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Abstract 
 
Methods for genetic risk prediction have been widely investigated in recent years. 
However, most available training data involves European samples, and it is currently 
unclear how to accurately predict disease risk in other populations. Previous studies have 
used either training data from European samples in large sample size or training data 
from the target population in small sample size, but not both. Here, we introduce a multi-
ethnic polygenic risk score approach, MultiPRS, that combines training data from 
European samples and training data from the target population. We applied MultiPRS to 
predict type 2 diabetes in a Latino cohort using both publicly available European 
summary statistics in large sample size and Latino training data in small sample size, and 
observed a >70% relative improvement in prediction accuracy compared to methods that 
use only one source of training data, consistent with large relative improvements 
observed in simulations. Notably, this improvement is contingent on the use of ancestry-
adjusted coefficients in MultiPRS.  Our work reduces the gap in risk prediction accuracy 
between European and non-European target populations. 
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Introduction 
 
Genetic risk prediction is an important and widely investigated topic because of its 
potential clinical application as well as its application to better understand the underlying 
genetic architecture of complex traits. Many polygenic risk prediction methods have been 
developed and applied to complex traits.  These include polygenic risk scores (PRS)1–7, 
which use summary association statistics as training data, and Best Linear Unbiased 
Predictor (BLUP) methods and their extensions8–14, which require raw 
genotype/phenotype data.  
 
However, all of these methods are inadequate for polygenic risk prediction in non-
European populations, because they consider training data from only a single population. 
Indeed, ref. 7 reported a relative decrease of 53-89% in schizophrenia risk prediction 
accuracy in Japanese and African American populations compared to Europeans when 
applying PRS methods using European training data; this decrease is an expected 
consequence of different patterns of linkage disequilibrium (LD) in different 
populations15. An alternative is to use training data from the same population as the target 
population, but this would generally imply a lower sample size, reducing prediction 
accuracy. 
 
To tackle this problem, we developed a method, MultiPRS, that combines PRS based on 
European training data with PRS based on training data from the target population. The 
method takes advantage of both the accuracy that can be achieved with large training 
samples3,4 and the accuracy that can be achieved with training data containing the same 
LD patterns as the target population. 
 
In simulations and application to predict type 2 diabetes (T2D) in Latino target samples 
in the SIGMA T2D data set16, MultiPRS attains a >70% relative improvement in 
prediction accuracy compared to methods that use only one source of training data. This 
improvement is contingent on the use of ancestry-adjusted coefficients, as methods that 
use coefficients that are not adjusted for ancestry perform much worse than MultiPRS.  
 
Methods 
 
Overview of Methods 
 
We explored 5 different prediction methods in our simulations and application to T2D: 
European training data only (EUR); Latino training data only (LAT); Latino training data 
and an ancestry predictor based on the proportion of European ancestry (LAT+ANC); 
optimal linear combination of predictions from European training data and Latino 
training data (EUR+LAT); and optimal linear combination of predictions from European 
training data, Latino training data and an ancestry predictor (MultiPRS). For each of the 
methods using Latino training data we used 10-fold cross-validation within the SIGMA 
T2D Latino data set. Latino effect sizes were adjusted for genome-wide ancestry in all 
primary analyses17, but we also considered methods with unadjusted Latino effect sizes 
as a secondary analysis. For each method, we built predictions by LD-pruning the SNPs 
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and then thresholding on SNPs with P-value below a threshold, a widely used approach1–

4. We used squared correlation (R2 on the observed scale) between predicted phenotype 
and phenotype as our primary measure of prediction accuracy. 
 
Genetic Model 
 
Let Y be the 1 x N phenotype vector with elements Yj, and let X be the M x N genotype 
matrix with elements gij, where j = 1,...,N is the number of samples and i = 1,...,M is the 
number of genetic markers.  We assume that the phenotype Y has E(Y)=0 and var(Y)=1, 
and that genotypes gij are mean-centered with missing data to 0. We assume that the 

phenotype is a linear combination of genetic and environmental effects: Yj = bi gij + ε
i=1

M

∑ .   

 
Polygenic risk score and LD-pruning + P-value thresholding. 
 

We define the polygenic risk score1 as Ŷj = b̂i gij
i=1

M

∑ , where the marginal least square 

estimate is b̂i =
gijYj

j=1

N

∑

gij
2

j=1

N

∑
 .  

 
We use LD-pruning and P-value thresholding as follows. We first LD-prune the SNPs 
based on a pairwise threshold RLD

2, and then restrict to SNPs with an association P-value 
below a fixed threshold PT. We investigated different values of the pruning threshold 
RLD

2, and ultimately fixed RLD
2 at 0.8 since this value consistently performed best. We 

perform a grid search over different values of the P-value threshold PT: 1.0, 0.8, 0.5, 0.4, 
0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8.  We optimize PT via an 
in-sample fit on validation samples, consistent with previous work1–4. We performed LD-
pruning and P-value thresholding using PLINK2 (see Web Resources).  
 
Prediction methods 
 
We considered 5 different methods for prediction in Latino target samples: EUR, LAT, 
LAT+ANC, EUR+LAT and MultiPRS.   
 
EUR builds predictions using estimated effect sizes from European training data, using 

LD-pruning and P-value thresholding as described above:PRSEURj = b̂EUR ,i gij
i=1

M

∑ . 

 
LAT builds predictions using estimated effect sizes from Latino training data, using LD-

pruning and P-value thresholding: PRSLATj = b̂LAT ,i gij
i=1

M

∑ . We employ 10-fold cross-
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validation, using 90% of the Latino samples to estimate effect sizes and the remaining 
10% of the samples for validation.  Latino effect sizes are estimated with adjustment for 2 
PCs (except in the unadjusted case). 
 
LAT+ANC builds predictions using the best linear combination of LAT and ancestry 
along the top 2 PCs (ANC): PRSLAT+ANC , j = α̂1PRS j + α̂2PC j , where PCj is a 2 x 1 vector 
containing the top 2 PCs.  We optimize this linear combination via an in-sample fit on 
validation samples. 
 
EUR+LAT builds predictions using the best linear combination of EUR and LAT: 
PRSEUR+LAT , j = α̂1PRSEUR , j + α̂2PRSLAT , j . We optimize this linear combination via an in-
sample fit on validation samples.  We optimize different P-value thresholds for EUR and 
LAT, performing a 2-dimensional grid search.    
 
MultiPRS builds predictions using the best linear combination of EUR, LAT, and 
ancestry along the top 2 PCs (ANC): PRSMultiPRS , j = α̂1PRSEUR , j + α̂2PRSLAT , j + α̂3PC j . We 
optimize this linear combination via an in-sample fit on validation samples.  We optimize 
different P-value thresholds for EUR and LAT, performing a 2-dimensional grid search. 
 
Simulations 
 
We simulated quantitative phenotypes using real genotypes from European (WTCCC2) 
and Latino (SIGMA) data sets (see below). We fixed the proportion of causal markers at 
1% and fixed SNP-heritability hg

2 at 0.5, and sampled normalized effect sizes βi from a 
normal distribution with variance equal to hg

2 divided by the number of causal markers.  

We calculated per-allele effect sizes bi as , where pi is the minor allele 
frequency of SNP i in the European data set. We simulated phenotypes as 

, where .   
In our primary simulations, we discarded the causal SNPs and used only the non-causal 
SNPs as input to the prediction methods (i.e. we simulated untyped causal SNPs, which 
we believe to be most realistic).  We also considered simulations in which we included 
the causal SNPs as input to the prediction methods (typed causal SNPs) as a secondary 
analysis.  
 
We also performed simulations in which Latino phenotypes were explicitly correlated to 
ancestry.  In these simulations, we added a constant multiple of PC1 (representing 
European vs. Native American ancestry, with positive values representing higher 
European ancestry) to the Latino phenotypes such that the correlation between phenotype 
and PC1 was equal to -0.11, which is the correlation between T2D phenotype and PC1 in 
the SIGMA data set. 
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We performed simulations under 4 different scenarios: (i) using all chromosomes, (ii) 
using chromosomes 1-4, (iii) using chromosomes 1-2, and (iv) using chromosome 1 only. 
The motivation for performing simulations with a subset of chromosomes was to increase 
N/M, extrapolating to performance at larger sample sizes, as in previous work7. 
 
To assess the gap in risk prediction accuracy between European and Latino target 
populations, we also computed polygenic risk scores in Europeans via 10-fold cross-
validation in the European data set, using LD-pruning and P-value thresholding. 
 
WTCCC2, SIGMA and DIAGRAM data sets. 
 
Our simulations used real genotypes from the WTCCC2 and SIGMA data sets.  The 
WTCCC2 data set consists of 15,622 unrelated European samples genotyped at 360,557 
SNPs after QC18,19. The SIGMA data set consists of 8,214 unrelated Latino samples 
genotyped at 2,440,134 SNPs after QC16.  We restricted our simulations to 232,629 SNPs 
present in both data sets (with matched reference and variant alleles) after removing A/T 
and C/G SNPs due to strand ambiguity.  
 
Our analyses of type 2 diabetes used summary association statistics from DIAGRAM 
data set and genotypes and phenotypes from the SIGMA data set.  The DIAGRAM data 
set consists of 12,171 cases and 56,862 controls of European ancestry for which summary 
association statistics at 2,473,441 imputed SNPs are publicly available (see Web 
Resources)20. As noted above, the SIGMA data set consists of 8,214 unrelated Latino 
samples (3,848 type 2 diabetes cases and 4,366 controls) genotyped at 2,440,134 SNPs 
after QC.  We restricted our analyses of type 2 diabetes to 776,374 SNPs present in both 
data sets (with matched reference and variant alleles) after removing A/T and C/G SNPs 
due to strand ambiguity.  For the SIGMA data set, we used the top 2 PCs as computed in 
ref. 16. We also performed an analysis of type 2 diabetes using imputed genotypes from 
the SIGMA T2D data set16, restricting to 2,062,617 present in both data sets (with 
matched reference and variant alleles) after removing A/T and C/G SNPs due to strand 
ambiguity.  
 
 
Results 
 
Simulations. 
 
We performed simulations using real genotypes and simulated phenotypes. We simulated 
continuous phenotypes under a non-infinitesimal model with 1% of markers chosen to be 
causal and SNP-heritability hg

2
 = 0.5 (see Methods); we report the average R2 and 

standard deviation over 100 simulations.  We used WTCCC218,19 data (15,622 samples 
after QC, see Methods) as the European training data, and the SIGMA data16 (8,214 
samples) as the Latino training and validation data (with 10-fold cross-validation). We 
simulated phenotypes using the 232,629 SNPs present in both data sets and built 
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predictions from these SNPs excluding the causal SNPs, modeling the causal SNPs as 
untyped (see Methods).   
 
Prediction accuracies (R2) and optimal weights for the 5 main methods (EUR, LAT, 
LAT+ANC, EUR+LAT, MultiPRS) are reported in Table 1 (optimal P-value thresholds 
for each method are reported in Supplementary Table 1). The EUR and LAT methods, 
which each use only one source of training data, performed similarly.  This reflects a 
tradeoff between the larger training sample size for EUR and the target-matched LD 
patterns for LAT (confirmed by higher accuracy when using EUR training data to predict 
in Europeans; Table 1 caption).  EUR+LAT attained a >78% relative improvement over 
either EUR or LAT (and chose similar weights for EUR and LAT), highlighting the 
advantages of incorporating multiple sources of training data.  When including an 
ancestry predictor, we observed a relative improvement of 20% for MultiPRS compared 
to EUR+LAT, reflecting small genetic effects of ancestry on phenotype that can arise 
from random genetic drift between populations at causal markers.  
 
Predictions using Latino effect sizes that were not adjusted for genetic ancestry (LATunadj, 
EUR+LATunadj, EUR+LATunadj+ANC, as compared to LAT, EUR+LAT, MultiPRS) were 
much less accurate (Supplementary Table 1), consistent with previous work17; this is a 
consequence of the fact that LATunadj predictions were dominated by genetic ancestry (R2 
= 0.86; Supplementary Table 2). We also observed a modest correlation (R2 = 0.15) 
between the EUR prediction and genetic ancestry (Supplementary Table 2), again 
reflecting small genetic effects of ancestry on phenotype that can arise from random 
genetic drift between populations at causal markers. The relative performance of the 
different prediction methods was similar in simulations in which phenotypes explicitly 
contained an ancestry term, representing environmentally driven stratification 
(Supplementary Table 3). 
   
We extrapolated the results in Table 1 to larger sample sizes by limiting the simulations 
to subsets of chromosomes, as in previous work7 (Figure 1 and Supplementary Table 4). 
MultiPRS was the best performing method in each of these experiments. We also 
performed simulations using predictions from all SNPs including the causal SNPs 
(Supplementary Figure 1 and Supplementary Table 5). In these experiments, MultiPRS 
was once again the best performing method, but now EUR performed much better than 
LAT, consistent with the larger training sample size for EUR and the fact that differential 
tagging of causal SNPs is of reduced importance when causal SNPs are typed. 
 
Analyses of type 2 diabetes. 
 
We applied the same methods to predict T2D in Latino target samples from the SIGMA 
T2D data set. We used publicly available European summary statistics from 
DIAGRAM20 as European training data (12,171 cases and 56,862 controls; effective 
sample size = 40,100) and SIGMA T2D genotypes and phenotypes16 (3,848 cases and 
4,366 controls; effective sample size = 8,181) as Latino training and validation data, 
employing 10-fold cross-validation.  
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Prediction accuracies (R2) and optimal weights for the 5 main methods (EUR, LAT, 
LAT+ANC, EUR+LAT, MultiPRS) are reported in Table 2 (other prediction metrics are 
reported in Supplementary Table 6). EUR performed only 44% better than LAT despite 
the much larger training sample size, again reflecting a tradeoff between sample size and 
target-matched LD patterns. EUR+LAT attained improvements ranging from 72%-148% 
over EUR and LAT respectively (and chose slightly higher weights for EUR than for 
LAT), again highlighting the advantages of incorporating multiple sources of training 
data. Although adding an ancestry predictor to LAT produced a substantial improvement 
(LAT+ANC vs. LAT), adding an ancestry predictor to EUR+LAT produced only a very 
small improvement for MultiPRS compared to EUR+LAT; this can be explained by the 
large negative correlation between the European PRS (EUR) and European ancestry (R = 
-0.70; Supplementary Table 7), such that any predictor that includes EUR already 
includes effects of genetic ancestry. This correlation is far larger than analogous 
correlations due to random genetic drift in our simulations (Supplementary Table 2), 
suggesting that this systematically lower load of T2D risk alleles in Latino individuals 
with more European ancestry could be due to polygenic selection21,22 in ancestral 
European and/or Native American populations; previous studies using top GWAS-
associated SNPs have also reported continental differences in genetic risk for T2D23,24. 
As in our simulations, predictions using Latino effect sizes that were not adjusted for 
genetic ancestry (LATunadj, EUR+LATunadj, EUR+LATunadj+ANC, as compared to LAT, 
EUR+LAT, MultiPRS) were much less accurate (Supplementary Table 8), a consequence 
of the fact that these predictions were dominated by genetic ancestry (Supplementary 
Table 9). We also computed predictions for each method using imputed SNPs from the 
SIGMA T2D data set; this did not improve prediction accuracy, but MultiPRS was still 
the best performing method (Supplementary Table 10). 
   
We investigated how the prediction accuracy of each method varied as a function of P-
value thresholds, by varying either the EUR P-value threshold (Figure 2a and 
Supplementary Table 11) or the LAT P-value threshold (Figure 2b and Supplementary 
Table 12). In both cases, permissive P-value thresholds performed best, reflecting the 
relatively small sample sizes analyzed. However, the prediction accuracy of MultiPRS 
was relatively stable, with prediction R2 > 3.7% across all EUR P-value thresholds 
(Figure 2a) and R2 > 3.4% across all LAT p-value thresholds (Figure 2b). In Figure 2a, 
we observe that as the EUR P-value threshold becomes more stringent, the difference in 
prediction accuracy between MultiPRS and EUR+LAT increases, because EUR is less 
able to capture polygenic ancestry effects (see above).  
 
Discussion 
 
We have shown that MultiPRS attains a >70% improvement in prediction accuracy for 
type 2 diabetes in a Latino cohort compared to prediction methods that use training data 
from a single population. This improvement is consistent with simulations, and reduces 
the well-documented gap in risk prediction accuracy between European and non-
European target populations7.  Intuitively, MultiPRS leverages both large training sample 
sizes and training data with target-matched LD patterns.  We note that the effects of 
differential tagging (or different causal effect sizes) in different populations can 
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potentially be quantified using cross-population genetic correlation25, and that leveraging 
data from a different population to improve predictions is a natural analogue to 
leveraging data from a correlated trait12.  
 
Despite the advantages of MultiPRS, our work is subject to several limitations.  First, 
although we have demonstrated large relative improvements in prediction accuracy, 
absolute prediction accuracies are currently not large enough to be clinically useful, 
which will require larger sample sizes3. Second, it may be possible to attain higher 
prediction accuracy using methods that fit all markers simultaneously, such as Best 
Linear Unbiased Predictor (BLUP) methods and their extensions8–14.  However, these 
methods require raw genotypes/phenotype data, which is not available for the European 
type 2 diabetes summary statistics that we analyzed here. Third, our LDpred risk 
prediction method7, which analyzes summary statistics in conjunction with LD 
information from a reference panel, is more accurate in European populations than the 
LD-pruning + p-value thresholding approach employed by MultiPRS. However, we 
elected not to employ LDpred in the current setting due to the complexities of admixture-
LD when using LD information from a reference panel in admixed populations26. Fourth, 
our work has highlighted the importance of validating predictions using a separate cohort 
(instead of cross-validation within the same cohort) in order to avoid inflation in 
prediction accuracies due to population stratification effect7. However, we believe this 
issue is not substantially affecting our conclusions, both because our empirical results are 
consistent with simulations and because the type 2 diabetes prediction accuracy we 
obtained in a Latino-only (LAT) prediction scheme with no P-value thresholding (R2 = 
0.017; see Supplementary Table 13) imply values of SNP-heritability (hg,obs

2 = 0.39; 
hg,liab

2 = 0.38 assuming 8% prevalence2) that are consistent with previous estimates2. 
Fifth, MultiPRS includes an ancestry predictor, but in some cases it may be preferable to 
construct and evaluate a predictor that does not benefit from ancestry information; we 
note that very similar results for type 2 diabetes were obtained using a prediction method 
(EUR+LAT) that does not include the ancestry predictor.  Sixth, we optimize P-value 
thresholds and weights for each predictor via an in-sample fit on validation samples, 
consistent with widely used LD-pruning and P-value thresholding methods1–4; an 
additional layer of validation using samples not used to fit those parameters would 
formally be most statistically appropriate, but is unlikely to impact our results given the 
small number of parameters (up to two P-value thresholds and weights for EUR, LAT, 
and two ANC predictors) and fairly large validation sample (N=8,214), as we have 
demonstrated in previous work17.  Seventh, we have not considered here how to improve 
prediction accuracy in data sets with related individuals13.  Eighth, we focused our 
analyses on common variants, but future work may wish to consider rare variants as well.  
Finally, we have only considered a Latino target population, but it is also of interest to 
apply MultiPRS to other non-European target populations.  
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Tables 
 

Model  
Average weight (s.e.) associated to each 

predictor. Average R2 (s.e.) 
European PRS Latino PRS 

EUR  0.141 (0.004)  0.0218 (0.001) 

LAT   0.155 (0.002) 0.0248 (0.001) 

LAT+ANC   0.154 (0.002) 0.0345 (0.002) 

EUR+LAT  0.133 (0.004) 0.147 (0.002) 0.0437 (0.001) 

MultiPRS 0.148 (0.002) 0.145 (0.002) 0.0521 (0.002) 

Table 1. Accuracy of 5 prediction methods in simulations. We report average R2 on the observed scale 
over 100 simulations for each of the 5 main prediction methods. We assessed prediction accuracy in 
European target sample using 10-fold cross-validation and obtained R2 =0.031 (s.e.=0.0006).	
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Model 

Weights associated to each predictor 
 R2 

European PRS Latino PRS 

EUR  0.161  0.0259 

LAT   0.134 0.0179 

LAT+ANC   0.143 0.0339 

EUR+LAT  0.171 0.137 0.0444 

MultiPRS 0.148 0.138 0.0448 

Table 2. Accuracy of 5 prediction methods in analyses of type 2 diabetes. We report R2 on the observed 
scale for each of the 5 main prediction methods.  We obtained similar relative results using Nalgerkerke R2, 
R2 on the liability scale and AUC (Supplementary Table 6). 
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Figures 
 

 
 
Figure 1. Accuracy of 5 prediction methods in simulations using subsets of chromosomes. We report 
prediction accuracies for each of the 5 main prediction methods as a function of Msim/M, where 
M=232,629 is the total number of SNPs and Msim is the actual number of SNPS used in each simulation: 
232,629 (all chromosomes), 68,188 (chromosomes 1-4), 38412 (chromosomes 1-2), and 19087 
(chromosome 1).  Numerical results are provided in Supplementary Table 4. 
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/051458doi: bioRxiv preprint 

https://doi.org/10.1101/051458


 

18 

 

 
Figure	
  2. Accuracy of 5 prediction methods in analyses of type 2 diabetes as a function of P-value 
thresholds. We report prediction accuracies for each of the 5 main prediction methods as a function of (a) 
EUR P-value threshold, where applicable (with optimized LAT P-value threshold, where applicable) and 
(b) LAT P-value threshold, where applicable (with optimized EUR P-value threshold, where applicable).  
Numerical results are provided in Supplementary Table 11 and Supplementary Table 12.	
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Supplementary Tables 
 

Model 

Average weight (s.e.) 
associated to each 

predictor. Average 
R2 (s.e.) 

European 
training 

Latino 
training 

European 
PRS 

Latino 
PRS 

P value 
threshold 

P value 
threshold 

EUR  0.141 
(0.004)  0.0218 

(0.001) 0.01  

LATunadj  0.104 
(0.005) 

0.0133 
(0.002)  0.01 

LATunadj+ANC  0.385 
(0.022) 

0.0168 
(0.001)  0.01 

LAT   0.155 
(0.002) 

0.0248 
(0.001)  0.1 

LAT+ANC   0.155 
(0.002) 

0.0349 
(0.002)  0.08 

EUR+LATunadj 
0.151 

(0.002) 
0.089 

(0.007) 
0.0325 
(0.002) 0.01 0.01 

EUR+LATunadj+ANC 0.155 
(0.002) 

0.359 
(0.021) 

0.0361 
(0.001) 0.01 0.01 

EUR+LAT  0.133 
(0.004) 

0.147 
(0.002) 

0.0437 
(0.001) 0.01 0.3 

MultiPRS 0.148 
(0.002) 

0.146 
(0.002) 

0.0521 
(0.002) 0.01 0.2 

Supplementary Table 1. Accuracy of 9 prediction methods in simulations. We report prediction 
accuracies for methods using both ancestry-adjusted Latino effect sizes (LAT) and ancestry-unadjusted 
Latino effect sizes (LATunadj). Reported values are mean R2 on the observed scale over 100 simulations.  
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/051458doi: bioRxiv preprint 

https://doi.org/10.1101/051458


 

20 

 

Model Average R2 
(s.e.) 

EUR 0.152 
(0.017) 

LATunadj 
0.861 

(0.024) 

LATunadj+ANC 0.479 
(0.038) 

LAT 0.030 
(0.004) 

LAT+ANC 0.232 
(0.026) 

EUR+LATunadj 
0.310 

(0.021) 

EUR+LATunadj+ANC 0.235 
(0.023) 

EUR+LAT 0.078 
(0.011) 

MultiPRS 0.166 
(0.017) 

Supplementary Table 2. R2 with European ancestry for 9 prediction methods in simulations. 
European ancestry is represented by PC1 in the SIGMA data set. Reported values are mean R2over 100 
simulations. The average R2 between ancestry and phenotype was 0.011. 
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Model 

Average weight (s.e.) 
associated to each 

predictor. Average 
R2 (s.e.) 

European 
training 

Latino 
training 

European 
PRS 

Latino 
PRS 

P-value 
threshold 

P-value 
threshold 

EUR  0.135 
(0.004)  0.0201 

(0.001) 0.01  

LATunadj  0.115 
(0.001) 

0.0133 
(0.0001) 0.01  

LATunadj+ANC  0.51 
(0.022) 

0.0159 
(0.0002) 0.01  

LAT   0.151 
(0.002) 

0.0237 
(0.001)  0.08 

LAT+ANC   0.154 
(0.002) 

0.0359 
(0.001)  0.05 

EUR+LATunadj 
0.154 

(0.002) 
0.103 

(0.006) 
0.0329 

(0.0004) 0.01 0.01 

EUR+LATunadj+ANC 0.156 
(0.002) 

0.471 
(0.02) 

0.0355 
(0.0005) 0.01 0.01 

EUR+LAT  0.127 
(0.004) 

0.145 
(0.003) 

0.0414 
(0.001) 0.01 0.08 

MultiPRS 0.147 
(0.002) 

0.146 
(0.001) 

0.0533 
(0.001) 0.01 0.08 

Supplementary Table 3. Accuracy of 9 prediction methods in simulations with ancestry-correlated 
phenotypes. We report prediction accuracies for methods using both ancestry-adjusted Latino effect sizes 
(LAT) and ancestry-unadjusted Latino effect sizes (LATunadj). Reported values are mean R2 on the observed 
scale over 100 simulations . 
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Model  Chr 1 Chr 1-2 Chr 1-4 Chr 1-22 

EUR 0.133 (0.002) 0.108 (0.003) 0.082 (0.002) 0.022 (0.001) 

LAT 0.098 (0.002) 0.089 (0.003) 0.073 (0.002) 0.024 (0.001) 

LAT+ANC 0.107 (0.001) 0.096 (0.003) 0.078 (0.002) 0.035 (0.002) 

EUR+LAT 0.175 (0.002) 0.151 (0.003) 0.122 (0.002) 0.044 (0.001) 

MultiPRS 0.180 (0.002) 0.157 (0.003) 0.126 (0.002) 0.052 (0.002) 

Supplementary Table 4. Numerical values of results displayed in Figure 1. We report prediction 
accuracies for each of the 5 main prediction methods, for each subset of chromosomes. 
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Model Chr 1 Chr 1-2 Chr 1-4 Chr 1-22 

EUR 0.277 (0.003) 0.247 (0.003) 0.207 (0.002) 0.079 (0.003) 

LAT 0.143 (0.003) 0.130 (0.003) 0.113 (0.002) 0.042 (0.001) 

LAT+ANC 0.158 (0.003) 0.141 (0.003) 0.120 (0.002) 0.052 (0.002) 

EUR+LAT 0.295 (0.003) 0.267 (0.003) 0.232 (0.002) 0.106 (0.002) 

MultiPRS 0.301 (0.002) 0.275 (0.003) 0.243 (0.002) 0.122 (0.002) 

Supplementary Table 5. Numerical values of results displayed in Supplementary Figure 1. We report 
prediction accuracies for each of the 5 main prediction methods, for each subset of chromosomes, in 
simulations including the causal SNPs. 
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Model Observed-scale 
R2 Nagelkerke R2 Liability-scale R2 AUC 

EUR 0.0259 0.0346 0.0258 0.58841 

LAT 0.0179 0.0239 0.0178 0.5764 

LAT+ANC 0.0309 0.0412 0.0309 0.5971 

EUR+LAT 0.0444 0.0593 0.0447 0.6192 

MultiPRS 0.0445 0.0595 0.0448 0.6191 

Supplementary Table 6. Accuracy of 5 prediction methods in analyses of type 2 diabetes, using 
alternate prediction metrics. Liability-scale R2 was computed assuming a disease prevalence of K=0.08. 
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R EUR LAT European 
ancestry T2D 

EUR 1 0.005 -0.699 0.161 

LAT 0.005 1 0.031 0.133 

European 
ancestry -0.699 0.031 1 -0.112 

T2D 0.161 0.133 -0.112 1 

Supplementary Table 7.  Pairwise correlations (R) between EUR and LAT polygenic risk scores, 
European ancestry and T2D phenotype in analyses of T2D. European ancestry is represented by PC1 in 
the SIGMA data set.   
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Model 

Weight associated to 
each predictor R2 

European 
training 

Latino 
training 

European 
PRS 

Latino 
PRS 

P-value 
threshold 

P-value 
threshold 

EUR 0.161  0.0259 0.05  

LATunadj  0.117 0.0125  0.02, 0.2 

LATunadj+ANC  0.674 0.0155  1 

LAT  0.134 0.0179  1 

LAT+ANC  0.143 0.0339  1 

EUR+LATunadj 0.159 0.180 0.0259 0.05 0.02 

EUR+LATunadj 
+ANC 0.159 0.702 0.0279 0.05 1 

EUR+LAT 0.171 0.137 0.0444 0.1 0.05 

MultiPRS 0.148 0.138 0.0448 0.05 0.05 

Supplementary Table 8. Accuracy of 9 prediction methods in type 2 diabetes analyses.  We report 
prediction accuracies for methods using both ancestry-adjusted Latino effect sizes (LAT) and ancestry-
unadjusted Latino effect sizes (LATunadj). 
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Model R R2 

EUR -0.699 0.488 

LATunadj -0.996 0.992 

LATunadj+ANC -0.999 0.997 

LAT 0.016 0.0003 

LAT+ANC -0.634 0.402 

EUR+LATunadj -0.703 0.494 

EUR+LATunadj +ANC -0.690 0.475 

EUR+LAT -0.493 0.243 

MultiPRS -0.529 0.280 

Supplementary Table 9.  R and R2 with European ancestry for 9 prediction methods in analyses of 
type 2 diabetes. European ancestry is represented by PC1 in the SIGMA data set.  
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Model 
Weights associated to each predictor 

R2 EUR LAT 

EUR 0.159  0.0255 

LAT  0.149 0.0222 

LAT+ANC  0.131 0.0303 

EUR+LAT 0.148 0.129 0.0422 

MultiPRS 0.149 0.129 0.0426 

Supplementary Table 10. Accuracy of 5 prediction methods in analyses of type 2 diabetes, using 
imputed genotypes. We report R2 on the observed scale for each of the 5 main prediction methods. 
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 P-value Threshold 

Model 10-8 10-7 10-6 10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2 0.5 1 

EUR 0.0016 0.0016 0.0032 0.0047 0.0106 0.0189 0.0219 0.0244 0.0259 0.0255 0.0247 0.0252 0.0253 

EUR+LAT 0.0190 0.0191 0.0206 0.0220 0.0277 0.0360 0.0394 0.0419 0.0442 0.0444 0.0439 0.0440 0.0441 

MultiPRS 0.0374 0.0377 0.0393 0.0411 0.0428 0.0437 0.0426 0.0434 0.0445 0.0445 0.0440 0.0441 0.0441 

Supplementary Table 11. Numerical values for results displayed in Figure 2a. We report R2 on the 
observed scale for each of the 3 prediction methods that include the EUR predictor. 
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 P-value Threshold 

Model 10-8 10-7 10-6 10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2 0.5 1 

LAT 0.0027 0.0038 0.0037 0.0045 0.0055 0.0057 0.0085 0.0119 0.0152 0.0165 0.0173 0.0178 0.0179 

LAT+ANC 0.0215 0.0235 0.0233 0.0249 0.0252 0.0234 0.0264 0.0296 0.0326 0.0322 0.0320 0.0312 0.0309 

EUR+LAT 0.0340 0.0359 0.0357 0.0371 0.0375 0.0357 0.0382 0.0412 0.0444 0.0442 0.0441 0.0434 0.0431 

MultiPRS 0.0342 0.0361 0.0359 0.0374 0.0377 0.0357 0.0383 0.0414 0.0445 0.0442 0.0441 0.0434 0.0432 

Supplementary Table 12. Numerical values for results displayed in Figure 2b. We report R2 on the 
observed scale for each of the 4 prediction methods that include the LAT predictor. 
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Model Weights associated to each predictor R2 
European PRS Latino PRS 

EUR 0.159  0.0253 

LAT  0.134 0.0179 

LAT+ANC  0.135 0.0321 

EUR+LAT 0.157 0.132 0.0426 

MultiPRS 0.16 0.132 0.0427 

Supplementary Table 13.  Accuracy of 5 prediction methods in analyses of type 2 diabetes with no P-
value thresholding. We report R2 on the observed scale for each of the 5 main prediction methods with no 
P-value thresholding, i.e. PT = 1. 
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Supplementary Figures 
 

 
Supplementary Figure 1. Accuracy of 5 prediction methods in simulations using subsets of 
chromosomes, including the causal SNPs. We report prediction accuracies for each of the 5 main 
prediction methods as a function of Msim/M, where M=232,629 is the total number of SNPs and Msim is 
the actual number of SNPS used in each simulation: 232,629 (all chromosomes), 68,188 (chromosomes 1-
4), 38412 (chromosomes 1-2), and 19087 (chromosome 1).  Numerical results are provided in 
Supplementary Table 5. 
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