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Abstract

Grade of membership models, also known as “admixture models”, “topic models” or “Latent
Dirichlet Allocation”, are a generalization of cluster models that allow each sample to have
membership in multiple clusters. These models are widely used in population genetics to model
admixed individuals who have ancestry from multiple “populations”, and in natural language
processing to model documents having words from multiple “topics”. Here we illustrate the
potential for these models to cluster samples of RNA-seq gene expression data, measured on either
bulk samples or single cells. We also provide methods to help interpret the clusters, by identifying
genes that are distinctively expressed in each cluster. By applying these methods to several example
RNA-seq applications we demonstrate their utility in identifying and summarizing structure and
heterogeneity. Applied to data from the GTEx project on 51 human tissues, the approach highlights
similarities among biologically-related tissues and identifies distinctively-expressed genes that
recapitulate known biology. Applied to single-cell expression data from mouse preimplantation
embryos, the approach highlights both discrete and continuous variation through early embryonic
development stages, and highlights genes involved in a variety of relevant processes – from germ cell
development, through compaction and morula formation, to the formation of inner cell mass and
trophoblast at the blastocyte stage. The methods are implemented in the Bioconductor package
CountClust.

1 Introduction

Ever since large-scale gene expression measurements have been possible, clustering – of both genes and
samples – has played a major role in their analysis [3–5]. For example, clustering of genes can identify
genes that are working together or are co-regulated, and clustering of samples is useful for quality
control as well as identifying biologically-distinct subgroups. A wide range of clustering methods have
therefore been employed in this context, including distance-based hierarchical clustering, k-means
clustering, and self-organizing maps (SOMs); see for example [6, 7] for reviews.

Here we focus on cluster analysis of samples, rather than clustering of genes (although our methods
do highlight sets of genes that distinguish each cluster). Traditional clustering methods for this problem
attempt to partition samples into distinct groups that show “similar” expression patterns. While
partitioning samples in this way has intuitive appeal, it seems likely that the structure of a typical gene
expression data set will be too complex to be fully captured by such a partitioning. Motivated by this,
here we analyse expression data using grade of membership (GoM) models [8], which generalize
clustering models to allow each sample to have partial membership in multiple clusters. That is, they
allow that each sample has a proportion, or “grade” of membership in each cluster. Such models are
widely used in population genetics to model admixture, where individuals can have ancestry from
multiple populations [14], and in document clustering [32,33] where each document can have
membership in multiple topics. In these fields GoM models are often known as “admixture models”,
and “topic models” or “Latent Dirichlet Allocation” [32]. GoM models have also recently been applied
to detect mutation signatures in cancer samples [31].

Although we are not the first to apply GoM-like models to gene expression data, previous
applications have been primarily motivated by a specific goal, “cell type deconvolution”, which involves
using cell-type-specific expression profiles of marker genes to estimate the proportions of different cell
types in a mixture [38,40,41]. Specifically, the GoM model we use here is analogous to – although
different in detail from – blind deconvolution approaches [36,37,39] which estimate cell type proportions
and cell type signatures jointly (see also [34,35] for semi-supervised approaches). Our goal here is to
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demonstrate that GoM models can be useful much more broadly for understanding structure in
RNA-seq data – not only to deconvolve mixtures of cell types. For example, in our analysis of human
tissue samples from the GTEX project below, the GoM model usefully captures biological heterogeneity
among samples even though the inferred grades of membership are unlikely to correspond precisely to
proportions of specific cell types. And in our analyses of single-cell expression data the GoM model
highlights interesting structure, even though interpreting the grades of membership as “proportions of
cell types” is clearly inappropriate because each sample is a single cell! Here we are exploiting the GoM
as a flexible extension of traditional cluster models, which can capture “continuous” variation among
cells as well as the more “discrete” variation captured by cluster models. Indeed, the extent to which
variation among cells can be described in terms of discrete clusters versus more continuous populations
is a fundamental question that, when combined with appropriate single-cell RNA-seq data, the GoM
models used here may ultimately help address.

2 Methods Overview

We assume that the RNA-seq data on N samples has been summarized by a table of counts
CN×G = (cng), where cng is the number of reads from sample n mapped to gene g (or other unit, such
as transcript or exon) [12]. The GoM model is a generalization of a cluster model, which allows that
each sample has some proportion (“grade”) of membership, in each cluster. For RNA-seq data this
corresponds to assuming that each sample n has some proportion of its reads, qnk coming from cluster
k. In addition, each cluster k is characterized by a probability vector, θk·, whose gth element represents
the relative expression of gene g in cluster k. The GoM model is then

(cn1, cn2, · · · , cnG) ∼ Multinomial (cn+, pn1, pn2, · · · , pnG) , (1)

where cn+ =
∑G

g=1 cng and we assume

png :=

K∑
k=1

qnkθkg. (2)

The number of clusters K is set by the analyst, and it can be helpful to explore multiple values of K
(see Discussion).

To fit this model to RNA-seq data, we exploit the fact that exactly the same GoM model is
commonly used for document clustering [32]. This is because, just as RNA-seq samples can be
summarized by counts of reads mapping to each possible gene in the genome, document data can be
summarized by counts of each possible word in a dictionary. Recognizing this allows existing methods
and software for document clustering to be applied directly to RNA-seq data. Here we use the R
package maptpx [13] to fit the GoM model.

Fitting the GoM model results in estimated membership proportions q for each sample, and
estimated expression values θ for each cluster. We visualize the membership proportions for each
sample using a “Structure plot” [15], which is named for its widespread use in visualizing the results of
the Structure software [14] in population genetics. The Structure plot represents the estimated
membership proportions of each sample as a stacked barchart, with bars of different colors representing
different clusters. Consequently, samples that have similar membership proportions have similar
amounts of each color. See Fig 1 for example.

To help biologically interpret the clusters inferred by the GoM model we also implemented methods
to identify, for each cluster, which genes are most distinctively differentially expressed in that cluster
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(see Methods). Functions for fitting the GoM model, plotting the structure plots, and identifying the
distinctive (“driving”) genes in each cluster, are included in our R package CountClust [44] available
through Bioconductor [29].

3 Results

3.1 Clustering human tissue samples using bulk RNA-seq

We begin by illustrating the GoM model on bulk RNA expression measurements from the GTEx
project (V6 dbGaP accession phs000424.v6.p1, release date: Oct 19, 2015,
http://www.gtexportal.org/home/). These data consist of per-gene read counts from RNA-seq
performed on 8, 555 samples collected from 450 human donors across 51 tissues, lymphoblastoid cell
lines, and transformed fibroblast cell-lines. We analyzed 16, 069 genes that satisfied filters
(e.g. exceeding certain minimum expression levels) that were used during eQTL analyses by the GTEx
project (gene list available in http:

//stephenslab.github.io/count-clustering/project/utilities/gene_names_all_gtex.txt).

We fit the GoM model to these data, with number of clusters K = 5, 10, 15, 20. For each K we ran
the fitting algorithm three times and kept the result with the highest log-likelihood. Fig 1(a) shows the
Structure plot for K = 20, with results for other K in S1 Fig. (See also
http://stephenslab.github.io/count-clustering/project/src/tissues_tSNE_2.html for an
alternative visualization using a 2-dimensional projection with t-SNE [20,21].)

In all cases results reflect the known division of samples into tissues: that is, samples from the same
tissue tend to have similar cluster membership proportions. As might be expected, increasing K
highlights finer structure in the data, with tissues that cluster together with smaller K being
subdivided into distinct subgroups for larger K. For brevity we focus on results for K = 20 (Fig 1(a)).
Here some tissues are represented by essentially a single cluster (e.g. Pancreas, Liver), whereas other
tissues are represented as a mixture of multiple clusters (e.g. Thyroid, Spleen). Furthermore, the results
highlight biological similarity among some tissues by assigning similar membership proportions to
samples from those tissues. For example, samples from several different parts of the brain often have
similar memberships, as do the arteries (aorta, tibial and coronary) and skin samples (sun-exposed and
un-exposed).

To help biologically interpret results we implemented methods to identify the genes and genetic
processes that characterize each cluster (see Methods). Table 1 summarizes results for the GTEx results
in Fig 1a (see also S1 Table). Reassuringly, many results align with known biology. For example, the
purple cluster (cluster 18), which distinguishes Pancreas from other tissues, is enriched for genes
responsible for digestion and proteolysis, (e.g. PRSS1, CPA1, PNLIP). Similarly the yellow cluster
(cluster 12), which primarily distinguishes Cell EBV Lymphocytes from other tissues, is enriched with
genes responsible for immune responses (e.g. IGHM, IGHG1 ) and the pink cluster (cluster 19) which
mainly shows up in Whole Blood, is enriched with genes related hemoglobin complex and oxygen
transport (e.g. HBB, HBA1, HBA2 ). Further, Keratin-related genes characterize the skin cluster
(cluster 6, light denim), Myosin-related genes characterize the muscle skeletal cluster (cluster 7,
orange), etc. The royal purple cluster (cluster 1) has memberships in most tissues and the genes
distinguishing the cluster seem to be responsible for nucleus and nucleoplasm related functionality. In
cases where a cluster occurs in multiple tissues these biological annotations may be particularly helpful
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for understanding what is driving this co-membership. For example, the top genes in the red cluster
(cluster 3), which is common to Breast Mammary tissue, Adipose Subcutaneous and Adipose Visceral,
are related to adipocytes and/or fatty acid synthesis; and the top genes in the salmon cluster (cluster
4), which is common to the Gastroesophageal Junction, Esophagus Muscularis and Colon Sigmoid, are
related to smooth muscle.

Although global analysis of all tissues is useful for highlighting major structure in the data, it may
miss finer-scale structure within tissues or among similar tissues. For example, here the global analysis
allocated only three clusters to all brain tissues (clusters 1,2 and 9 in Fig 1(a)), and we suspected that
additional substructure might be uncovered by analyzing the brain samples separately with larger K.
Fig 1(b) shows the Structure plot for K = 6 on only the Brain samples. The results highlight much
finer-scale structure compared with the global analysis. Brain Cerebellum and Cerebellar hemisphere
are essentially assigned to a separate cluster (lime green), which is enriched with genes related to cell
periphery and communication (e.g. PKD1, CBLN3 ) as well as genes expressed largely in neuronal cells
and playing a role in neuron differentiation (e.g. CHGB). The spinal cord samples also show
consistently strong membership in a single cluster (yellow-orange), the top defining gene for the cluster
being MBP which is involved in myelination of nerves in the nervous system [42]. Another driving gene,
GFAP, participates in system development by acting as a marker to distinguish astrocytes during
development [2].

The remaining samples all show membership in multiple clusters. Samples from the putamen,
caudate and nucleus accumbens show similar profiles, and are distinguished by strong membership in a
cluster (cluster 4, bright red) whose top driving gene is PPP1R1B, a target for dopamine. And cortex
samples are distinguished from others by stronger membership in a cluster (cluster 2, turquoise in
Fig 1(b)) whose distinctive genes include ENC1, which interacts with actin and contributes to the
organisation of the cytoskeleton during the specification of neural fate [1].

3.2 Quantitative comparison with hierarchical clustering

We used the GTEx data to test whether the GoM model is more accurate in detecting substructure
than distance-based clustering methods. Specifically, for each pair of tissues in the GTEx data we
assessed whether or not each clustering method correctly partitioned samples into the two tissue groups
(see Methods). The GoM model was substantially more accurate in this test, succeeding in 81% of
comparisons, compared with 29% for the distance-based method (Fig 2). This presumably reflects the
general tendency for model-based approaches to be more efficient that distance-based approaches,
provided that the model is sufficiently accurate.

3.3 Clustering of single-cell RNA-seq data

Recently RNA-sequencing has become viable for single cells [9], and this technology has the promise to
revolutionize understanding of intra-cellular variation in expression, and regulation more generally [10].
Although it is traditional to describe and categorize cells in terms of distinct cell-types, the actual
architecture of cell heterogeneity may be more complex, and in some cases perhaps better captured by
the more “continuous” GoM model. In this section we illustrate the potential for the GoM model to be
applied to single cell data.

To be applicable to single-cell RNA-seq data, methods must be able to deal with lower sequencing
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depth than in bulk RNA experiments: single-cell RNA-seq data typically involve substantially lower
effective sequencing depth compared with bulk experiments, due to the relatively small number of
molecules available to sequence in a single cell. Therefore, as a first step towards demonstrating its
potential for single cell analysis, we checked robustness of the GoM model to sequencing depth.
Specifically, we repeated the analyses above after thinning the GTEx data by a factor of 100 and 10, 000
to mimic the lower sequencing depth of a typical single cell experiment. For the thinned GTEx data the
Structure plot for K = 20 preserves most of the major features of the original analysis on unthinned
data (S2 Fig). For the accuracy comparisons with distance-based methods, both methods suffer reduced
accuracy in thinned data, but the GoM model remains superior (S3 Fig). For example, when thinning
by a factor of 10, 000, the success rate in separating pairs of tissues is 0.32 for the GoM model vs 0.10
for hierarchical clustering.

Having established its robustness to sequencing depth, we now illustrate the GoM model on two
single cell RNA-seq datasets, from Jaitin et al [22] and Deng et al [23].

3.3.1 Jaitin et al, 2014

Jaitin et al sequenced over 4, 000 single cells from mouse spleen. Here we analyze 1, 041 of these cells
that were categorized as CD11c+ in the sorting markers column of their data
(http://compgenomics.weizmann.ac.il/tanay/?page_id=519), and which had total number of reads
mapping to non-ERCC genes greater than 600. We believe these cells correspond roughly to the 1, 040
cells in their Figure S7. Our hope was that applying our method to these data would identify, and
perhaps refine, the cluster structure evident in [22] (their Figures 2A and 2B). However, our method
yielded rather different results (Fig 3), where most cells were assigned to have membership in several
clusters. Further, the cluster membership vectors showed systematic differences among amplification
batches (which in these data is also strongly correlated with sequencing batch). For example, cells in
batch 1 are characterized by strong membership in the orange cluster (cluster 5) while those in batch 4
are characterized by strong membership in both the blue and yellow clusters (2 and 6). Some adjacent
batches show similar patterns - for example batches 28 and 29 have a similar visual “palette”, as do
batches 32-45. And, more generally, these later batches are collectively more similar to one another
than they are to the earlier batches (0-4).

The fact that batch effects are detectable in these data is not particularly surprising: there is a
growing recognition of the importance of batch effects in high-throughput data generally [26] and in
single cell data specifically [27]. And indeed, both clustering methods and the GoM model can be
viewed as dimension reduction methods, and such methods can be helpful in controlling for batch
effects [24,25]. However, why these batch effects are not evident in Figures 2A and 2B of [22] is unclear.

3.3.2 Deng et al, 2014

Deng et al collected single-cell expression data of mouse preimplantation embryos from the zygote to
blastocyst stage [23], with cells from four different embryos sequenced at each stage. The original
analysis [23] focusses on trends of allele-specific expression in early embryo development. Here we use
the GoM model to assess the primary structure in these data without regard to allele-specific effects
(i.e. combining counts of the two alleles). Visual inspection of the Principal Components Analysis
in [23] suggested perhaps 6-7 clusters, and we focus here on results with K = 6.
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The results from the GoM model (Fig 4) clearly highlight changes in expression profiles that occur
through early embryonic development stages, and enrichment analysis of the driving genes in each
cluster (Table 3, S3 Table) indicate that many of these expression changes reflect important biological
processes during embryonic preimplantation development.

In more detail: Initially, at the zygote and early 2-cell stages, the embryos are represented by a
single cluster (blue in Fig 4) that is enriched with genes responsible for germ cell development (e.g.,
Bcl2l10 [52], Spin1 [53]). Moving through subsequent stages the grades of membership evolve to a
mixture of blue and magenta clusters (mid 2-cell), a mixture of magenta and yellow clusters (late 2-cell)
and a mixture of yellow and green (4-cell stage). The green cluster then becomes more prominent in the
8-cell and 16-cell stages, before dropping substantially in the early and mid-blastocyst stages. That is,
we see a progression in the importance of different clusters through these stages, from the blue cluster,
moving through magenta and yellow to green. By examining the genes distinguishing each cluster we
see that this progression reflects the changing relative importance of several fundamental biological
processes. The magenta cluster is driven by genes responsible for the beginning of transcription of
zygotic genes (e.g., Zscan4c-f show up in the list of top 100 driving genes : see https:

//stephenslab.github.io/count-clustering/project/src/deng_cluster_annotations.html),
which takes place in the late 2-cell stage of early mouse embryonic development [55]. The yellow cluster
is enriched for genes responsible for heterochromation Smarcc1 [56] and chromosome stability
Cenpe [57] (see S3 Table) . And the green cluster is enriched for cytoskeletal genes (e.g., Fbxo15 ) and
cytoplasm genes (e.g., Tceb1, Hsp90ab1 ), all of which are essential for compaction at the 8-cell stage
and morula formation at the 16-cell stage.

Finally, during the blastocyst stages two new clusters (purple and orange in Fig 4) dominate. The
orange cluster is enriched with genes involved in the formation of outer trophoblast cells (e.g., Tspan8,
Krt8, Id2 [50]), while the purple cluster is enriched with genes responsible for the formation of inner cell
mass (e.g., Pdgfra, Pyy [51]). Thus these two clusters are consistent with the two cell lineages, the
trophectoderm and the primitive endoderm, that make up the majority of the cells of the
blastocyst [54]. Interestingly, however, the cells do not appear to fall into two distinct and
clearly-separated populations – at least, not in terms of their expression patterns – but rather show a
continuous range of memberships in these two clusters, even in the late blastocyst stage.

In addition to these trends across development stages, the GoM results also highlight some
embryo-level effects in the early stages (Fig 4). Specifically, cells from the same embryo sometimes show
greater similarity than cells from different embryos. For example, while all cells from the 16-cell stage
have high memberships in the green cluster, cells from two of the embryos at this stage have
memberships in both the purple and yellow clusters, while the other two embryos have memberships
only in the yellow cluster.

Finally, we note that, like clustering methods, the GoM model can be helpful in exploratory data
analysis and quality control. Indeed, the GoM results highlight a few single cells as outliers. For
example, a cell from a 16-cell embryo is represented by the blue cluster - a cluster that represents cells
at the zygote and early 2-cell stage. Also, a cell from an 8-stage embryo has strong membership in the
purple cluster - a cluster that represents cells from the blastocyst stage. It would seem prudent to
consider excluding these cells from subsequent analyses of these data.
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4 Discussion

Our goal here is to highlight the potential for GoM models to elucidate structure in RNA-seq data from
both single cell sequencing and bulk sequencing of pooled cells. We also provide tools to identify which
genes are most distinctively expressed in each cluster, to aid interpretation of results. As our
applications illustrate, these methods have the potential to highlight biological processes underlying the
cluster structure identified.

The GoM model has several advantages over distance-based hierarchical methods of clustering. At
the most basic level model-based methods are often more accurate than distance-based methods.
Indeed, in our simple test on the GTEx data the model-based GoM approach more accurately separated
samples into “known” clusters. However, there are also other subtler benefits of the GoM model.
Because the GoM model does not assume a strict “discrete cluster” structure, but rather allows that
each sample has a proportion of membership in each cluster, it can provide insights into how well a
particular dataset really fits a “discrete cluster” model. For example, consider the results for the data
from Jaitin et al [22] and Deng et al [23]: in both cases most samples are assigned to multiple clusters,
although the results are closer to “discrete” for the latter than the former. The GoM model is also
better able to represent the situation where there is not really a single clustering of the samples, but
where samples may cluster differently at different genes. For example, in the GTEx data, the stomach
samples share memberships in common with both the pancreas (purple) and the adrenal gland (light
green). This pattern can be seen in the Structure plot (Fig 1) but would be hard to discern from a
standard hierarchical clustering.

GoM models also have close connections with dimension reduction techniques such as factor
analysis, principal components analysis and non-negative matrix factorization. All of these methods can
also be used for RNA-seq data, and may often be useful. See [19] for discussion of relationships among
these methods in the context of inferring population genetic structure. While not arguing that the GoM
model is uniformly superior to these other methods, we believe our examples illustrate the appeals of
the approach. In particular, we would argue that for the GTEx data, the Structure plot (Fig 1)
combined with the cluster annotations (Table 1) provide a more visually and biologically appealing
summary of the data than would a principal components analysis.

Fitting GoM models can be computationally-intensive for large data sets. For the datasets we
considered here the computation time ranged from 12 minutes for the data from [23] (n = 259;K = 6),
through 33 minutes for the data from [22] (n = 1, 041;K = 7) to 3,370 minutes for the GTEx data
(n = 8, 555;K = 20). Computation time can be reduced by fitting the model to only the most highly
expressed genes, and we often use this strategy to get quick initial results for a dataset. Because these
methods are widely used for clustering very large document datasets there is considerable ongoing
interest in computational speed-ups for very large datasets, with “on-line” (sequential) approaches
capable of dealing with millions of documents [47] that could be useful in the future for very large
RNA-seq datasets.

A thorny issue that arises when fitting these types of model is how to select the number of clusters,
K. Like many software packages for fitting these models, the maptpx package implements a measure of
model fit that provides one useful guide. However, it is worth remembering that in practice there is
unlikely to be a “true” value of K, and results from different values of K may complement one another
rather than merely competing with one another. For example, seeing how the fitted model evolves as K
increases is one way to capture some notion of hierarchy in the clusters identified [15]. More generally it
is often fruitful to analyse data in multiple ways using the same tool: for example our GTEx analyses
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illustrate how analysis of subsets of the data (in this case the brain samples) can complement analyses
of the entire data.

The version of the GoM model fitted here is relatively simple, and could certainly be embellished.
For example, the model allows the expression of each gene in each cluster to be a free parameter,
whereas we might expect expression of most genes to be “similar” across clusters. This is analogous to
the idea in population genetics applications that allele frequencies in different populations may be
similar to one another [18], or in document clustering applications that most words may not differ
appreciably in frequency in different topics. In population genetics applications incorporating this idea
into the model, by using a correlated prior distribution on these frequencies, can help improve
identification of subtle structure [18] and we would expect the same to happen here for RNA-seq data.

5 Methods and Materials

5.1 Model Fitting

We use the maptpx R package [13] to fit the GoM model (1,2), which is also known as “Latent Dirichlet
Allocation” (LDA). The maptpx package fits this model using an EM algorithm to perform Maximum a
posteriori (MAP) estimation of the parameters q and θ. See [13] for details.

5.2 Visualizing Results

In addition to the Structure plot, we have also found it useful to visualize results using t-distributed
Stochastic Neighbor Embedding (t-SNE), which is a method for visualizing high dimensional datasets
by placing them in a two dimensional space, attempting to preserve the relative distance between
nearby samples [20,21]. Compared with the Structure plot our t-SNE plots contain less information,
but can better emphasise clustering of samples that have similar membership proportions in many
clusters. Specifically, t-SNE tends to place samples with similar membership proportions together in the
two-dimensional plot, forming visual “clusters” that can be identified by eye (e.g.
http://stephenslab.github.io/count-clustering/project/src/tissues_tSNE_2.html). This
may be particularly helpful in settings where no external information is available to aid in making an
informative Structure plot.

5.3 Cluster annotation

To help biologically interpret the clusters, we developed a method to identify which genes are most
distinctively differentially expressed in each cluster. (This is analogous to identifying “ancestry
informative markers” in population genetics applications [16].) Specifically, for each cluster k we
measure the distinctiveness of gene g with respect to any other cluster l using

KLg[k, l] := θkg log
θkg
θlg

+ θlg − θkg, (3)
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which is the Kullback–Leibler divergence of the Poisson distribution with parameter θkg to the Poisson
distribution with parameter θlg. For each cluster k, we then define the distinctiveness of gene g as

Dg[k] = min
l 6=k

KLg[k, l]. (4)

The higher Dg[k], the larger the role of gene g in distinguishing cluster k from all other clusters. Thus,
for each cluster k we identify the genes with highest Dg[k] as the genes driving the cluster k. We
annotate the biological functions of these individual genes using the mygene R Bioconductor
package [28].

For each cluster k, we filter out a number of genes (top 100 for the Deng et al data [23] and GTEx
V6 data [11]) with highest Dg[k] value and perform a gene set over-representation analysis of these
genes against all the other genes in the data representing the background. To do this, we used
ConsensusPathDB database (http://cpdb.molgen.mpg.de/) [48] [49]. See Table 1-2 and Table 3 for
the top significant gene ontologies driving each cluster in the GTEx V6 data and the Deng et al data
respectively.

5.4 Comparison with hierarchical clustering

We compared the GoM model with a distance-based hierarchical clustering algorithm by applying both
methods to samples from pairs of tissues from the GTEx project, and assessed their accuracy in
separating samples according to tissue. For each pair of tissues we randomly selected 50 samples from
the pool of all samples coming from these tissues. For the hierarchical clustering approach we cut the
dendogram at K = 2, and checked whether or not this cut partitions the samples into the two tissue
groups. (We applied hierarchical clustering using Euclidean distance, with both complete and average
linkage; results were similar and so we showed results only for complete linkage.)

For the GoM model we analysed the data with K = 2, and sorted the samples by their membership
in cluster 1. We then partitioned the samples at the point of the steepest fall in this membership, and
again we checked whether this cut partitions the samples into the two tissue groups.

Fig 2 shows, for each pair of tissues, whether each method successfully partitioned the samples into
the two tissue groups.

5.5 Thinning

We used “thinning” to simulate lower-coverage data from the original higher-coverage data..
Specifically, if cng is the counts of number of reads mapping to gene g for sample n for the original data,
we simulated thinned counts tng using

tng ∼ Bin(cng, pthin) (5)

where pthin is a specified thinning parameter.
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5.6 Code Availability

Our methods are implemented in an R package CountClust, available as part of the Bioconductor
project at https://www.bioconductor.org/packages/3.3/bioc/html/CountClust.html. The
development version of the package is also available at https://github.com/kkdey/CountClust.

Code for reproducing results reported here is available at
http://stephenslab.github.io/count-clustering/.
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Fig 1. (a): Structure plot of estimated membership proportions for GoM model with K = 20 clusters
fit to 8555 tissue samples from 53 tissues in GTEx data. Each horizontal bar shows the cluster
membership proportions for a single sample, ordered so that samples from the same tissue are adjacent
to one another. Within each tissue, the samples are sorted by the proportional representation of the
underlying clusters.(b): Structure plot of estimated membership proportions for K = 4 clusters fit to
only the brain tissue samples. This analysis highlights finer-scale structure among the brain samples
that is missed by the global analysis in (a).
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(a) hierarchy method (b) GoM method

Fig 2. A comparison of accuracy of GoM model vs hierarchical clustering. For each pair of tissues from
the GTEX data we assessed whether or not each method (with K = 2 clusters) separated the samples
precisely according to their actual tissue of origin, with successful separation indicated by a filled square.
Some pairs of tissues (e.g. pairs of brain tissues) are more difficult to distinguish than others. Overall
the GoM model is successful in 86% comparisons and the hierarchical clustering in 39% comparisons.
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Fig 3. Structure plot of estimated membership proportions for GoM model with K = 7 clusters fit to
1, 041 single cells from [22]. The samples (cells) are ordered so that samples from the same amplification
batch are adjacent and within each batch, the samples are sorted by the proportional representation of
the underlying clusters. In this analysis the samples do not appear to form clearly-defined clusters, with
each sample being allocated membership in several “clusters”. Membership proportions are correlated
with batch, and some groups of batches (e.g. 28-29; 32-45) show similar palettes. These results suggest
that batch effects are likely influencing the inferred structure in these data.
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Fig 4. Structure plot of estimated membership proportions for GoM model with K = 6 clusters fit to
259 single cells from [23]. The cells are ordered by their preimplantation development phase (and within
each phase, sorted by the proportional representation of the clusters). While the very earliest
developmental phases (zygote and early 2-cell) are essentially assigned to a single cluster, others have
membership in multiple clusters. Each cluster is annotated by the genes that are most distinctively
expressed in that cluster, and by the gene ontology categories for which these distinctive genes are most
enriched (see Table 3 for more extensive annotation results). See text for discussion of biological
processes driving these results.
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Table 1. Cluster Annotations GTEx V6 data (with GO annotations).

Cluster Top 5 Driving Genes Top significant GO terms

1. Royal purple NEAT1, IGFBP5, CCLN2,
SRSF5, PNISR

GO:0005654 (nucleoplasm), GO:0044428 (nuclear part), GO:0044822 (poly-A RNA
binding), GO:0043233 (organelle lumen)

2. Light purple SNAP25, FBXL16, NCDN,
SNCB, SLC17A7

GO:0097458 (neuron part), GO:0007268 (synaptic transmission), GO:0030182 (neu-
ron differentiation), GO:0022008 (neurogenesis), GO:0007267 (cell-cell signaling)

3. Red FABP4, PLIN1, FASN,
GPX3, LIPE

GO:0044255 (cellular lipid metabolism), GO:0006629 (lipid metabolism),
GO:0006639 (acylglycerol metabolism), GO:0045765 (angiogenesis regulation),
GO:0019915 (lipid storage)

4. Salmon ACTG2, MYH11, SYNM,
MYLK, CSRP1

GO:0043292 (contractile fiber), GO:0006936 (muscle contraction), GO:0015629
(actin cytoskeleton), GO:0030016 (myofibril), GO:0005925 (focal adhesion)

5. Denim RGS5, MGP, AEBP1,
IGFBP7, MFGE8

GO:0005578 (proteinaceous extracellular matrix), GO:0030198 (extracellular ma-
trix), GO:0007155 (cell adhesion), GO:0001568 (blood vessel development)

6. Light denim KRT10, KRT1, KRT2,
LOR, KRT14

GO:0008544 (epidermis development), GO:0043588 (skin development), GO:0042303
(molting cycle), GO:0042633 (hair cycle), GO:0048513 (organ development

7. Orange NEB, MYH1, MYH2,
MYBPC1, ACTA1

GO:0043292 (contractile fiber), GO:0030016 (myofibril), GO:0030017 (sarcomere),
GO:0003012 (muscle system process), GO:0015629 (actin cytoskeleton)

8. Light orange FN1, COL1A1, COL1A2,
COL3A1, COL6A3

GO:0030198 (extracellular matrix), GO:0043062 (extracellular structure),
GO:0032963 (collagen metabolism), GO:0030199 (collagen fibril organization),
GO:0030574 (collagen catabolism)

9. Green MBP, GFAP, MTURN,
HIPK2, CARNS1

GO:0043209 (myelin sheath), GO:0007399 (nervous system development),
GO:0008366 (axon ensheathment), GO:0044430 (cytoskeletal part), GO:0005874
(microtubule)

10. Light green CYP17A1, CYP11B1,
PIGR, GKN1, STAR

GO:0006694 (steroid biosynthesis), GO:0008202 (steroid metabolism), GO:0016125
(sterol metabolism), GO:0042446 (hormone biosynthesis), GO:0008207 (C21-steroid
hormone metabolism)

11. Turquoise MPZ, APOD, PMP22, PRX,
NGFR

GO:0008366 (axon ensheathment), GO:0048856 (anatomical structure development),
GO:0007272 (ensheathment of neurons), GO:0042552 (myelination), GO:0005578
(proteinaceous extracellular matrix)

12. Yellow IGHM, IGHG1, IGHG2,
IGHG4, CD74

GO:0006955 (immune response), GO:0002252 (immune effector process),
GO:0003823 (antigen binding), GO:0019724 (B-cell mediated immunity),
GO:0002684 (positive regulation immune system)

13. Sky blue TG, PRL, GH1, PRM2,
PRM1

GO:0019953 (sexual reproduction), GO:0048232 (male gamete generation),
GO:0035686 (sperm fibrous sheath), GO:0005179 (hormone activity), GO:0042403
(thyroid hormone metabolism)

14. Light pink NPPA, MYH6, TNNT2,
ACTC1, MYBPC3

GO:0045333 (cellular respiration), GO:0022904 (respiratory electron transport),
GO:0031966 (mitochondrial membrane), GO:0015980 (energy derivation by oxida-
tion of organic compounds)

15. Light gray KRT13, KRT4, MUC7,
CRNN, KRT6A

GO:0043230 (extracellular organelle), GO:0070062 (extracellular exosome),
GO:0031982 (vesicle), GO:0008544 (epidermis development), GO:0043588 (skin de-
velopment)

16. Gray SFTPBß, SFTPA1,
SFTPA2, SFTPC, A2M

GO:0001525 (angiogenesis), GO:0048514 (blood vessel morphogenesis), GO:2000145
(cell motility regulation), GO:0071944 (cell periphery), GO:0009611 (response to
wounding)

17. Brown CSF3R, MMP25, IL1R2,
SELL, VNN2

GO:0006955 (immune response), GO:0006952 (defense response), GO:0071944 (cell
periphery), GO:0005886 (plasma membrane), GO:0050776 (regulation of immune
response)

18. Purple PRSS1, CPA1, PNLIP,
CELA3A, GP2

GO:0007586 (digestion), GO:0004252 (serine-type endopeptidase activity),
GO:0006508 (proteolysis), GO:0044241 (lipid digestion), GO:0016787 (hydro-
lase activity)

19. Pink HBB, HBA2, HBA1,
FKBP8, HBD

GO:0005833 (hemoglobin complex), GO:0015669 (gas transport), GO:0020037 (heme
binding), GO:0031720 (haptoglobin binding), GO:0006950 (response to stress)

20. Dark gray ALB, HP, FGB, FGA,
ORM1

GO:0034364 (high density lipoprotein), GO:0019752 (carboxylic acid metabolism),
GO:0044710 (single organism metabolism), GO:0002526 (acute inflammatory re-
sponse), GO:0031982 (vesicle)
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Table 2. Cluster Annotations for GTEx V6 Brain data.

Cluster Top 5 Driving Genes Top significant GO terms

1. Royal blue CLU, OXT, GLUL, NDRG2,
CST3

GO:0043230 (extracellular organelle), GO:1903561 (extracellular vesicle),
GO:0070062 (extracellular exosome), GO:0006950 (response to stress), GO:0031988
(membrane bound vesicle)

2. Turquoise ENC1, NCALD, YWHAH,
KIF5A, NPTXR

GO:0097458 (neuron part), GO:0008092 (cytoskeletal protein binding), GO:0031175
(neuron projection development), GO:0030182 (neuron differentiation), GO:0007268
(synaptic transmission)

3. Lime green PKD1, CBLN3, CHGB,
COL27A1, ABLIM1

GO:0005089 (Rho guanyl-nucleotide exchange factor activity), GO:0022008 (neu-
rogenesis), GO:0035239 (tube morphogenesis), GO:0016604 (neuron body),
GO:0006836 (neurotransmitter transport)

4. Red PPP1R1B, RGS14, NCDN,
PDE1B, RAP1GAP

GO:0065009 (regulation of molecular function), GO:0036477 (somatodendritic com-
partment), GO:0007268 (synaptic transmission), GO:0023051 (signaling regulation),
GO:0010646 (cell communication regulation)

5. Yellow orange MBP, GFAP, TF, MTURN,
SCD

GO:0043209 (myelin sheath), GO:0007399 (nervous system development),
GO:0007272 (ensheathment of neurons), GO:0048471 (perinuclear region of cyto-
plasm), GO:0010646 (cell communication regulation)

6. Yellow IQGAP1, A2M, C3, MYH7,
TG

GO:0072562 (blood microparticle), GO:0044449 (contractile fiber part), GO:0043230
(extracellular organelle), GO:0030017 (sarcomere), GO:0072376 (protein activation
cascade)

Table 3. Cluster Annotations for Deng et al (2014) data.

Cluster Top 10 Driving Genes Top significant GO terms

1. Blue Bcl2l10, E330034G19Rik,
Tcl1,LOC100502936, Oas1d,
AU022751, Spin1, Khdc1b,
D6Ertd527e, Btg4

GO:0007276 (gamete generation), GO:0032504 (multicellular organism repro-
duction), GO:0044702 (single organism reproduction), GO:0048477 (oogene-
sis), GO:0048599 (oocyte development), GO:0009994 (oocyte differentiation),
GO:0051321 (meiotic cell cycle), GO:0006306 (DNA methylation), GO:0051302 (reg-
ulation of cell division)

2. Magenta Obox3, Zfp352, Gm8300,
Usp17l5, BB287469, Rfpl4b,
Gm2022, Gm5662, Gm11544
, Gm4850

GO:0016604 (nuclear body), GO:0005814 (centriole), GO:0044450 (microtubule or-
ganizing center part)

3. Yellow Rtn2, Ebna1bp2, Zfp259,
Nasp, Cenpe, Rnf216, Ctsl,
Tor1b, Ankrd10, Lamp2

GO:0044428 (nuclear part), GO:0031981 (nuclear lumen), GO:0070013 (intracellular
organelle lumen), GO:0005730 (nucleolus), GO:0005654 (nucleoplasm), GO:0003723
(RNA binding), GO:0005874 (microtubule), GO:0043229 (intracellular organelle)

4. Green Timd2, Isyna1, Alppl2,
Prame15, Fbxo15, Tceb1,
Gpd1l, Pemt, Hsp90aa1,
Hsp90ab1

GO:0005829 (cytosol), GO:0044444 (cytoplasmic part), GO:1901575 (organic sub-
stance catabolic process), GO:0000151 (ubiquitin ligase com- plex), GO:0009056
(catabolic process), GO:0072655 (protein localization mitochondrion), GO:0044265
(cellular macromolecule catabolic process), GO:0051082 (unfolded protein binding),
GO:0023026 (MHC class II protein complex binding), GO:0055131 (C3HC4-type
RING finger domain binding)

5. Purple Upp1, Tdgf1, Aqp8, Fabp5,
Tat, Pdgfra, Pyy, Prdx1,
Col4a1, Spp1

GO:0070062 (extracellular exosome), GO:0043230 (extracellular organelle),
GO:1903561 (extracellular vesicle), GO:0006950 (response to stress), GO:0006979
(response to oxidative stress), GO:0044710 (metabolic process), GO:0048514 (blood
vessel morphogenesis), GO:0001944 (vasculature development), GO:0030198 (extra-
cellular matrix organization)

6. Orange Actb, Krt18, Fabp3, Id2,
Tspan8, Gm2a, Lgals1, Adh1
, Lrp2, BC051665

GO:0065010 (extracellular membrane-bounded organelle), GO:0070062 (extracellu-
lar exosome), GO:0043230 (extracellular organelle), GO:1903561 (extracellular vesi-
cle), GO:0031982 (vesicle), GO:0048468 (cell development), GO:0030036 (actin cy-
toskeleton and organization), GO:0032432 (actin filament bundle), GO:0005912 (ad-
herens junction)
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6 Supplementary figures

S1 Fig. Structure plot of all tissue samples in for (a) K = 5, (b) K = 10, (c) K = 15, (d) K = 20 Some
tissues form a separate cluster from the rest of the tissues from K = 5 onwards (for example: Whole Blood, Skin),
whereas some tissues only form a distinctive subgroup only at K = 20 (for example: Arteries).
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S2 Fig. Structure plot of all tissue samples in 2 runs of the GTEx V6 data for K=20 for the thinning
parameters (a) pthin = 0.01 and (b) pthin = 0.0001 The patterns in two plots closely correspond to the plot in Fig 1
(a), though there are a few differences from the unthinned version.
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S3 Fig. A comparison of “accuracy” of hierarchical vs model-based clustering on thinned GTEx data,
with thinning parameter pthin = 0.01 and pthin = 0.0001. For each pair of tissues from the GTEx data we assessed
whether or not each clustering method (with K = 2 clusters) separated the samples according to their actual tissue of
origin, with successful separation indicated by a filled square. Thinning deteriorates accuracy compared with the
unthinned data (Figure 2), but even then the model-based method remains more successful than the hierarchical
clustering in separating the samples by tissue or origin.

(a) hierarchy thin 0.01 (b) GoM thin 0.01

(c) hierarchy 0.0001 (d) GoM thin 0.0001
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7 Supplementary tables

S1 Table. Cluster Annotations GTEx V6 data (with top gene summaries).

Cluster Top
Driving
Genes

Gene names Gene Summary

1, Royal

purple

NEAT1 nuclear paraspeckle assem-
bly transcript 1

produces a long non-coding RNA (lncRNA) transcribed from the multiple en-
docrine neoplasia locus, regulates genes involved in cancer progression.

CCNL2 cyclin L2 regulator of the pre-mRNA splicing process, as well as in inducing apoptosis by
modulating the expression of apoptotic and antiapoptotic proteins.

SRSF5 serine/arginine-rich splic-
ing factor 5

encodes proteins of serine/arginine (SR)-rich family, involved in mRNA export
from the nucleus and in translation.

2, Light

purple

SNAP25 synaptosomal-associated
protein, 25kDa

this gene product is a presynaptic plasma membrane protein involved in the
regulation of neurotransmitter release.

FBXL16 F-box and leucine-rich re-
peat protein 16

members of F-box protein family, which interact with SKP1 through the F box,
and they interact with ubiquitination targets through other protein interaction
domains.

SLC17A7 neurochondrin encodes proteins expressed in neuron-rich regions; associated with the mem-
branes of synaptic vesicles and functions in glutamate transport.

3, Red

FABP4 fatty acid binding protein 4 encodes the fatty acid binding protein found in adipocytes, takes part in fatty
acid uptake, transport, and metabolism.

PLIN1 perilipin 1 protein encoded by this gene coats lipid storage droplets in adipocytes, thereby
protecting them until they can be broken down by hormone-sensitive lipase.

FASN fatty acid synthase catalyze the synthesis of palmitate from acetyl-CoA and malonyl-CoA, in the
presence of NADPH, into long-chain saturated fatty acids.

4, Salmon

ACTG2 actin, gamma 2, smooth
muscle, enteric

involved in various types of cell motility and in the maintenance of the cy-
toskeleton.

MYH11 myosin, heavy chain 11,
smooth muscle

protein encoded by this gene is a smooth muscle myosin belonging to the myosin
heavy chain family, functions as a major contractile protein, converting chemical
energy into mechanical energy through the hydrolysis of ATP.

SYNM synemin protein has been found to form a linkage between desmin, which is a subunit
of the IF network, and the extracellular matrix, and provides an important
structural support in muscle.

5, Denim

RGS5 regulator of G-protein sig-
naling 5

encodes a member of the regulators of G protein signaling (RGS) family, asso-
ciated with retinal arterial macroaneurysm.

MFGE8 milk fat globule-EGF fac-
tor 8 protein

encodes a preproprotein that is proteolytically processed to form multiple pro-
tein products, been implicated in wound healing, autoimmune disease, and can-
cer

ITGA8 synemin Proteins generated mediate numerous cellular processes including cell adhesion,
cytoskeletal rearrangement, and activation of cell signaling pathways.

6, Light

denim

KRT10 keratin 10 encodes a member of the type I (acidic) cytokeratin family, mutations associated
with epidermolytic hyperkeratosis.

KRT1 keratin 1, type II specifically expressed in the spinous and granular layers of the epidermis with
family member KRT10 and mutations in these genes have been associated with
bullous congenital ichthyosiform erythroderma.

KRT2 keratin 2, type II expressed largely in the upper spinous layer of epidermal keratinocytes and mu-
tations in this gene have been associated with bullous congenital ichthyosiform
erythroderma.

7, Orange

NEB nebulin encodes nebulin, a giant protein component of the cytoskeletal matrix that
coexists with the thick and thin filaments within the sarcomeres of skeletal
muscle, associated with recessive nemaline myopathy.

MYH1 myosin, heavy chain 1,
skeletal muscle, adult

a major contractile protein which converts chemical energy into mechanical
energy through the hydrolysis of ATP.

MYH2 myosin, heavy chain 2,
skeletal muscle, adult

encodes a member of the class II or conventional myosin heavy chains, and
functions in skeletal muscle contraction.
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Cluster Top
Driving
Genes

Gene namese Gene Summary

8, Light

orange

FN1 fibronectin 1 Fibronectin is involved in cell adhesion, embryogenesis, blood coagulation, host
defense, and metastasis.

COL1A1 collagen, type I, alpha 1 Mutations in this gene associated with osteogenesis imperfecta types I-IV,
Ehlers-Danlos syndrome type and Classical type, Caffey Disease.

COL1A2 collagen, type I, alpha 2 Mutations in this gene associated with osteogenesis imperfecta types I-IV,
Ehlers-Danlos syndrome type and Classical type, Caffey Disease.

9, Green

MBP myelin basic protein major constituent of the myelin sheath of oligodendrocytes and Schwann cells
in the nervous system

GFAP glial fibrillary acidic pro-
tein

encodes one of the major intermediate filament proteins of mature astrocytes,
mutations casuses Alexander disease.

CARNS1 carnosine synthase 1 catalyzes the formation of carnosine and homocarnosine, which are found
mainly in skeletal muscle and the central nervous system, respectively.

10, Light

green

CYP17A1 cytochrome P450 family 17
subfamily A member 1

encodes a member of the cytochrome P450 superfamily of enzymes, muta-
tions in this gene are associated with isolated steroid-17 alpha-hydroxylase
deficiency,20-lyase deficiency, pseudohermaphroditism, and adrenal hyperpla-
sia.

CYP11B1 cytochrome P450 family 11
subfamily B member 1

The protein encoded by this gene plays a key role in the acute regulation of
steroid hormone synthesis by enhancing the conversion of cholesterol into preg-
nenolone, associated with congenital lipoid adrenal hyperplasia.

GKN1 gastrokine 1 protein encoded by this gene is found to be down-regulated in human gastric
cancer tissue as compared to normal gastric mucosa..

11,

Turquoise

MPZ myelin protein zero specifically expressed in Schwann cells of the peripheral nervous system and
encodes a type I transmembrane glycoprotein that is a major structural protein
of the peripheral myelin sheath, mutations associated with autosomal dominant
form of Charcot-Marie-Tooth disease type 1 and other polyneuropathies.

APOD apolipoprotein D encodes a component of high density lipoprotein that has no marked simi-
larity to other apolipoprotein sequences, closely associated with lipoprotein
metabolism.

PMP22 peripheral myelin protein
22

encodes an integral membrane protein that is a major component of myelin in
the peripheral nervous system..

12, Yellow

IGHM immunoglobulin heavy
constant mu

IgM antibodies play an important role in primary defense mechanisms, Diseases
associated with IGHM include agammaglobulinemia 1 and immunodeficiency
23.

IGHG1 immunoglobulin heavy
constant gamma 1 (G1m
marker)

antigen binding functionality, diseases associated with IGHG1 include heavy
chain deposition disease and chronic lymphocytic leukemia.

IGHG2 immunoglobulin heavy
constant gamma 2 (G2m
marker)

antigen binding gene, diseases associated with IGHG2 include c2 deficiency.

13, Sky

blue

TG thyroglobulin thyroglobulin produced predominantly in thyroid gland, synthesizes thyroxine
and triiodothyronine, associated with Graves disease and Hashimotot thyroidi-
tis.

PRL prolactin 2 encodes the anterior pituitary hormone prolactin. This secreted hormone is a
growth regulator for many tissues, including cells of the immune system.

PRM2 protamine 2 Protamines are the major DNA-binding proteins in the nucleus of sperm.

14, Light

pink

NPPA natriuretic peptide A protein encoded by this gene belongs to the natriuretic peptide family, controls
extracellular fluid volume and electrolyte homeostasis, mutations Mutations
associated with atrial fibrillation familial type 6.

MYH6 myosin, heavy chain 6, car-
diac muscle, alpha

encodes the alpha heavy chain subunit of cardiac myosin, mutations cause fa-
milial hypertrophic cardiomyopathy and atrial septal defect 3

TNNT2 protamine 2 protein encoded by this gene is the tropomyosin-binding subunit of the troponin
complex, mutations in this gene have been associated with familial hypertrophic
cardiomyopathy as well as with dilated cardiomyopathy.
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Cluster Top
Driving
Genes

Gene namese Gene Summary

15, Light

gray

KRT13 keratin 13, type I protein encoded by this gene is a member of the keratin gene family, associated
with the autosomal dominant disorder White Sponge Nevus.

KRT4 keratin 4, type II protein encoded by this gene is a member of the keratin gene family, associ-
ated with White Sponge Nevus, characterized by oral, esophageal, and anal
leukoplakia.

CRNN cornulin may play a role in the mucosal/epithelial immune response and epidermal dif-
ferentiation.

16, Gray

SFTPB surfactant protein B an amphipathic surfactant protein essential for lung function and homeostasis
after birth, muttaions cause pulmonary alveolar proteinosis, fatal respiratory
distress in the neonatal period.

SFTPA2 surfactant protein A2 Mutations in this gene and a highly similar gene located nearby, which affect
the highly conserved carbohydrate recognition domain, are associated with id-
iopathic pulmonary fibrosis.

SFTPA1 surfactant protein A1 encodes a lung surfactant protein that is a member of C-type lectins called
collectins, associated with idiopathic pulmonary fibrosis.

17, Brown

CSF3R colony stimulating factor 3
receptor

protein encoded by this gene is the receptor for colony stimulating factor 3, a
cytokine that controls the production, differentiation, and function of granulo-
cytes, mutations a cause of Kostmann syndrome

MMP25 matrix metallopeptidase 25 proteins are involved in the breakdown of extracellular matrix in normal phys-
iological processes, such as embryonic development, reproduction, and tissue
remodeling, as well as in disease processes, such as arthritis and metastasis.

IL1R2 interleukin 1 receptor type
2

protein encoded by this gene is a cytokine receptor that belongs to the inter-
leukin 1 receptor family.

18, Purple

PRSS1 protease, serine 1 secreted by pancreas, associated with pancreatitis

CPA1 carboxypeptidase A1 secreted by pancreas, linked to pancreatitis and pancreatic cancer

PNLIP pancreatic lipase encodes a carboxyl esterase that hydrolyzes insoluble, emulsified triglycerides,
and is essential for the efficient digestion of dietary fats. This gene is expressed
specifically in the pancreas.

19, Pink

HBB hemoglobin, beta mutant beta globin causes sickle cell anemia, absence of beta chain/ reduction
in beta globin leads to thalassemia.

HBA2 hemoglobin, alpha 2 deletion of alpha genes may lead to alpha thalassemia.

HBA1 hemoglobin, alpha 1 deletion of alpha genes may lead to alpha thalassemia.

20, Dark

gray

ALB albumin functions primarily as a carrier protein for steroids, fatty acids, and thyroid
hormones and plays a role in stabilizing extracellular fluid volume.

HP haptoglobin encodes a preproprotein, which subsequently produces haptoglobin, linked to
diabetic nephropathy, Crohn’s disease, inflammatory disease behavior and re-
duced incidence of Plasmodium falciparum malaria.

FGB fibrinogen beta chain protein encoded by this gene is the beta component of fibrinogen, mutations
may lead to several disorders, including afibrinogenemia, dysfibrinogenemia,
hypodysfibrinogenemia etc.
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S2 Table. Cluster Annotations GTEx V6 Brain data (with top gene summaries).

Cluster Top
Driving
Genes

Gene names Gene Summary

1, Royal

blue

CLU clusterin protein encoded by this gene is a secreted chaperone that can under some
stress conditions also be found in the cell cytosol, also involved in cell death,
tumor progression, and neurodegenerative disorders.

OXT oxytocin/neurophysin I
prepropeptide

encodes a precursor protein that is processed to produce oxytocin and neu-
rophysin I, involved in contraction of smooth muscle during parturition and
lactation, cognition, tolerance, adaptation and complex sexual and mater-
nal behaviour.

GLUL glutamate-ammonia ligase catalyzes the synthesis of glutamine from glutamate and ammonia in an
ATP-dependent reaction, associated with congenital glutamine deficiency,
and overexpression of this gene was observed in some primary liver cancer
samples.

2,

Turquoise

ENC1 ectodermal-neural cortex 1 plays a role in the oxidative stress response as a regulator of the transcrip-
tion factor Nrf2, may play role in malignant transformation.

NCALD neurocalcin delta encodes a member of the neuronal calcium sensor (NCS), a regulator of G
protein-coupled receptor signal transduction.

YWHAH tyrosine 3-
monooxygenase/tryptophan
5-monooxygenase activa-
tion protein eta

mediate signal transduction by binding to phosphoserine-containing pro-
teins, associated with early-onset schizophrenia and psychotic bipolar dis-
order.

3, Lime

green

PKD1 polycystin 1, transient re-
ceptor potential channel in-
teracting

functions as a regulator of calcium permeable cation channels and intracel-
lular calcium homoeostasis. It is also involved in cell-cell/matrix interac-
tions and may modulate G-protein-coupled signal-transduction pathways.

CBLN3 cerebellin 3 precursor contain a cerebellin motif and C-terminal C1q signature domain that me-
diates trimeric assembly of atypical collagen complexes

CHGB chromogranin B encodes a tyrosine-sulfated secretory protein abundant in peptidergic en-
docrine cells and neurons. This protein may serve as a precursor for regu-
latory peptides.

4, Red

PPP1R1B protein phosphatase 1 reg-
ulatory inhibitor sub- unit
1B

encodes a bifunctional signal transduction molecule, may serve as a thera-
peutic target for neurologic and psychiatric disorders.

RGS14 regulator of G-protein sig-
naling 14

attenuates the signaling activity of G-proteins, increases the rate of con-
version of the GTP to GDP.

NCDN neurochondrin encodes a leucine-rich cytoplasmic protein, essential for spatial learning
processes.

5, Yellow

orange

MBP myelin basic protein protein encoded is a major constituent of the myelin sheath of oligodendro-
cytes and Schwann cells in the nervous system.

GFAP glial fibrillary acidic protein encodes major intermediate filament proteins of mature astrocytes, a
marker to distinguish astrocytes during development, mutations in this gene
cause Alexander disease, a rare disorder of astrocytes in central nervous
system.

TF transferrin transport iron from the intestine, reticuloendothelial system, and liver
parenchymal cells to all proliferating cells in the body, involved in the re-
moval of certain organic matter and allergens from serum.

6, Yellow

IQGAP1 IQ motif containing GT-
Pase activating protein 1

interacts with components of the cytoskeleton, with cell adhesion molecules,
and with several signaling molecules to regulate cell morphology and motil-
ity.

A2M alpha-2-macroglobulin inhibits many proteases, including trypsin, thrombin and collagenase. A2M
is implicated in Alzheimer disease (AD) due to its ability to mediate the
clearance and degradation of A-beta, the major component of beta-amyloid
deposits.

C3 complement component 3 plays a central role in the activation of complement system, associated with
atypical hemolytic uremic syndrome and age-related macular degeneration
in human patients.
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S3 Table. Deng et al (2014) Cluster 1 (blue) top GO annotations.

go.id name significant
1 GO:0007276 gamete generation BCL2L10; GDF9; NOBOX; PABPC1L; RGS2; CREB3L4; RNF114; BMP15;

PTTG1; TDRD12; WEE2; SPIN1; DAZL

2 GO:0007292 female gamete genera-
tion

GDF9; BCL2L10; PABPC1L; BMP15; WEE2; DAZL; NOBOX

3 GO:0048609 multicellular organismal
reproductive process

GDF9; NOBOX; PABPC1L; BCL2L10; BMP15; CREB3L4; TGFB2; RNF114;
RGS2; PTTG1; TDRD12; WEE2; SPIN1; DAZL

4 GO:0032504 multicellular organism
reproduction

GDF9; NOBOX; PABPC1L; BCL2L10; BMP15; CREB3L4; TGFB2; RNF114;
RGS2; PTTG1; TDRD12; WEE2; SPIN1; DAZL

5 GO:0019953 sexual reproduction BCL2L10; GDF9; NOBOX; PABPC1L; RGS2; CREB3L4; RNF114; BMP15;
PTTG1; TDRD12; WEE2; SPIN1; DAZL

6 GO:0044702 single organism repro-
ductive process

GDF9; NOBOX; PABPC1L; BCL2L10; BMP15; CREB3L4; TGFB2; CASP8;
RNF114; RGS2; PTTG1; TDRD12; WEE2; SPIN1; DAZL

7 GO:0048477 oogenesis WEE2; GDF9; NOBOX; PABPC1L; DAZL

8 GO:0044703 multi-organism repro-
ductive process

BCL2L10; GDF9; NOBOX; PABPC1L; RGS2; CREB3L4; RNF114; BMP15;
PTTG1; TDRD12; WEE2; SPIN1; DAZL

9 GO:0048599 oocyte development WEE2; GDF9; PABPC1L; DAZL

10 GO:0009994 oocyte differentiation WEE2; GDF9; PABPC1L; DAZL

11 GO:0051321 meiotic cell cycle H1FOO; WEE2; TDRD12; SPIN1; PTTG1; DAZL

12 GO:0001556 oocyte maturation WEE2; PABPC1L; DAZL

13 GO:0006306 DNA methylation TDRD12; H1FOO; TET3; ZFP57

14 GO:0051302 regulation of cell division TGFB2; PTTG1; TXNIP; WEE2; CHEK1; DAZL

15 GO:0060255 regulation of macro-
molecule metabolic
process

TGFB2; NOBOX; BPGM; UBE2D3; NFYA; CASP8; BMP15; TXNIP;
TDRD12; GDF9; BCL2L10

S3 Table continued. Deng et al (2014) Cluster 2 (magenta) top GO annotations.

go.id name significant
1 GO:0016604 nuclear body YTHDC1; RBM8A; CDK12; PSME4; PPP1R8; HIPK1; TOPORS

2 GO:0005814 centriole SFI1; PLK2; ROCK1; TOPORS

3 GO:0044450 microtubule organizing
center part

SFI1; PLK2; ROCK1; TOPORS
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S3 Table continued. Deng et al (2014) Cluster 3 (yellow) top GO annotations.

go.id name significant
1 GO:0044428 nuclear part MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; TOR1B; MIOS; NR1H3;

POLR3K

2 GO:0031981 nuclear lumen MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1

3 GO:0070013 intracellular organelle lu-
men

MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1; DNTTIP2; ZBTB10; ZBTB17

4 GO:0043233 organelle lumen MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1

5 GO:0005730 nucleolus XPO1; DNTTIP2; ESF1; WDR43; ZDHHC7; HEATR1; POLR1E; DDX24;
POLR3K

6 GO:0005634 nucleus MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; TOR1B; MIOS; NR1H3;
EIF5B; POLR3K

7 GO:0044446 intracellular organelle
part

MAD2L2; PTDSS2; SMARCC1; KLHL21; TOR1B; PPRC1; SLU7; NFYB;
SLC25A36; ECE2

8 GO:0005654 nucleoplasm MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1; ZBTB10; ZBTB17

9 GO:0003723 RNA binding PPRC1; EIF5B; XPO1; DNTTIP2; WDR43; DDX10; EIF3C; BCLAF1;
EBNA1BP2; RARS

10 GO:0003676 nucleic acid binding SMARCC1; PPRC1; SLU7; NFYB; POLR1E; EIF5B; POLR3K; XPO1; DNT-
TIP2

11 GO:0043231 intracellular membrane-
bounded organelle

MAD2L2; PTDSS2; SMARCC1; TOR1B; PPRC1; SLU7; NFYB; ESF1;
ECE2; LMAN1L

12 GO:0043229 intracellular organelle MAD2L2; PTDSS2; SMARCC1; KLHL21; TOR1B; PPRC1; ARRDC1; SLU7;
NFYB; ESF1; ECE2

13 GO:0005874 microtubule WDR43; KLHL21; HAUS6; CENPE; TEKT2; RACGAP1; WDR81;
BCL2L11; KIF20B

14 GO:0044822 poly(A) RNA binding WDR43; DNTTIP2; ESF1; NXF1; DDX10; HEATR1; EIF3C

15 GO:0044424 intracellular part MAD2L2; PTDSS2; SMARCC1; KLHL21; TOR1B; PPRC1; SNAPC4;
POLR3K; ARRDC1; SLU7; NFYB; ESF1; WDR43; ECE2; LMAN1L
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S3 Table continued. Deng et al (2014) Cluster 4 (green) top GO annotations.

go.id name significant
1 GO:0005829 cytosol PARG; UAP1; PSMB10; TCEB1; RPLP0; EIF5; CNBP; RPS3; PSAT1;

AACS; PMM1; EXOSC7; EIF3I; SET; BHMT; BHMT2

2 GO:0044444 cytoplasmic part PARG; UAP1; PSMB10; TCEB1; HSPA8; SERINC1; EIF5; CNBP; RPS3;
PSAT1; GPD2; AACS; GPR137B; STIP1; PMM1; EXOSC7; VPREB3;
PEX16

3 GO:0055131 C3HC4-type RING fin-
ger domain binding

HSPA8; PINK1; DNAJA1

4 GO:1901575 organic substance
catabolic process

PSMB10; TCEB1; RPLP0; RPS3; GPD2; PINK1; EXOSC7; ALLC; BHMT;
HSP90AB1; RPL13A; ATG7; CUL5; UBXN1; ZMPSTE24

5 GO:0000151 ubiquitin ligase complex DNAJA1; RNF7; UBE2C; HSPA8; FBXO15; SUGT1; DCAF4; CUL5;
FBXL20

6 GO:0072655 protein localization to
mitochondrion

TIMM17A; BNIP3L; ARIH2; PEMT; SFN; PINK1; HSP90AA1; TIMM23

7 GO:1901564 organonitrogen com-
pound metabolic process

PSMB10; RPLP0; SERINC1; EIF5; BHMT2; PINK1; EIF3I; ALLC; BHMT;
MRPL22; RPL13A; ATG7; NUDT9; VNN1; CTSA; HK1

8 GO:0005737 cytoplasm PARG; UAP1; PSMB10; TCEB1; HSPA8; SERINC1; EIF5; CNBP; RPS3;
PSAT1; GPD2; AACS; GPR137B; STIP1; PMM1; EXOSC7

9 GO:0044265 cellular macromolecule
catabolic process

EXOSC7; SUMO2; BNIP3L; ARIH2; PSMB10; TCEB1; RPLP0; UBXN1;
HSP90AB1; RPL13A; RPS3; RNF7; PINK1

10 GO:0023026 MHC class II protein
complex binding

HSP90AB1; HSP90AA1; HSPA8

11 GO:0051082 unfolded protein binding DNAJA1; PTGES3; HSPA8; HSP90AB1; HSP90AA1; NPM1

12 GO:0009056 catabolic process PSMB10; TCEB1; RPLP0; RPS3; GPD2; PINK1; EXOSC7; ALLC; WDR45;
HSP90AB1; RPL13A

13 GO:0009057 macromolecule catabolic
process

EXOSC7; SUMO2; BNIP3L; ARIH2; PSMB10; TCEB1; RPLP0; AZIN1;
UBXN1; HSP90AB1; RPL13A

14 GO:0044248 cellular catabolic process PSMB10; TCEB1; SUMO2; RPS3; GPD2; PINK1; EXOSC7; ALLC; WDR45;
HSP90AB1

15 GO:0006626 protein targeting to mi-
tochondrion

TIMM17A; BNIP3L; ARIH2; PEMT; PINK1; HSP90AA1; TIMM23
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S3 Table continued. Deng et al (2014) Cluster 5 (purple) top GO annotations.

go.id name significant
1 GO:0044710 single-organism

metabolic process
PCK2; SAT1; EPHX2; NFATC4; CKB; PRDX6; MSH2; EPHA4; PROS1;
PDGFRA; PRDX1; UBE2L6; POGLUT1; FABP5; AKAP12; TDGF1; FBP2;
SOX2

2 GO:0006950 response to stress EPHX2; NFATC4; PRDX6; MSH2; EPHA4; PROS1; PDGFRA; PRDX1;
UBE2L6; FABP5; TDGF1; SOX2

3 GO:0065010 extracellular membrane-
bounded organelle

PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1;
FABP5; FBP2; TRAP1; PLOD2; DHRS4

4 GO:0070062 extracellular exosome PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1;
FABP5; FBP2; TRAP1; PLOD2; DHRS4; MARCKS; DPP4; PRKCI; RAC2;
IDH1

5 GO:0043230 extracellular organelle PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1;
FABP5; FBP2; TRAP1; PLOD2; DHRS4; MARCKS; DPP4

6 GO:1903561 extracellular vesicle PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1;
FABP5; FBP2; TRAP1; PLOD2; DHRS4; MARCKS; DPP4; PRKCI

7 GO:0042221 response to chemical EPHX2; NFATC4; MFGE8; PRDX6; EPHA4; PROS1; PDGFRA; PRDX1;
UBE2L6; TDGF1; SOX2

8 GO:0031988 membrane-bounded vesi-
cle

PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1;
FABP5; FBP2; TRAP1; PLOD2; DHRS4; SPARC

9 GO:0031982 vesicle PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1;
FABP5; FBP2; TRAP1; PLOD2; DHRS4; SPARC

10 GO:0001525 angiogenesis SAT1; PDGFRA; BMP4; NFATC4; MFGE8; FN1; MEIS1; SPARC; COL4A2;
COL4A1; FGF10; TDGF1

11 GO:0048514 blood vessel morphogen-
esis

SAT1; PDGFRA; BMP4; NFATC4; MFGE8; FN1; ZFP36L1; MEIS1; SPARC;
COL4A2; COL4A1; FGF10; TDGF1

12 GO:0001944 vasculature development SAT1; PDGFRA; BMP4; NFATC4; MFGE8; FN1; ZFP36L1; MEIS1; PDPN;
SPARC; COL4A2; COL4A1; FGF10; TDGF1

13 GO:0006979 response to oxidative
stress

TAT; PDGFRA; BMP4; ETV5; TRAP1; PRDX6; IDH1; PARP1; AQP8;
PRDX1; CRYGD

14 GO:0009725 response to hormone PRKCI; GJA1; PDGFRA; BMP4; MFGE8; TAT; PLOD2; SPP1; IDH1

15 GO:0030198 extracellular matrix or-
ganization

PDGFRA; BMP4; JAM2; FN1; PLOD2; SPARC; SPP1; COL4A2; COL4A1;
SERPINH1; DPP4
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S3 Table continued. Deng et al (2014) Cluster 6 (orange) top GO annotations.

go.id name genes
1 GO:0065010 extracellular membrane-

bounded organelle
MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB;
MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8; LCP1; UGP2

2 GO:0070062 extracellular exosome MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB;
MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8; LCP1; UGP2

3 GO:0043230 extracellular organelle MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB;
MSN; FABP3; PDZK1IP1; PRSS8; S100A11

4 GO:1903561 extracellular vesicle MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB;
MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8

5 GO:0031988 membrane-bounded vesi-
cle

MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; TMSB4X; SDC4; TINAGL1;
CRYAB; MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2

6 GO:0031982 vesicle MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; TMSB4X; SDC4; TINAGL1;
CRYAB; MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8

7 GO:0008092 cytoskeletal protein
binding

MYH10; TPM4; TMSB4X; CRYAB; MSN; TMSB10; FABP3; NDRG1;
CALM1; FMNL2; MYH9; CAP1; TPM1; CDH1

8 GO:0015629 actin cytoskeleton MYH10; CLIC4; MYH9; MYL12B; WDR1; CNN2; ARPC2; AHNAK;
ACTN4; CRYAB; CAP1; TPM1; DSTN; ARPC5; TPM4

9 GO:0003779 actin binding MYH10; TPM4; WDR1; CNN2; FMNL2; ARPC2; MYH9; CAP1; TPM1

10 GO:0048468 cell development MYH10; CAPG; ACTG1; WDR1; CNN2; FMNL2; MYH9; ACTN4; SDC4;
CAP1; TPM1; DSTN

11 GO:0030036 actin cytoskeleton orga-
nization

MYH10; CAPG; ACTG1; WDR1; CNN2; FMNL2; MYH9; ACTN4; SDC4;
CAP1; TPM1

12 GO:0032432 actin filament bundle MYH10; TPM4; MYL12B; CNN2; MYH9; CRYAB; TPM1; ACTN4; LCP1

13 GO:0005912 adherens junction TJP2; MYH9; ACTG1; CNN2; ARPC2; AHNAK; ACTN4; SDC4

14 GO:0070161 anchoring junction TJP2; MYH9; ACTG1; CNN2; ARPC2; AHNAK; ACTN4; SDC4

15 GO:0005925 focal adhesion MYH9; ACTG1; CNN2; ARPC2; AHNAK; ACTN4; SDC4; CAP1; ARPC5
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