. The drug interaction landscapes based on the ZIP model. (A) The ibrutinib and ispinesib 
combination. (B) The ibrutinib and canertinib combination.   
 
For a given dose-response matrix, one need to first choose what reference model to use and then 
apply the CalculateSynergy function to calculate the corresponding synergy score at each dose 
combination. For example, the ZIP-based synergy score for the example data can be obtained by 
typing: 
> synergy.score <- CalculateSynergy(data = dose.response.mat, method = “ZIP”, correction = 
TRUE) 
 
For assessing the synergy scores with the other reference models, one needs to change the ‘method’ 
parameter to ‘HSA’, ‘Loewe’ or ‘Bliss’. The ‘correction’ parameter specifies if a baseline 
correction is applied on the raw dose-response data or not. The baseline correction utilizes the 
average of the minimum responses of the two single drugs as a baseline response to correct the 
negative response values. The output ‘synergy.score’ contains a score matrix of the same size to 
facilitate a dose-level evaluation of drug synergy as well as a direct comparison of the synergy 
scores between two reference models. 
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5. The drug interaction landscape 
The synergy scores are calculated across all the tested concentration combinations, which can be 
straightforwardly visualized as either a two-dimensional or a three-dimensional interaction surface 
over the dose matrix. The landscape of such a drug interaction scoring is very informative when 
identifying the specific dose regions where a synergistic or antagonistic drug interaction occurs. 
The height of the 3D drug interaction landscape is normalized as the % inhibition effect to facilitate 
a direct comparison of the degrees of interaction among multiple drug combinations. In addition, 
a summarized synergy score is provided by averaging over the whole dose-response matrix. To 
visualize the drug interaction landscape, one can utilize the PlotSynergy function as below (Fig. 
5): 
> PlotSynergy(synergy.score, type = “all”, save.file = TRUE) 
 
The ‘type’ parameter specifies the visualization type of the interaction surface as 2D, 3D or both.  

4. Notes 
To identify potential drug combinations in preclinical settings both appropriate experimental 
techniques and computation methods are required. However, many of the drug interaction scoring 
methods are focused on a theoretical advance in mathematical modeling, while their corresponding 
implementation tools or source codes are seldom made easily accessible, which hinders their 
application in the analysis of concurrent drug combination data (26-27).  We provide the R package 
synergyfinder to calculate the drug synergy scores using four different reference models, 
acknowledging the fact that the standardization of drug combination data analysis remains an open 
question (28). The users are therefore advised to apply all the models for their data and report a 
drug combination that can show a detectable level of synergy scores irrespective of the model in 
selection. Further, a strong synergy in a drug combination, as revealed using the synergy landscape 
analysis might not be sufficient to warrant the next level confirmatory analysis if the synergy does 
not lead to sufficient overall responses. Therefore, the synergy scoring is always advised to be 
combined with the raw dose-response matrix data visualized in Fig. 4 to provide an overview of 
the extra benefits of drug combinations compared to single drugs. The synergyfinder package will 
be continuously updated for including more rigorous analyses such as statistical significance, 
effect size and noise detection. 
Availability: The source code for the FIMMCherry program is available at github 
(https://github.com/hly89/FIMMCherry). The synergyfinder R package for drug combination data 
analysis is available at CRAN and Bioconductor. 
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