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Abstract

Ecosystems may experience abrupt changes such as species extinctions, reorganisations
of trophic structure, or transitions from stable population dynamics to strongly irregular
fluctuations. Although most of these changes have important ecological and at times
economic implications, they remain notoriously difficult to detect in advance. Here, we
use a Ricker-type model to simulate the transition of a hypothetical stable fisheries
population either to irregular boom-bust dynamics or to overexploitation. Our aim is to
infer the risk of extinction in these two scenarios by comparing changes in variance,
autocorrelation, and nonlinearity between unexploited and exploited populations. We
find that changes in these statistical metrics reflect the risk of extinction but depend on
the type of dynamical transition. Variance and nonlinearity increase similarly in
magnitude along both transitions. In contrast, autocorrelation depends strongly on the
presence of underlying oscillating dynamics. We also compare our theoretical
expectations to indicators measured in long-term datasets of fish stocks from the
California Cooperative Oceanic Fisheries Investigation in the Eastern Pacific and from
the Northeast Shelf in the Western Atlantic. Our results suggest that elevated variance
and nonlinearity could be potentially used to rank exploited fish populations according
to their risk of extinction.

Introduction 1

Ecosystem management is traditionally based on mechanistic models that describe and 2

attempt to predict ecosystem dynamics. These models are hypotheses that represent 3

our limited mechanistic knowledge and have been notoriously poor at prediction [1,2]. 4

This shortcoming is evidenced by the fact that ever more elaborate models do not 5

necessarily improve out-of-sample prediction of complex ecosystem dynamics [3,4]. This 6

situation is especially evident in fisheries models where variables that are believed to be 7
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influential, such as temperature, can actually reduce predictability when included in the 8

classic extended Ricker-model [1]. Even so, such models are still commonly used to set 9

harvest guidelines [5]. There is an urgent need for improved warning methods for 10

detecting imminent changes as ecosystems are exposed to novel stressors that create 11

conditions for crossing thresholds at which unexpected and irreversible ecological 12

changes might occur [6]. 13

Fisheries present one of the most challenging cases for coping with high response 14

uncertainty [7,8]. Fish populations are characterized by infamously unpredictable 15

fluctuations driven by nonlinear dynamics [9], and magnified by environmental 16

stochasticity [10]. This gives rise to stochastic chaos [11], a mathematical phenomenon 17

that explains how environmental uncertainty can be amplified in a nonlinear fashion in 18

the biological response [12]. Perhaps in a similar way, environmental changes or climate 19

fluctuations have caused boom-and-bust cycles in sardines and anchovies [13] and have 20

triggered regime shifts in a number of Pacific and Atlantic fish populations [14,15]. 21

Boom-and-bust cycles and abrupt shifts to low population densities increase the risk of 22

stochastic extinction, which has been documented on a global scale as a result of 23

increasing fishing pressure [7]. The collapse of Atlantic cod in the early 1990s is a 24

textbook example of such a shift due to overexploitation [16,17]. Size-selective fishing 25

might have even left a signature on the life-histories of exploited populations [18]. 26

Fishing-induced changes in demographic traits can theoretically trigger boom-and-bust 27

dynamics in a population [9] (figure 1 a). Under such irregular fluctuations, the risk of 28

stochastic extinction increases and forecasting this risk becomes more of a challenge. 29

Clearly, coping with such a high level of response uncertainty requires alternative 30

modeling strategies that go beyond traditional approaches [5,19]. One set of such 31

strategies focuses on early warning signs that attempt to detect abrupt transitions 32

based only on the statistical properties of the observed time series without requiring a 33

specific mechanistic model [20]. Take the case of a stable fish population that, under 34

increasing fishing pressure, might experience an abrupt shift in status from healthy to 35

overexploited (figure 1 b). In this case, there are well understood changes in statistical 36

properties of the time series that can be used to infer the risk of the approaching 37

transition [20]. Such changes are caused by critical slowing down (CSD), a simple 38

phenomenon by which stable systems close to local bifurcation points respond slowly to 39

disturbances [21,22], and the statistical indicators that arise as corollaries are called 40

critical slowing down (CSD) indicators. Bifurcation points are thresholds where the 41

stability properties and, thus, the behavior of a system changes –typically through 42

manipulation of a control parameter, such as harvesting or growth rate [23]. In 43

particular, increasing variance and autocorrelation along a time series can signal a 44

system’s proximity to an abrupt transition in ecosystem state. Thus, rising 45

autocorrelation has been shown to be an indicator of the increasing risk of extinction in 46

stable laboratory experiments with yeast [24] and zooplankton populations [25], whereas 47

increasing variance marked the transition of lake dominance structure from piscivorous 48

to planktivorous fish [26,27]. 49

While the statistical early-warning indicators are model-free, they posit stable 50

dynamics. Parallel work has focused on forecasting non-equilibrium and chaotic 51

population dynamics that arise mechanistically from unstable attractors based on an 52

approach called Empirical Dynamical Modeling (EDM) [1,28]. Similar to the statistical 53

approach taken in CSD indicators, this approach is also equation-free. EDM is based on 54

reconstructing an attractor manifold directly from time series 1. This reconstruction can 55

be done with multiple time series of interest or with lags of a single time series [29]. In 56

either case, how well the attractor is reconstructed can be verified by the ability to 57

forecast future states. In fact, EDM has been shown to outperform equation-based 58

1https://www.youtube.com/watch?v=rs3gYeZeJcw
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approaches at forecasting recruitment in Sockeye salmon populations [1], dynamics of 59

Pacific sardines [30], and the fate of experimental flour beetle populations [31]. With its 60

capacity to forecast the future state of a system, EDM could be a useful approach to 61

anticipate critical transitions. 62
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Figure 1. Two hypothetical trajectories of a fish stock under changing conditions. (a) Age-truncation effect: a gradual 64

increase in population growth rate due to size-selective fishing leads to a shift from stable dynamics to boom-and-bust 65

cycles (a combined effect of oscillations, chaos, and stochasticity that raises the risk of extinction during the bust phases). 66

(b) Exploitation effect: a gradual increase in fishing can cause the population to shift rapidly to an overexploited state. 67

Theoretically, when a dynamical system is approaching a critical transition (i.e. a 68

bifurcation), stochastic events may more easily push a system across attractor 69

boundaries, or far from equilibrium where dynamics may be also affected by a different 70

attractor. This implies that, close to a bifurcation, the realized system dynamics may 71

become increasingly state-dependent. State-dependence means that the future evolution 72

of a system is determined by its current state. For example, approaching the boundary 73

of the critical transition in the over-harvesting case (figure 1 b), dynamics will be 74

increasingly affected by the alternative exploited and overexploited stable attractors. 75

Therefore, close to the critical transition, forecasting the future system state requires 76

knowledge of the current system state (i.e. local state information is critical). In 77

contrast, far from the critical transition, there is only one stable state. In that case, 78

local information is indistinguishable from global information. EDM can evaluate this 79

state-dependence by comparing forecast performance obtained when using global versus 80

local information to model the system [11,32]. If relying on local information gives a 81
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better forecast of system state compared to global information, the behavior of the 82

system is deemed state-dependent. In principle, this concept can be generalized to more 83

complex situations regardless of the type of attractors, such as bifurcations of cyclic 84

attractors to chaos (e.g. figure 1 a). In that way, while CSD indicators rely on changes 85

in stability between stable states [33], EDM does not, so that in an unknown system, it 86

is likely that the union of these two approaches may be more informative for 87

anticipating critical transitions in ecosystems under stress. 88

Here, we study the behavior of EDM and CSD indicators along two different 89

ecosystem transitions observed in time series that can increase the risk of stochastic 90

extinction: the transition from stable equilibrium dynamics to irregular chaotic 91

dynamics (figure 1 a), and the abrupt shift to an overexploited state (figure 1 b). 92

Following former studies on nonlinear dynamics in fisheries [1,9,10,34], we generate time 93

series using a stochastic Ricker type fishery model in which we assume a loss term due 94

to fishing. We show how the behavior of nonlinearity, variance, and autocorrelation 95

depends on the type of transition and discuss the capacity of these metrics as early 96

warnings of loss in ecosystem stability. Finally, we measure these indicators on two 97

long-term datasets of fishes from the Southern California Current ecosystem and U.S. 98

Northeast Shelf system in the North Western Atlantic. Our aim is to illustrate how 99

these model-free approaches can be helpful for ecosystem management by quantifying 100

resilience across populations. 101

Materials and Methods 102

Simulated data 103

We used a discrete Ricker type model that describes the logistic growth of population N 104

to which we added a loss term due to fishing. The model reads: 105

Nt+1 = Nte
(rt−bNt+σEεt) − F Np

t

(Np
t +h

p)
106

where rt is the intrinsic growth rate, b defines the strength of density-dependence (= 107

rt/K, where K is the carrying capacity set by the environment (=10)), and fishing 108

follows a sigmoid functional response (p=2), with half-saturation h (=0.75) and 109

maximum fishing rate F . We assumed process error in the model to represent 110

environmental stochasticity with a Gaussian term εt of zero mean and σE (=0.25) 111

standard deviation. We also considered demographic stochasticity in the growth rate rt 112

by using exponential filtering at each time step (rt = r0e
(σrεr,t)), where r0 is the mean 113

and σr(=0.1) the standard deviation of the Gaussian noise term εt [35]. Although we 114

used fisheries as an example, our analysis and results are generic to any ecosystem or 115

population model that exhibits similar dynamics and transitions. 116

We considered two scenarios where fishing can potentially trigger dynamical changes 117

in the behavior of a population. In the first scenario, we hypothesized that fishing leads 118

to changes in population demographic traits due to age-truncation caused by 119

size-selective removal (figure 1 a). Selective fishing of large individuals in a population 120

may cause small size individuals to mature at an earlier age [18,36]. Earlier 121

age-at-maturation can be associated with an overall increase in the intrinsic growth 122

rates of exploited fish populations [9]. Here, we mimic this “age-truncation effect” by 123

gradually increasing growth rate r0 (=[0.01, 3]), while setting the overall fishing rate F 124

to zero. Increasing growth rate in the Ricker model exhibits a well-known series of 125

transitions from stable equilibrium dynamics to period-doubling bifurcations that give 126

rise to cycles and eventually chaos [37]. 127

In the second scenario, we hypothesized that a fish population runs the risk of 128

overexploitation due to direct fishing pressure (figure 1 b) [38]. We labeled this the 129
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“exploitation effect” scenario that we simulated by progressively increasing fishing rate 130

F (=[0, 3]), starting from a stable non-fluctuating population (r0 = 0.75). Intensifying 131

fishing rate leads to the abrupt collapse of the population due to the crossing of a fold 132

bifurcation that forces the population to shift from an underexploited to an 133

overexploited state of low abundance. 134

For both age-truncation and exploitation scenarios, we gradually increased the 135

bifurcation parameters, r0 and F respectively, in 100 equidistant steps. At each step, we 136

burned-in the models for a period of 100 time steps to discard transients, and we 137

simulated another 100 points to use for analysis. For each step of the bifurcation 138

parameter, we produced 1000 replicate time series that were used to estimate 139

nonlinearity and critical-slowing-down indicators. We also tested the behavior of the 140

indicators while changing conditions. To do this, we continuously increased growth rate 141

r0 (=[0.01, 3]) and fishing rate F (=[0, 3]) in 200 time steps using a sliding window of 142

half size the time series (that is, 100 points). We reported indicator means and 95% 143

confidence intervals based on the 1000 replicates. 144

Empirical fish data 145

We used fish data collected from scientific surveys on the Northeast Shelf (NES) in the 146

northwest Atlantic and in the southern California Current Ecosystem (CCE) in the 147

eastern Pacific. NES data were collected through the Northeast Fisheries Science 148

Center. These data are relative biomass estimates generated from an annual fall bottom 149

trawl survey and include 29 stocks of demersal fishes sampled from 1963 to 2008. Of 150

these, 20 stocks were exploited (subject to fishing pressure). CCE data were collected 151

through the California Cooperative Oceanic Fisheries Investigations (CalCOFI). These 152

data are relative biomass estimates generated from regular ichthyoplankton tows and 153

include 29 coastal-neritic fish species [39] sampled from 1951 to 2007. Among the 29 154

species, 16 were exploited and 13 were unexploited. The NES data are available from 155

the Northeast Fisheries Science Center, National Marine Fisheries Service (NMFS), 156

National Oceanic and Atmospheric Administration (NOAA), USA 157

(http://www.nefsc.noaa.gov/nefsc/saw/). The CCE fish data are available from the 158

Southwest Fisheries Science Center, NMFS, NOAA, USA 159

(http://coastwatch.pfeg.noaa.gov/erddap/search/index.html?page=1&itemsPerPage=1000&searchFor=calcofi).160

Critical Slowing Down indicators 161

Critical slowing down (CSD) is defined as the decrease in recovery rate upon small 162

perturbations in the vicinity of local bifurcation points [23]. It is a generic property of 163

dynamical systems that undergo transitions between different attractors when a stress 164

parameter crosses a threshold. In mathematical terms, CSD is associated with a 165

diminishing dominant eigenvalue λ, where λ defines the rate of exponential decay of a 166

perturbation close to equilibrium (∆x = e−λt) [21]. The consequence of this slow decay 167

is that both variance and autocorrelation of the recorded ecosystem dynamics will 168

increase close to a transition point [20]. We estimated variance as coefficient of variation 169

(CV= standard deviation/mean), and autocorrelation at lag-1 (AR1) as the Pearson 170

correlation for lagged time series at one step [40]. 171

Nonlinearity indicators derived from Empirical Dynamical 172

Modeling 173

We propose to use nonlinearity (i.e. quantification of state-dependence) as an additional 174

indicator for anticipating critical transitions. To determine whether a time series reflects 175

linear or nonlinear processes, we compared the out-of-sample forecast skill of a linear 176
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model (i.e. relying on global information) versus an equivalent nonlinear model (i.e. 177

relying on local information). This involves state space reconstruction (aka EDM) using 178

lagged coordinate embeddings with a two-step procedure as follows. First, we used 179

simplex projection [28] to determine the embedding dimension (E) of the system where 180

E represents the number of independent variables needed to reconstruct the system 181

state-space and is operationalized as the number of lagged coordinates used to 182

reconstruct the system attractor. Second, using this embedding dimension, we used 183

S-map [11] to compare linear versus nonlinear forecasting models, by tuning a nonlinear 184

weighting parameter θ. If the forecast skill of the nonlinear model (θ > 0) outperforms 185

that of the linear model (θ = 0), the observed dynamics in the system are classified as 186

nonlinear (or state dependent). Forecast skill is evaluated based on the correlation 187

between S-map predicted out-of-sample values and the actual observed values in the 188

time series. See a suite of articles fully describing this established methodology 189

[1,32,41,42]. 190

We applied the above procedure after first-differencing and standardizing both 191

simulated and fisheries time series [32]. As EDM requires a time series of at least 30 192

observations [43], we used simulated time series of 100 time steps and selected empirical 193

fish records that contained at least 30 points. We produced simplex projections using 194

lagged coordinates of one time step (τ = 1) for a series of different embedding 195

dimensions E (1 through 10 for the fish data and 1 through 3 for simulated data - we 196

used a smaller range of E for the simulated data as we knew a priori the dimensionality 197

of the Ricker model attractor following Whitney’s theorem that n ≤ E ≤ 2n+ 1 where 198

n is the dimensionality in the systems (n = 1 for our model)). We applied a 199

cross-validation approach, using E + 1 vectors, to estimate Pearson correlation (ρ) 200

between observed and forecast values to choose the best embedding dimension E for the 201

system. The best E was then used for fixing the embedding space in the S-map. In the 202

S-map we did the same cross-validation as above but using all vectors (not just nearest 203

neighbors) to perform the forecasting. The vectors, however, are weighted exponentially 204

according to the tuning parameter θ. When θ = 0, all vectors are weighted equally 205

(linear case). When θ > 0 (nonlinear case), neighbors closer to the predicted vector 206

become more important for forecasting (the increasingly smaller neighborhood thus 207

represents increasing state-dependence). We tried a range of θ values [0, 0.001, 0.005, 208

0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 5], and for each θ value we compared the improvement 209

in forecasting skill. 210

We estimated the improvement in forecasting skill of the nonlinear over the linear 211

model as the difference in Pearson correlation: ∆ρ = max(ρθ − ρθ=0): the maximum 212

difference between the correlation ρθ at each θ to the correlation ρθ = 0 found for θ = 0. 213

In other words, ∆ρ defines how much the nonlinear model (θ 6= 0) outperformed the 214

linear model, which is used to quantify nonlinearity [9]. We therefore use the metric of 215

∆ρ as indicator of nonlinearity. 216

All simulated data and the estimation of the nonlinearity and CSD indicators were 217

produced using MATLAB v2015a (Mathworks). For open source options, nonlinearity 218

indices can be estimated using the rEDM package (https://github.com/ha0ye/rEDM), 219

and CSD indicators can be computed using the R package earlywarnings 220

(https://github.com/earlywarningtoolbox). For the fish time series, missing values were 221

omitted in estimating the indicators. 222

Results 223

In the age-truncation scenario (figure 2 a), a gradual increase in growth rate in the 224

Ricker model caused a sequence of transitions from stable to excitable dynamics that 225

led to regular oscillations and then chaos (figure S1a). The boundaries between different 226
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attractors were difficult to define in the presence of stochasticity. Nonetheless, we 227

clearly observed different behaviors in CV , AR1, and ∆ρ that were distinct in each 228

dynamic regime defined by the deterministic model (figure S1b). Before the onset of 229

spiraling stable dynamics, variance, autocorrelation, and nonlinearity all decreased 230

(figure 2 b). Interestingly, ∆ρ decreased slightly even after the onset of the spiraling 231

stable dynamics. Close to the onset of cycles, CV and ∆ρ increased but AR1 kept 232

decreasing. Approaching the transition to chaos and inside the chaotic regime, CV and 233

∆ρ continued to increase, and so did AR1 but much more weakly (figure 2 b). Overall, 234

only the relationship between CV and ∆ρ was consistent across all regimes. AR1 was 235

sensitive to the presence of oscillations, as the spiraling and cyclic attractors shifted 236

correlations from positive to negative values (figure S2b). 237
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Figure 2. Age-truncation scenario: (a) median value (of 1000 replicates) of mean (over time, per replicate series) fish 239

abundance as a function of growth rate r. Red dashed lines indicate the thresholds between dynamics that are stable, 240

spiraling stable, cycles, and chaotic of the deterministic model. (b) Rescaled coefficient of variation CV , autocorrelation 241

at-lag-1 AR1, and nonlinearity index ∆ρ (means of 1000 replicate time series) as a function of r. Exploitation scenario: 242

(c) median value (of 1000 replicates) of mean (over time, per replicate series) fish abundance as a function of fishing 243

rate F. Vertical dashed line indicates the threshold at which 50% of the 1000 populations collapse to the alternative 244

overexploited state. (d) Rescaled CV , AR1, and ∆ρ (means of 1000 replicate time series) as a function of F . 245

In the exploitation scenario, a gradual increase in fishing rate F caused our model 246

fish populations (mean biomass thereof) to experience a slight decrease until 247

populations suddenly collapsed to an overexploited state (figure 2 c). Due to the process 248

error in the model, overexploitation occurred earlier than the actual fold bifurcation of 249

the deterministic model (figure S1b). Nonetheless, both the CSD indicators (variance 250

CV , autocorrelation AR1) and the EDM-based indicator (nonlinearity ∆ρ) strongly 251

increased before the collapse (figure 2 d). Once the transition was crossed, the pattern 252

reversed: CV , AR1, and ∆ρ dropped, marking the progressive gain in resilience and 253
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decrease in nonlinearity of the overexploited state. 254

Ideally, for populations that have a history of monitoring, a manager would have 255

available population abundance estimates or growth rates at different levels of fishing 256

pressure in order to estimate these three indicators. In reality, however, fishing and any 257

other environmental conditions all change continuously. Therefore, we studied this more 258

realistic scenario by measuring CSD and nonlinearity indicators along a time series at 259

continuously changing conditions (figure S3) using a sliding window approach [40]. We 260

found similar patterns to those obtained in the case of stationary distributions (figure 261

2), but with strong uncertainties especially in the case of nonlinearity (figure S3g, h). 262

We tested our theoretical predictions on empirical fish time series. In our fisheries 263

records, however, we cannot vary F as done in the simulations, but we can only 264

discriminate populations based on whether they were commercially fished (i.e. 265

exploited) or not (i.e. unexploited or bycatch). Using this discrimination as a proxy for 266

fishing pressure, we tested for differences in CV , AR1, and ∆ρ between exploited versus 267

unexploited populations (figure 3). We found that mean ∆ρ and AR1 were higher for 268

exploited populations in both datasets (figure 3 b, c), whereas mean CV was higher in 269

exploited populations in the CCE but not in the NES dataset (figure 3 a). However, 270

only ∆ρ and CV were significantly higher in the CCE exploited populations (t-test with 271

unequal variances). Taking both datasets together (table S1), we found negative 272

correlations between CV and AR1 for both exploited and unexploited populations, 273

stronger positive correlation between CV and ∆ρ for unexploited than exploited 274

populations, and also stronger positive correlation between AR1 and ∆ρ for unexploited 275

than exploited populations. However, similar to our simulated time series, only the 276

correlations between CV and ∆ρ were significant. 277

The patterns between CV , AR1, and ∆ρ that we observed in our empirical fisheries 278

data generally matched the theoretical patterns we derived from our simulated time 279

series (figure 4). We approximated simulated populations as exploited or unexploited by 280

grouping time series far from and close to the collapse for the exploitation effect 281

scenario (unexploited: 0 < F ≤ 0.97, exploited: 0.97 <F< 1.79), and before and after 282

the deterministic limit of cyclic dynamics in the age-truncation effect scenario 283

(unexploited: 0.01 < r0 ≤ 2.06, exploited: 2.06 < r0 < 3). In both scenarios CV and ∆ρ 284

were higher in the exploited than in the unexploited populations, while AR1 was higher 285

for the exploited populations in the exploitation scenario (figure 4 b), but lower in the 286

age truncation scenario (figure 4 a). Overall, the correlations between CV and ∆ρ, and 287

between CV and AR1, matched the empirical relationships, but not between AR1 and 288

∆ρ. 289
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Figure 3. Critical slowing down and nonlinearity indicators in empirical time series from the North Eastern Shelf (NES) 291

and California Current Ecosystem (CCE) fish stocks. (a) Coefficient of variation CV , (b) autocorrelation at-lag-1 AR1, (c) 292

nonlinearity index ∆ρ. Grey bars represent indicators for exploited populations (targeted by commercial fisheries); white 293

bars represent indicators for unexploited populations (not fished or bycatch). Bars reflect mean values with standard 294

error (= sd/
√
n), and p values are derived from t-tests with unequal variances between populations. 295
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Discussion 296

The nonlinear dynamics of most ecological systems have puzzled ecologists for a long 297

time. Driven by chaotic dynamics, stochasticity, or alternative attractors, our ability to 298

accurately describe nonlinear systems and to efficiently manage them remains limited. 299

Here, we explored whether Empirical Dynamic Modelling and Critical Slowing Down 300

indicators can be used for detecting changes in ecological dynamics using fisheries as an 301

example. These two approaches belong to a class of model-free methods for describing 302

ecological dynamics. EDM has never been explored as a means of measuring ecosystem 303

stability or detecting the risk of dynamical transitions in the generic sense as CSD 304

indicators do. Our results show that elevated nonlinearity ∆ρ based on EDM can be a 305

novel indicator for the proximity to dynamical transitions between alternative states as 306

well as to transitions from stable dynamics to irregular oscillations. 307

Bifurcation analysis reveals that the indicator patterns we observed capture the 308

underlying deterministic stability of the Ricker model (figure S1). In the age-truncation 309

scenario, changes in growth rates move the system from a single stable state to multiple 310

cyclic states and finally to chaos (figure S1a). In the exploitation scenario, increasing 311

fishing pressure brings the system close to the fold bifurcation where the stable 312

attractor merged with the unstable saddle and propels the system to the alternative 313

state (figure S1b). In both scenarios environmental and demographic stochasticity 314

forces the system across these dynamical regimes. As a result, trajectories are 315

increasingly affected by the stability properties of the different attractors. EDM 316

captures this increasing state-dependence in the system dynamics, as it can better 317

follow future trajectories when it considers the local information of state space. 318

Increasing variance also reflects the generic rising divergence in the state space due to 319

the existence of multiple states. Autocorrelation at lag-1, however, is sensitive to the 320

type of dynamics between the two scenarios: it consistently rises in the exploitation 321

scenario, but builds-up or breaks down under age-truncation. In that case, it might 322

have been more informative looking at higher spectra than first lags. 323

Elevated nonlinearity and variability in stressed populations are the most consistent 324

patterns in both scenarios we tested. This observation actually implies that these 325

indicators may be better suited to detect changes in the dynamics observed in natural 326

populations. It also implies that the source of these changes goes beyond the loss of 327

stability across bifurcation points. More generally, rising variance and nonlinearity can 328

be understood as a statistical phenomenon of increasing state-dependence [11] that does 329

not require the existence of stable attractors. In reality, population dynamics are 330

typically the result of a mix of transients across stable and unstable attractors affected 331

by environmental and demographic stochasticity. CSD indicators can capture changes in 332

these dynamics but only when it comes to stable equilibria in the presence of weak 333

stochasticity [20]. Identifying transitions across chaotic attractors or, more generally, in 334

systems with nonlinear dynamics may be difficult with CSD indicators [44,45]. Thus, 335

EDM-derived nonlinearity is broader in its application, and it can capture changes in 336

dynamics beyond stable attractors typical of the dynamics encountered in natural 337

systems. 338

Based on our findings, a resource manager could estimate both CSD and EDM 339

metrics in order to infer levels of stress and rank populations according to their 340

potential risk to extinction [46]. For instance, Krkosek and Drake [47] looked at patterns 341

of CV and AR1 for Pacific salmon populations and found that they were higher for 342

pink salmon stocks that had a population growth rate close to zero. In this work, the 343

authors assumed that salmon populations would suffer a transcritical bifurcation due to 344

growth rates approaching zero. Trends in CV and AR1 in our analyses are in line with 345

these findings (figure 2). Moreover, we also find that nonlinearity increases at 346

decreasing growth rates. Our results imply that regardless of the type of transition (be 347
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it a transcritical, a fold, or a period-doubling bifurcation), a simultaneous increase in 348

CV and nonlinearity could signal a higher risk of population extinction. 349
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Figure 4. Distributions of critical slowing down and nonlinearity indicators (boxplots median, 5 and 95 percentiles). 351

(a) Age-truncation scenario. We categorized populations as unexploited or exploited based on their growth rates: 352

0.01 < r ≤ 2.06 (unexploited), 2.06 < r < 3 (exploited). We assumed that populations were exploited if their growth rates 353

exceeded the limit (r ' 2.06) that corresponds to the onset of cyclic dynamics in the deterministic model, as we assumed 354

that age-truncation due to fishing leads to irregular oscillations. (b) Exploitation scenario. We categorized unexploited and 355

exploited populations before the collapse to overexploitation (F ' 1.79) based on fishing rate: 0 < F ≤ 0.97 (unexploited), 356

0.97 < F < 1.79 (exploited). Grey bars are exploited populations; white bars represent unexploited populations. *** 357

indicates p < 0.001 from t-tests with unequal variances between populations. 358

Trends in empirical data generally agreed with our simulated results. We found 359

elevated nonlinearity in exploited fish populations for both NES and CES datasets, 360

higher variability only for the CCE dataset, and a stronger AR1 in exploited 361

populations for both datasets (figure 3). These results imply that some populations were 362

under the exploitation stress scenario, while others followed the age-truncation scenario 363

(figure 4). It is hard, though, to identify which scenario mostly affected each set of 364

populations (table S1). The only significant result is that, when taking all populations 365

together, CV and nonlinearity show a consistent positive relationship (table S1). 366

While we compared populations sampled at the same geographical ranges and under 367

similar climatic conditions, it is still difficult to draw strong conclusions from these 368

patterns. First, we assumed that exploited populations are affected by both 369

overexploitation and age-truncation. Second, we did not take into account life-history 370

traits or stochastic events that may also affect population dynamics. Pinsky et al. [7] 371
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demonstrated that in addition to fishing, environmental stochasticity and high growth 372

rates can affect the risk of collapse in fish populations. In our analysis, we used 373

age-at-maturation as proxy for population growth rate and we assumed that 374

age-truncation pushes populations to reproduce faster [9]. We found negative (but 375

non-significant) correlations between nonlinearity and variance versus age-at-maturation 376

(figure S4), which hints that faster growth rates may lead to stronger irregular 377

fluctuations and a higher risk of collapse. 378

Of course, critical slowing down and nonlinearity indicators are not bulletproof 379

metrics. We found strong fluctuations in nonlinearity estimates, especially in the 380

exploitation scenario (figure S2c, d). Changes in variance and autocorrelation can also 381

be unreliable in the presence of short time series [40], high levels of stochasticity [48], 382

fast changing stress drivers [45,49], or due to portfolio effects [47] and life-history 383

strategies [50]. Further research is needed to find if similar constraints hold for the 384

elevated nonlinearity indicators we proposed here. 385

In the quest for understanding and anticipating future ecosystem responses, testing 386

novel and alternative approaches is of high priority. The indicators we examined here 387

contribute to equation-free, data-driven approaches that aim at quantifying differences 388

in the resilience of populations under increasing environmental stress. Translating such 389

differences to a risk assessment scheme might be a useful tool for improving ecosystem 390

management in the face of global environmental change. 391
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Table S1. Pearson correlations between indicators for exploited and unexploited populations in the Northeast
Shelf System (NES) and the southern California Current Ecosystem (CCE). p-values are given in parentheses and
those < 0.05 are bolded

Pearson correlation NES CCE Both datasets
Correlations Exploited Unexploited Exploited Unexploited Exploited Unexploited
CV -AR1 -0.15 (0.54) -0.3 (0.43) -0.48 (0.03) 0.007(0.98) -0.15(0.33) -0.16 (0.51)
CV -∆ρ 0.32 (0.16) 0.78 (0.01) 0.51(0.02) 0.29 (0.44) 0.37 (0.02) 0.81 (<0.001)
AR1-∆ρ -0.004 (0.98) 0.25 (0.51) -0.03(0.89) 0.26 (0.49) 0.03 (0.87) 0.31 (0.21)
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Figure S1. Bifurcation analysis, dynamical attractors (a, b), eigenvalues and Lyapunov
exponents (c, d) of the deterministic model. In (a, b) we assume that age-truncation
shifts the basic reproductive rate to higher values (increase in growth rate r). Dy-
namically, a stable equilibrium is replaced by stable but spiraling dynamics, and as
growth rate increases, the system starts to oscillate in cycles of increasing periods before
becoming chaotic (b). In (c, d) we assume that fishing can increase harvesting pressure.
Dynamically, we have a stable equilibrium that is replaced by an alternative state at
the crossing of a fold bifurcation. Theoretically, we measure stability based on the
eigenvalue (the rate of return to equilibrium) and the Lyapunov exponent (the rate of
divergence from equilibrium after a small perturbation). Eigenvalues crossing unity (-1,
+1) signify loss of stability, negative Lyapunov exponents signify convergence (stability),
and positive Lyapunov exponents signify divergence (instability and chaotic dynamics).
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Figure S2. Critical slowing down and nonlinearity indicators for the two scenarios
(mean and 95% confidence intervals (CI) based on 1000 simulations) for each level of
fishing rate F and growth rate r. (a, c, e) In the age-truncation scenario, changes
are not monotonic but depend on the type of dynamical regime. Red dashed lines
indicate the thresholds between stable, spiraling stable dynamics, cycles, and chaos of
the deterministic model. (b, d, f) All indicators change monotonically before the shift
to overexploitation. Red dashed line indicates the threshold at which 50% of the 1000
populations collapse to the alternative overexploited state. Note the strong CI for ∆ρ in
the exploitation scenario. Critical slowing down indicators: coefficient of variation CV
and autocorrelation at-lag-1 AR1. Nonlinearity indicator ∆ρ.

17/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2016. ; https://doi.org/10.1101/051532doi: bioRxiv preprint 

https://doi.org/10.1101/051532
http://creativecommons.org/licenses/by-nc-nd/4.0/


fi
sh

 b
io

m
a

ss
 (

a
.u

.)
0

2

4

6

8

10

12
exploitation scenario

cv

0.1

0.2

0.3

0.4
A

R
1

0.4

0.6

0.8

1

timetime
2000 40 60 80 100 120 140 160 180 200

Δ
ρ

0

0.1

0.2

0

5

10

15

20

25

30
age-truncation scenario

0

0.1

0.2

0.3

-0.8

-0.4

0

0.4

0.8

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

ba

dc

fe

hg

ch
a

o
s

cy
cl

e
s

5th, 95th 

percentile

50% moving window

160 170 180 190 200

0.01

0.02

Figure S3. Critical slowing down and nonlinearity indicators estimated within a moving
window of half the size of the time series. Time series are generated by continuously
increasing growth rate r and fishing rate F respectively in 200 time steps. (a, b) Fish
abundance (median, 5th and 95th percentiles based on 1000 simulations). (c, e, g)
In the age-truncation scenario, changes are not monotonic but depend on the type
of dynamical regime. Red dashed lines indicate the thresholds between cycles and
chaos of the deterministic model. (d, f, h) In the exploitation scenario, all indicators
change monotonically before the shift to overexploitation. Red dashed line indicates the
threshold at which 50% of the 1000 populations collapse to the alternative overexploited
state. Critical-slowing-down indicators: coefficient of variation CV and autocorrelation
at-lag-1 AR1. Nonlinearity indicator ∆ρ.
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Figure S4. Relationship between critical slowing down and nonlinearity indicators
versus age-at-maturation of southern California Current Ecosystem fisheries data. Age-
at-maturation is considered as the proxy for growth rate. We found negative (albeit
non-significant) correlations in CV and ∆ρ, but not AR1, versus age-at-maturation.
This implies that faster growing populations are characterized by elevated nonlinearity
and variability. (Pearson ρ correlation with significance p-value in parenthesis).
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