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In communities with bacterial viruses (phage) and bacteria, the phage-bacteria infection network
establishes which virus types infects which host types. The structure of the infection network is a
key element in understanding community dynamics. Yet, this infection network is often difficult to
ascertain. Introduced over 60 years ago, the plaque assay remains the gold-standard for establishing
who infects whom in a community. This culture-based approach does not scale to environmental
samples with increased levels of phage and bacterial diversity, much of which is currently uncultur-
able. Here, we propose an alternative method of inferring phage-bacteria infection networks. This
method uses time series data of fluctuating population densities to estimate the complete interaction
network without having to test each phage-bacteria pair individually. We use in silico experiments
to analyze the factors affecting the quality of network reconstruction and find robust regimes where
accurate reconstructions are possible. In addition, we present a multi-experiment approach where
time series from different experiments are combined to improve estimates of the infection network
and mitigate against the possibility of evolutionary changes to infection during the time-course of
measurement.

I. INTRODUCTION

Bacterial viruses are ubiquitous and play an important
ecological role at the global scale. In the oceans, virus-
es are responsible for a significant fraction of bacterial
mortality and as a result have an effect on global geobio-
chemical cycles [1–4]. By killing bacteria, they redirect
resources from higher trophic levels and back into the
microbial resource pool. Yet, not all bacteria types are
susceptible to all virus types. Each phage type potential-
ly infects subset of hosts which can be presented as com-
plex networks of infection [5]. Quantifying who infects
whom remains essential to understanding how individual-
based traits affect ecosystem-wide properties in complex
environments.

For more than 60 years, the host range of phage, i.e.,
the types of host that a phage type infects, has been
measured using plaque assays [6]. A plaque assay is an
experimental method in which a growing culture of bac-
teria on an agar surface are exposed to phage. Clear
“plaques” are formed whenever the phage can infect and
lyse the target host. Plaque assays are considered the
gold-standard for determining infection but are hard to
scale-up to community levels. The principal reason is
that the majority of phage and bacteria in a community
sample are not yet available in culture. In response, a
number of (partially) culture-independent methods have
been proposed, including viral tagging [7, 8], PhageFISH
[9], and polonies [9]. Each of these methods requires some
degree of culturing or co-visualization of labeled particles,
which also presents challenges for scaling-up to complex
communities. Moreover, none of these methods leverage
the information contained in the temporal dynamics of
virus-bacteria systems.

The inference of interaction networks from system

dynamics is a field of study with wide-spread applications
from inference of gene regulatory networks [10, 11], and
chemical reaction [12], to neural networks [13]. The key
insights from one class of inference methods is that sta-
tistical patterns in dynamics, including cross-correlation
and mutual-information, can be leveraged to infer inter-
action [14]. However, such correlation-based approaches
can be of limited value when applied to high dimension-
al systems with nonlinear interaction. As an alternative,
Shandilya et al. [15] showed a method for reconstruct-
ing interaction networks from discrete measurements of
the time series in systems where the underlying function-
al form of the interactions is known. Similarly, Stein et
al. [16] following the work of Monier et al. [17] used
discretized Lotka-Volterra equations to estimate interac-
tion networks, model parameters, and time dependent
perturbations in competitive microbial communities.

Here, we extend the approach of Stein et al. [16]
to phage-bacteria systems with antagonistic interactions.
We derive the principles underlying the method and test
its validity using in silico experiments. As we show,
inferring realistic phage-bacteria infection networks in
complex communities may be possible given appropri-
ate deployment of existing technologies already available
to estimate changing genotype densities over time.

II. METHOD

A. Model

We model the interaction between Nh host types and
Nv virus types using a generalization of the Lotka-
Volterra predator-prey equations [18, 19]. The densities
of multiple host and virus types are described by a sys-
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tem of differential equations that include the effect of
competition between host types and the infection of host
by multiple virus types [20, 21]:

dhi
dt

= rihi

1−

Nh∑
i′
aii′hi′

K

− hi
Nv∑
j

Mijφijvj , (1)

dvj
dt

= vj

Nh∑
i

βijφijMijhi −mjvj , (2)

The model consists of NH equations of the form (1)
for the density of each host type, hi, and NV equations
of the form (2) for the virus densities, vj . In this system:
ri is the growth rate of host i in the absence of viruses
and other hosts, aii′ is the competitive effect of host i′

on host i, K is the system-wide carrying capacity, φij is
the adsorption rate of virus j when attaching to host i,
βij is the burst size of virus j when infecting host i, mj

is the decay rate of virus j. Finally Mij is the infection
matrix, i.e., a matrix representation of the infection net-
work, which takes a value of 1 if host i is infected by virus
j and zero otherwise.

B. Numerical simulations of the dynamics;
infection network ensembles and model parameters

To study the performance of our reconstruction
method, we simulated time series of systems where sev-
eral hosts and virus types interact. We used MATLAB’s
ODE45 to numerically integrate systems of equations of
the form described in Section II A. In doing so, we uti-
lize both random infection networks and nested infec-
tion networks. Nested interaction networks are common-
ly observed in culture-based analyses, such that the host
range of phage and the phage range of hosts form ordered
subsets [22]. Following Jover et al. 2015 [23] we generat-
ed an ensemble of 100 infection matrices, each one with
10 host types and 10 virus types, spanning a spectrum of
nestedness values. The infection matrices were generated
by starting with a modular matrix and shifting interac-
tions, through a random process, to regions that increase
nestedness [23]. We also found feasible parameter sets
(i.e., parameters with positive steady state densities) for
each one of the infection matrices. We followed the pro-
cedure described in [23] to find feasible parameter sets.
Namely, we select a subset of the model parameters and
target densities (Table I) and use the steady state equa-
tions to solve for the rest of the parameters obtaining a
feasible parameter set.

C. Infection network reconstruction

Our method for reconstructing infection networks
requires discrete measurements of the dynamics result-

Parameter (unit) Range\Value

φj (ml/(virus· d) 10−8 - 10−7

βj (viruses/cell) 10 - 50

H∗
i (cell/ml) 103 - 104

V ∗
j (virus/ml) 106 - 107

K (ml) max(H∗
i )× 100 = 106

TABLE I: Parameter and target steady state density ranges
used to find feasible parameter sets. Bacteria growth rates,
ri, and virus decay rates, mj , were derived using the steady
state equations and the parameters presented in this table
(see Methods, given feasibility-based framework). The range
denotes the limits of the uniform distributions used to gener-
ate parameters.

ing from the interaction of different host and virus types.
This method extends the approach described in [16] to
host-phage systems. We will use only the equations
describing the dynamics of the viruses (equations of the
form (2)). . We start by rewriting equation (2) in the
form:

d ln(vj)

dt
=

Nh∑
i

βijφijMijhi −mj . (3)

We assume that we have N + 1 measurements of the
densities of all virus and host types in the system at times
[t1, t2, ..., tN+1]. For time step, ∆tn = tn+1 − tn, we can
write a discretized form of equation (3):

∆ ln(vj(tn))

∆tn
≈

Nh∑
i

M̃ijhi(tn)−mj , (4)

where we define the quantitative infection network

M̃ij := Mijφijβij , and
∆ ln vj(tn)

∆tn
:=

ln(vj(tn+1))−ln(vj(tn))
tn+1−tn .

We can write an analogous equation to equation (4) for
all time steps and all virus types in the system. All of
these equations can be written in a compact form using
a single matrix equation:

W ≈
(
M̃ᵀ ~m

)(
H
~1

)
, (5)

where W and H are matrices with elements Wij =
∆ ln vi(tj)

∆tj
and Hij = hi(tj), ~m is the column vector of

decay rates with elements mi, and ~1 is a vector of ones
with dimensions 1 ×N . Given density measurements of
the hosts and viruses we can reconstruct the quantitative
infection network using equation (5). We solve the fol-
lowing minimization problem to obtain approximations
M̃rec and ~mrec of the quantitative infection matrix, M̃ ,
and the decay rate vector ~m:
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arg min
(M̃ᵀ ~m)

∣∣∣∣∣
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H
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)∣∣∣∣∣
∣∣∣∣∣
2

subject to Mij >= 0,

mi > 0.

(6)

To solve this problem we used CVX, a package for
specifying and solving convex problems [24, 25]. In this
study we focus on the reconstruction of the quantitative
infection network, but the method also infers decay rates
for all virus types in the system. We use a normalized
Frobenius distance between the original and reconstruct-
ed infection matrices as a metric of the quality of recon-
struction, namely:

Errorrec =
‖M̃ − M̃rec‖2
‖M̃‖2

. (7)

III. RESULTS

A. Reconstruction quality depends on the
variability of the dynamics

We begin with an example in which there are 10 host
types, 10 virus types and 20 virus-bacteria interactions.
The effective infection rates (φ ∗ β) vary from 10−7 to
5×10−6. Figure 1 shows an example of a successful infec-
tion network reconstruction using the method described
in Section II C. The matrices W and H were calculated
using measurements of the dynamics every 6 min for a
total of 96 hours. This results in a reconstruction error
Errorrec = 0.01. The method is able to correctly iden-
tify all of the interactions. The small error arises from
differences in the inferred quantitative values.

In general, there are multiple factors affecting recon-
struction quality. One important factor is the variability
of the dynamics. For example, if the dynamics start at a
fixed point, there would be no variability in the dynamics,
the columns of the matrix H would all be identical and it
would not be possible to infer the infection network. We
test the effect of variability systematically by performing
matrix reconstruction for an ensemble of matrices and
different levels of variability. To control variability in
the dynamics we change how far the initial densities are
from the equilibrium densities. We initialize density of
each host and virus type in the system at x0 = xeq(1±δ),
where xeq is the equilibrium density of a given type and
δ is a free parameter that controls the distance from its
equilibrium density. We calculated the mean reconstruc-
tion error for an ensemble of 100 matrices (Figure 2 ).
The reconstruction error has a maximum at δ = 0 (not
shown for visualization purposes), which corresponds to
starting the system at the equilibrium densities. The
quality of the reconstruction increases as the initial con-
ditions move away from the equilibrium densities.
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FIG. 1: Example of infection network reconstruction. (a)
Virus and host dynamics for 96 hours. (b) Matrices W and
H constructed by taking measurements of virus and host den-
sities every 6 min as described in Section II C. (c) Original
and reconstructed infection matrices (Errorrec = 0.01). A
feasible parameter set was used in the simulation as described
in Section II B
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FIG. 2: Mean reconstruction error as a function of the fraction
away from the equilibrium densities, δ, for an ensemble of 100
matrices. Feasible parameter set were used in the simulation
as described in section II B

B. Reconstruction from multiple experiments: an
alternative approach

We propose an improvement to the single experiment
approach for reconstruction. In this alternative approach
we combine measurements from different experiments to
increase reconstruction quality. One key advantage of
this approach is that, by increasing the number of exper-
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iments used for reconstruction, we can reduce the total
time and number of measurements per experiment. This
is a crucial advantage in virus-bacteria systems, which
are known to evolve rapidly [26–28]. In the multiple-
experiment approach we generate a host matrix H and
a virus matrix W by combining matrices from multiple
experiments that differ only in their initial conditions
(Figure 3). This extends equation (5) to include infor-
mation from multiple experiments. Specifically, assum-
ing that we perform p different experiments and calcu-
late matrices {H1, H2, . . . ,Hp} and {W1,W2, . . . ,Wp} for
each experiment, we can write the system:

(W1W2 . . .Wp) ≈
(
M̃ᵀ ~m

)(
H1 H2 . . . Hp

~1

)
, (8)

where ~1 is a vector of ones with dimensions 1×(N1+N2+
. . .+Np), assuming that we take Ni measurements from
experiment i. Using the same minimization process pre-
sented in Section II C we can obtain an approximation,
M̃rec, of M̃ .

Figure 4 compares the single and multiple experiments
approach for three matrices with different nestedness
values. We see how the multiple experiment approach
results in lower reconstruction error for the three differ-
ent cases. Figure 5 extends the comparison to an ensem-
ble of 100 different matrices. We compare the multiple
experiment approach to the average result of the single
experiment approach. For a given matrix we performed
20 different experiments. Each experiment has the same
infection matrix and the same model parameters but dif-
ferent initial conditions. We compare the performance
of the reconstruction using each experiment individually
vs. combining the measurements of the 20 experiments as
described in equation (8). In this comparison we fix the
total number of measurements; We compare the recon-
struction error when using 960 measurements from a sin-
gle experiment (measuring the dynamics every 6 minutes
for 96 hours), against the performance when combining
the first 48 measurement of all 20 experiments (every 6
minutes for 4.8 hours).

We performed the comparison for 100 different matri-
ces (Figure 5). Multiple-experiment reconstruction
results in lower error than the average single experiment
reconstructions across a wide range of nestedness val-
ues. The multiple experiment approach is also more
robust; it results in smaller variance in the reconstruc-
tion error. Performing more than a few experiments not
only decreases the mean reconstruction error, but also
decreases the standard deviation significantly (Figure 6).
For the specific configuration studied here reconstruction
error minimizes around 18 experiments.

Exp.	1 Exp.	3Exp.	2

Host	
dynamics

H1 H2 H3

H

FIG. 3: Schematic representation of how H is calculated in
the multiple-experiment approach. Multiple experiments are
performed with the same matrix M̃ and different initial con-
ditions.

C. Robustness of inference given noise in
measurement

Here we evaluate the effect of measurement of white
Gaussian noise on the quality of the inference. We follow
the same procedure as in the noiseless case to reconstruct
infection networks using multiple experiments. Figure 7
shows mean reconstruction error for an ensemble of 100
matrices as a function of the signal-to-noise ratio (SNR).
We see that using 20 experiments and 48 measurements
per experiment, network inference is possible for large
signal-to-noise ratio, but reconstruction error increases
significantly when the noise approaches 10% of the signal
(SNR = 10 dB).

IV. DISCUSSION

We presented a theory-driven method to estimate host-
phage infection networks in an community with multiple
virus and host types. Current experimental techniques
to measure such networks are difficult to scale to large
systems. In addition, techniques that depend on isolation
of viruses and/or hosts capture only a subset of poten-
tial interactions present in natural environments. Our
approach addresses these limitations by using time-series
measurements of experiments involving the whole virus-
bacteria community. We also presented an improvement
over the single experiment approach for infection network
reconstruction. In the multiple-experiment approach
we combined measurements from multiple experiments
increasing the variability and lowering the reconstruction
error. The multiple-experiment approach has the addi-
tional advantage of requiring shorter measurement time
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FIG. 4: Examples of reconstruction for three different matri-
ces and two different methods. Each row shows the original
matrix and the resulting reconstruction for each method. The
first column shows the original matrices with values of nest-
edness (NODF): 0.34, 0.55, and 1 respectively. The middle
column shows the reconstructed matrices and corresponding
reconstruction errors for the single experiment approach using
960 measurements. The last column from the right shows
the reconstructed matrices and corresponding errors for the
multiple experiment approach using 20 experiments and 48
measurements per experiment. The total number of mea-
surements is the same in the three different methods. The
time between measurements is, ∆t = 6min.
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FIG. 5: Reconstruction error vs Nestedness for two differ-
ent methods. Black line denotes the reconstruction error,
Errorrec, using the multiple-experiments approach. Blue line
describes the mean reconstruction error for the same 20 exper-
iments used in the multiple-experiment approach but using
each experiment separately. The total number of measure-
ments is the same in both approaches.
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FIG. 6: Mean (blue line) and standard deviation (dotted line)
of the reconstruction error for 100 infection matrices as a
function of the number of experiments used in the multiple-
experiment approach. Fixed number of total measurements
(960). ∆t = 6min.
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FIG. 7: Mean (blue line) and standard deviation (dotted line)
of the reconstruction error for 100 different matrices as a func-
tion of the signal-to-noise ratio. The multiple experiment
approach was used to reconstruct the matrix M̃ . For each
reconstruction, the matrices H and W were constructed using
20 runs with different initial conditions and 48 measurements
per run. ∆t = 6 min

per experiment. As a consequence, there is a lower prob-
ability of a host gaining resistance to a virus type or a
virus developing the ability to infect a new host, increas-
ing the chances of reconstructing the infection network
of the target community.

The current method takes as input the measured den-
sities of bacteria and phage in an environmental sample.
Next-generation high-throughput sequencing techniques
provide a means to characterize bacterial and viral com-
munities in a variety of environmental samples [29–33].
In the past, such characterization has focused on phylo-
genetics groups, by using RNA and other marker genes.
Such markers are insufficiently resolved with respect to
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differences in relevant phenotypes, e.g., phage-bacteria
infectivity. However, new computational approaches are
increasingly able to resolve strain-level dynamics from
metagenomic datasets [34, 35]. The increased used of
quantitative piplines from sample to strain density for
both bacteria and viruses will enable the kind of infer-
ence proposed here.

Our present approach uses the nonlinear dynamics of
virus populations, to infer virus-bacteria infection net-
works. Nonetheless, this method can be expanded by
including nonlinear bacterial population dynamics to
infer competitive interactions between bacteria types and
bacterial growth rates. In developing this method, it is
important to keep in mind that the present approach is
adapted to a specific functional form of the interactions in
a virus-bacteria communities. Experimental verification
(e.g., see Stein et a l. [16]) is necessary to test whether
or not the dynamical model is a sufficiently robust rep-

resentation of naturally occurring systems. Neverthe-
less, this study presents key steps towards an alternative
way of determining who infects whom in a virus-bacteria
community. This view has the potential to significant-
ly reduce the experimental burden, e.g., we are able to
infer nh × nv interactions by measuring the dynamics of
nh + nv organisms, and to overcome the limitations of
culture-based approaches by inferring interactions with-
out culturing.
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