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Abstract 26 

Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel 27 

combustion, so the factors regulating wood decomposition can affect global carbon cycling. 28 

We used metabarcoding to estimate the fungal species diversities of naturally colonized 29 

decomposing wood in subtropical China and, for the first time, compared them to concurrent 30 

measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less 31 

CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community 32 

analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests 33 

that interference competition is an underlying mechanism. Our findings extend the results of 34 

published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, 35 

natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be 36 

providing globally important ecosystem services by maintaining dead-wood habitats and by 37 

slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. 38 

However, large-scale surveys and controlled experimental tests in natural settings will be 39 

needed to test this hypothesis.  40 

Introduction 41 

Global decomposition of wood releases CO2 (6 to 9.5 Pg C/year1, 2, 3) at similar rates to 42 

fossil-fuel combustion (9.5 Pg C/year in 20114). Decomposing wood also serves as essential 43 

habitat5, 6. The factors controlling wood decomposition rates are therefore of broad 44 

importance to conservation and to carbon cycle-climate feedbacks. 45 

However, temperature and moisture variables only explain minority portions of total 46 

variance in decomposition rates7, 8. For instance, Bradford et al.9 reported that regional 47 

temperatures explain only 28% of local variance in mass loss. 48 

The diversity of wood-decomposing fungi might explain much of the remaining 49 

unexplained variance. In laboratory-inoculation experiments using small numbers of 50 

culturable fungal species, wood pieces with higher final fungal diversity exhibited reduced 51 

decay rates10, 11, 12. Inoculated wood placed in the field also showed a negative effect of final 52 

fungal species diversity on decay (R2 = 0.1513). 53 
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However, in contrast to laboratory experiments, natural wood decomposition involves 54 

much higher species diversity, more complex assembly histories, and selective faunal feeding 55 

on decomposers14, 15, 16. Thus, it is important to examine the relationship between fungal 56 

diversity and decomposition rates in wood that is colonized and decomposing under natural 57 

conditions. 58 

Natural fungal communities can be characterized using metabarcoding17, in which 59 

nuclear ribosomal internal transcribed spacer (ITS) regions are PCR-amplified and read using 60 

high-throughput sequencing18, 19, 20, 21. ITS1 and ITS2 are each sufficiently variable to 61 

differentiate fungal species18, 19 and return similar estimates of OTU (Operational Taxonomic 62 

Units) richness and community structure19, 22. 63 

Here we metabarcoded ITS2 to examine fungal communities in naturally colonized wood 64 

pieces sampled across a wide range of decay classes in the Ailao Mountain forest of Yunnan, 65 

China. These wood pieces were sampled from a larger experiment involving three tree 66 

species (LC: Lithocarpus chintungensis [Fagaceae], LX: L. xylocarpus, and SN: Schima 67 

noronhae [Theaceae]) from which naturally occurring dead-wood pieces were regularly 68 

measured for CO2 emission rates over three years8. We measured the extent to which 69 

variation in the species diversity and composition of fungal communities can explain 70 

variation in emission rates. 71 

Results 72 

Taxonomy results – Numbers of fungal OTUs ranged from 17 to 199 across wood pieces, 73 

tree species, and sampling dates, with means of 73.8 (LC, Sep 2012), 76.7 (LC, June 2013), 74 

87.0 (LX, Sep 2012), 90.5 (LX, June 2013), 83.7 (SN, Sep 2012), and 88.4 (SN, June 2013).  75 

41.1% of the 1,807 OTUs produced by uclust and 76.3% of the 1,565 OTUs produced by 76 

CROP were assigned to Fungi, and the proportions assigned to each fungal class were similar 77 

across assignment methods (Table 1). Because we removed non-Fungi reads from the dataset 78 

before taxonomic assignment, we attribute the taxonomically unassigned OTUs to the still 79 

highly incomplete UNITE and Genbank databases used for taxonomic assignment. 80 

Fungal diversity and CO2 emissions – In June 2013, the month with the highest CO2 81 
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emissions, emissions declined with fungal diversity in all wood species (R2 = 26% to 44%, 82 

Fig. 1C, F).  83 

In June 2012, CO2 emissions from LC and SN also declined with fungal diversity, even 84 

though we used a fungal diversity estimate taken three months later (September 2012) and 85 

even after conservatively omitting an influential datum from SN (high CO2, low diversity) 86 

(Fig. 1A, D). The third species (LX) did not return a significant regression, but its 87 

CO2-diversity relationship was visually nearly indistinguishable from its congener LC, 88 

suggesting that wood species partly governs the emissions-diversity relationship. Variances 89 

explained (26% to 28%, Fig. 1A, D) were lower than in June 2013. 90 

Finally, in September 2012, CO2 emissions did not decline with higher fungal diversity 91 

(Fig. 1B, E), which is consistent with the generally lower CO2 emissions in September (Fig. 92 

1). 93 

The above results were robust to two OTU-picking methods (CROP and uclust, Fig. 1), 94 

rarefaction (non-rarefied shown in Fig. 1; rarefied in Supporting Information S1), and two 95 

diversity estimates (Shannon in Fig. 1, Simpson in S1). Regressions using Simpson 96 

diversities were generally statistically more significant (S1). We also analyzed after omitting 97 

single-read OTUs (which are more likely to be pipeline artefacts23) and achieved the same 98 

results, except that the previously non-significant SN regressions in Sept 2012 (Fig. 1A, D) 99 

became statistically significant (authors’ unpublished results). In short, the analyses presented 100 

in Fig. 1 are conservative. 101 

Chemistry of decomposing wood - We analyzed the chemistry of a separate subset of 27 102 

wood pieces from the larger experiment. Mean CO2 emissions from 2010-2012 showed no 103 

correlation with the densities of carbon, nitrogen, phosphorus, or lignin within any of the 104 

decay classes, with one exception, nitrogen density in decay class 1 (statistical details in 105 

Supporting Information S2).  106 

Pure-diversity versus species-selection effects – Two general mechanisms could explain 107 

the observed diversity-function relationships. The first is a ‘pure diversity’ effect where 108 

species identity does not matter, only that increased species richness and evenness per se is 109 

somehow responsible for slower wood decomposition. The second is a ‘species-selection’ 110 

effect where more diverse fungal communities might be more likely to contain particular 111 
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species that cause slow decomposition and somehow also govern the overall decomposition 112 

rate of the wood piece. To differentiate these two, we used a method devised by Sandau et al. 113 

24 to generate a parameter λ for each regression in Fig. 1 (statistical details in Supporting 114 

Information S3). λ ranges between 0 and 1, with 0 indicating that variation in species 115 

composition does not account for variation in CO2 emissions (i.e. a ‘pure-diversity’ effect). 116 

For two tree species, LC and LX, λ always took values near zero (Table 2). For the third tree 117 

species SN, λ was also nearly zero in June 2012 but took intermediate values in June 2013, 118 

suggesting that fungal composition in this tree species at this time had some explanatory 119 

power. The general failure to detect composition effects can be observed in the community 120 

ordinations (Fig. 2) by noting that the SN/June 2013 samples were the only ones to line up 121 

along the CO2 emissions gradient (except the two lowest diversity samples). Not surprisingly, 122 

conventional community-analysis tests returned the same conclusion: variation in community 123 

composition is not explained by CO2 emissions (statistical details in Supporting Information 124 

S4). 125 

Discussion 126 

We found that naturally colonised wood with more diverse fungal communities 127 

decomposes more slowly (Fig. 1), resulting in a negative relationship between fungal 128 

biodiversity and the ecosystem function of decomposition. This result suggests positive 129 

relationships between fungal biodiversity and the ecosystem services of carbon storage and 130 

the provision of decomposing-wood habitat in forests. 131 

Our results are consistent with five published experiments using laboratory-inoculated 132 

wood, which have all found negative relationships between fungal diversity and 133 

decomposition rates10, 11, 12, 13, 25. The one exception, Valentin et al.26, found a positive 134 

relationship, but in that study, field-collected microbial communities were serially diluted and 135 

re-inoculated into laboratory wood incubations. Serial dilution does not necessarily remove 136 

microbial species, but it does make all species less abundant27, which might have reduced 137 

decomposition rates. 138 

In contrast, field studies to date have reported only ambiguous relationships between 139 
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fungal diversity and decomposition rates. For instance, Hoppe et al.28 found non-significant 140 

correlations between fungal OTU richness and decay class (reflecting different numbers of 141 

years of decomposition), albeit negative relationships consistent with our results. Van Der 142 

Wal et al.29 measured tree-stump decomposition and reported weakly positive effects of 143 

fungal species richness (but not Simpson diversity) on sapwood decomposition, but only in 144 

late decay. Kurbartová et al.30 found no relationship between wood loss and fungal OTU 145 

diversity after 12 years of decomposition but also reported that the least-decayed logs had the 146 

highest community diversities, again consistent with our results. All three studies found 147 

differences in community composition for logs that differed in remaining undecomposed 148 

weights. 149 

Importantly, none of those three field studies made concurrent measurements of fungal 150 

diversities and CO2 emission rates, as we did here (Fig. 1). We observe that relationships 151 

between CO2 emissions rate and fungal diversity varied from month to month and across tree 152 

species (Fig. 1, Table 2, S1), suggesting that fungal activity and composition are dynamic and 153 

environmentally responsive. Thus, the fungal community measured after years of 154 

decomposition might not reflect the communities that were active during decomposition, 155 

obscuring any relationship between mass loss and fungal diversity.  156 

Our study helps to reconcile the differing results found in the published laboratory and 157 

field studies, by making concurrent measurements of emissions and fungal diversity in a field 158 

setting that is the most natural on the spectrum of possibilities:  colonization of locally 159 

dominant tree species by the local fungal community, with uninterrupted and full exposure to 160 

local environmental variability and the local faunal community, including fungivores, and 161 

long-term succession of fungal and other microbial communities. Our collected wood pieces 162 

span a range of at least one to fifteen years of decomposition on the forest floor8. Our results 163 

suggest that laboratory experiments correctly reveal negative relationships between CO2 164 

emissions and fungal diversity.  165 

Mechanisms. - In contrast to wood, microbial diversity is reported to accelerate the 166 

decomposition of soil organic matter31,32, and this is thought to represent a general pattern33,34 167 

(but see Creed et al.35 for leaf litter). We hypothesise that because soil organic matter presents 168 

a much higher diversity of resources than does dead wood, niche complementarity amongst 169 
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decomposer species drives positive relationships between diversity and soil organic matter 170 

decomposition. 171 

By contrast, niche overlap provides a plausible biological mechanism for why wood 172 

decomposition should slow with fungal diversity. Interference competition has long been 173 

predicted to evolve when niche overlap is high and the disputed resource is valuable36. In 174 

forests, decomposing wood resources are available to many fungal species, and aggressive 175 

interactions are indeed observed among these fungi37. Elsewhere, it has been shown that 176 

interference competition reduces virulence (= host consumption rate) in endosymbioses38.39,40 177 

and productivity in bacterial communities41,42. Consistent with those findings in other 178 

contexts, interference competition can also explain why fungal biomass has been found to 179 

explain variance in wood mass loss9. When a piece of wood is colonized by many fungal 180 

species, the hypothesized higher levels of interference competition would result in less wood 181 

converted into fungal biomass (or CO2). High niche overlap is also consistent with the 182 

observed ‘pure diversity’ effect of fungal diversity on emissions (Table 2, S3, S4) since any 183 

species should fight all others (note, however, that we could not test for community 184 

composition effects at higher taxonomic levels, see Maherali & Klironomos43). Thus, theory 185 

suggests that the arrow of causation can be drawn in the direction of fungal diversity driving 186 

decomposition rate. Finally, interference competition results in competitive exclusion, which 187 

will cause community composition to change over time. This means that measures of fungal 188 

diversity made after years of decomposition are unlikely to explain final variance in 189 

decomposition.  190 

Sources of error and proposed future experiments. - One source of error is that 191 

metabarcoding provides only approximate estimates of species frequencies, due to the many 192 

errors known to be introduced by metabarcoding, especially PCR-primer mismatches that 193 

lead to biased amplification22, 23. Also, DNA is environmentally persistent, so fungal species 194 

that are no longer represented by living colonies might still be detected by PCR. Nonetheless, 195 

we found that Shannon and Simpson indices, which both incorporate species frequency 196 

information by discounting rare species (here, rare=low-read OTUs), were able to explain 197 

variation in CO2 emissions. There are two likely and non-exclusive explanations. (1) 198 

Low-read OTUs were more likely to have been the remains of dead species and/or sequence 199 
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artifacts from the metabarcoding pipeline and thus indeed should be discounted, and (2) in a 200 

Norway spruce forest, Ovaskainen et al.21 found that abundances of fungal fruiting bodies 201 

and OTU read numbers were positively correlated, suggesting that low-read OTUs indeed 202 

represent low-biomass species, which should have weaker influence on decomposition rates.  203 

Another possible source of error is that we did not experimentally control for the age of 204 

the wood pieces, and thus an alternative explanation is that the observed correlations between 205 

fungal diversity and CO2 emissions rates (Fig. 1) might be caused by sampling along a 206 

successional gradient in which older wood pieces have less remaining wood to decompose 207 

(and thus lower emissions) and have also accumulated more fungal species. However, we 208 

found no relationship between decay class and emissions rates (Methods: Experimental setup 209 

and Statistical analyses) in our dataset, nor did we in the 320-piece superset from which our 210 

samples were drawn8, whereas this alternative explanation predicts that the least-decayed 211 

wood pieces should show the highest emissions. Also, we found mostly ‘pure-diversity’ 212 

effects of fungal communities on emissions (Table 2, S3, S4), whereas this alternative 213 

explanation invokes a successional sere and thus predicts compositional effects. We suggest a 214 

long-term experiment in which even-aged and sterilized wood pieces are allowed to be 215 

colonized and sampled for CO2 emissions rates and fungal diversity over many years in the 216 

field. We suggest that bacterial communities also be measured for correlations with CO2 217 

emissions, although we caution that to estimate alpha diversity, sequencing effort will need to 218 

be much higher than for fungal communities. In addition to DNA-based metabarcoding, it 219 

might also be informative to sequence reverse-transcribed RNA from wood samples, in order 220 

to isolate the effect of living fungal species. 221 

Conclusions. - The slopes of our diversity-emissions relationships (Fig. 1) are steep 222 

enough to suggest that even modest declines in fungal diversity in dead wood could cause 223 

several-fold increases in CO2 emissions rates. For example, in June 2013, CO2 emissions 224 

varied by 5.6- and 14.4-fold among LC and LX wood pieces. These negative relationships 225 

between diversity and wood decomposition provide a strong justification to conduct 226 

large-scale surveys of the status of fungal biodiversity and its trajectories in the world’s 227 

forests. Global forest fragmentation, reduction of tree-species diversity by fires, logging and 228 

replanting, the removal of dead trees, and even increased rainfall could all reduce fungal 229 
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biodiversity in forests6,44. All these changes could lead to faster wood decomposition. On the 230 

other hand, fragmented forests are drier, fungal distributions are being globalized45, and their 231 

local diversity is increased by rising CO2
46. The net effect of all these changes on carbon 232 

emissions from the world’s stock of decomposing wood is difficult to predict.  233 

Methods  234 

Site description. – This study was conducted in the Ailao Mountains National Nature 235 

Reserve, Yunnan, China, which preserves the largest area of undisturbed, subtropical moist 236 

forest in China and has a substantial pool of woody debris (branches and logs, 74.9 x 103 kg 237 

ha-1, Ref. 47). The study site was at an elevation of 2476 m, about 2 km north of the Ailao 238 

Field Station for Forest Ecosystem Studies (24.533 ºN, 101.017 ºE), and receives 1840 mm 239 

annual average precipitation. The climate is monsoonal with distinct cool/dry (November to 240 

April) and warm/wet (May to October) seasons48. Annual mean air temperature is 11.3 ºC 241 

with monthly means ranging from 5 to 16 ºC. Surface soils (0 to 10 cm) of the area are 242 

Alfisols with pH of 4.2 (in water). The surficial organic layer is 3 to 7 cm deep49. The study 243 

site is a broad-leaved evergreen subtropical forest, with the canopy dominated by Lithocarpus 244 

chintungensis, Rhododendron leptothrium, Vaccinium ducluoxii, Lithocarpus xylocarpus, 245 

Castanopsis wattii, Schima noronhae, Hartia sinensis, and Manglietia insignsis50. 246 

Experimental setup. – At our site, most woody debris comes from Lithocarpus 247 

chintungensis, (LC), Lithocarpus xylocarpus (LX), and Schima noronhae (SN), so we only 248 

examined those three species. In early 2010, branches from these three species, already 249 

decomposing on the forest floor, were identified to species by a botanist from the 250 

Xishuangbanna Tropical Botanical Garden, collected, and cut into a total of 320 wood pieces, 251 

sized to fit a field-respiration chamber (ca. 10 cm diameter and 20 to 30 cm length), tagged, 252 

weighed, and measured for size and decay class (further details in Liu et al.8). The three 253 

decay classes were DKC1 = a knife could not penetrate, DKC2 = a knife could slightly 254 

penetrate with appreciable resistance, DKC3 = a knife could deeply penetrate with little 255 

resistance51. We used similar-sized pieces to control for potential effects of wood size on 256 

fungal communities52. The pieces were placed on the forest floor within a 60 x 3 m belt 257 
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transect following an elevation contour. We collected source wood from within 500 m of this 258 

transect, utilizing about 5% of downed woody debris from these species in these decay 259 

classes, potentially arising from about 6000 source trees (D.A. Schaefer, unpublished data).  260 

Each wood piece was initially weighed with a GLL portable electronic balance (accuracy 261 

0.5 g) and for moisture content with an Extech MO210 moisture meter (calibrated as in Liu et 262 

al.8). Their volumes were calculated as cylinders, based on length and the average of 5 263 

circumferential measurements along their lengths. From those, initial weight, volume, and 264 

density were all calculated. Oven drying of these wood pieces was not done, because it would 265 

have altered microbial communities and wood chemistry. 266 

CO2 emissions-rate measurements. – Individual wood-piece CO2 release rates were 267 

measured in the field in a closed, ventilated chamber (10 L) connected to an infrared gas 268 

analyzer (Licor 820, Lincoln, NE, USA). After chamber closure and initial stabilization, 269 

linear CO2 concentration increase rates were logged for at least 5 min. Pieces remained in the 270 

field for CO2 measurements (within 5 m) and were handled carefully to limit fragmentation. 271 

Temperature and moisture were measured for each sample at each sampling time. The 272 

wood-piece CO2 release rate (RWD, µmol C g-1 h-1) was calculated as follows: 273 

RWD = (1000*ΔCO2*P*(V-Vs)) / (24*R*(Ts+273)*WC) (1) 274 

where ΔCO2 represents the measured CO2 concentration increase (ppm day-1), P is the 275 

internal pressure (kPa; measured by the Licor 820), V is the volume of the system (10.08 L, 276 

including the chamber volume and tubing volume and Licor optical path), Vs is the volume of 277 

the wood piece (L), R is the gas constant (8.314 L-1 kPa-1 K-1 mol-1), Ts is the wood 278 

temperature (ºC), and WC is the carbon weight of each piece (g; 47% of its dry weight). 279 

These measurements were made eight times from September 2010 to June 2013, 280 

approximately every four months (Fig. 1).  281 

Sampling for genetic analysis. – The larger ongoing study includes three species, each 282 

having three decay classes, thus producing nine strata. 65 wood pieces were selected from all 283 

nine strata. In addition, for each stratum, we calculated a mean CO2 emission rate during 284 

2010-2012, and the pieces chosen for this experiment included ones that were consistently 285 

below, at, or above the mean rate, and also some that showed variation around the mean over 286 

time. Pieces for each of these subgroups were selected at random from the larger study. This 287 
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stratified random sampling ensured that all nine groups and the full range of CO2 emission 288 

variation were represented in the metabarcoded samples. Those wood pieces were collected 289 

in September 2012, and 59 of those samples were recollected in June 2013 (6 samples were 290 

not relocated in June 2013, having lost their tags or been buried under new litter). We chose 291 

June and September because CO2 emissions from wood are typically higher in June and 292 

lower in September, despite similarly warm temperatures and high moisture availability8 (Fig. 293 

1 top). Superficial litter and bark were removed from each wood piece with a flame-sterilized 294 

knife before drilling. An electric drill with a flame-sterilized, 11-mm drill bit was used to 295 

extract wood powder at three holes located near the ends and the middle of each wood piece. 296 

Each sample consisted of ~5 cm3 pooled material from those three holes, collected onto 297 

aluminum-foil sheets, and then immediately stored in 50 ml tubes and frozen at -20 ºC for 2-3 298 

days until transport on ice packs to our laboratory 10 hr away, where they were stored at -40 299 

ºC until extractions. 300 

Comparing cumulative CO2 emissions and gravimetric weight losses. – Sixty-four 301 

additional wood pieces (i.e. not used for metabarcoding) were retrieved from the field in 302 

April 2013 to test the extent to which CO2-emissions-estimated mass loss (averaged over the 303 

measurements taken from the year 2010 experiment start) accurately estimated directly 304 

measured mass loss (gravimetric weight loss). In the laboratory, these wood pieces were 305 

re-measured for volume (as above), and twenty-two wood pieces exhibiting >15% volumetric 306 

weight loss since the start of the experiment, indicating substantial fragmentation in the field, 307 

were excluded from the analysis. The remaining wood pieces were dried at 70 ºC to constant 308 

weights and then individually weighed to the nearest 0.1 g on an electronic balance. 309 

CO2-estimated mass loss was positively correlated with gravimetric loss (linear regression, 310 

Gravimetric loss in grams over 3 years = 30.7 + 0.741 * CO2-based-decomposition Cd (R2 = 311 

0.769, n = 17, p <0.01); 28.7 + 0.56 * Cd (R2 = 0.762, n = 13, p <0.01); and 40.3 + 0.468 * 312 

Cd (R2 = 0.592, n = 13, p <0.01), for DKC1, 2, and 3, respectively. Inspection of scatterplots 313 

(Supporting Information S5) revealed that the main discrepancy was that CO2-emission 314 

mass-loss estimates slightly underestimated small mass losses. 315 

DNA extraction, PCR, and 454 pyrosequencing of ITS2 amplicons. – Total DNA was 316 

extracted from each sample of wood powder by adding 10 mL CTAB buffer (2% cetyl 317 
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trimethyl ammonium bromide, 50 mM NaCl, 5 mM EDTA, 10 mM Tris, pH 8) and 20 µL 318 

β-mercaptoethanol per 5 cm3 of sample, homogenizing with a TH-02 homogenizer (Omni 319 

International, Kennesaw, GA USA) for 5 min at room temperature, incubating at 65 ºC for 1 320 

hour, centrifuging at 4,000 rpm for 1 min. After centrifugation, the supernatant was 321 

transferred to new Axygen® 2.0 mL microcentrifuge tubes and extracted using one volume of 322 

chloroform by vortexing for 20 min and centrifuged at 4 ºC, 12,000 rpm for 10 min. The 323 

supernatant was then transferred to new microcentrifuge tubes and precipitated with 1.5 324 

volumes of precooled isopropanol at -20 ºC overnight. After centrifugation at 4 ºC, 12,000 325 

rpm for 20 min, the precipitate was washed with 70% ethanol and dissolved in 100 µL TE 326 

buffer (10 mM Tris, 1 mM EDTA, pH 8.0). DNA was purified by using QIAquick PCR 327 

Purification Kit. The quantity and quality of purified DNA was assessed with a Nanodrop 328 

2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). Samples were 329 

PCR amplified using the forward primer ITS3_KYO2 5’-GATGAAGAACGYAGYRAA-3’ 18 330 

and reverse primer ITS4 5’-TCCTCCGCTTATTGATATGC-3’ 53. The standard Roche 331 

A-adaptor and a unique 10 bp MID (Multiplex Identifier) tag for each sample were attached 332 

to the forward primer. PCRs were performed using approximately 10 ng DNA in a 20 µL 333 

reaction mixture containing 2 µL of 10X buffer (Mg2+ Plus), 0.02 mM dNTPs, 20 µg Bovine 334 

Serum Albumin, 1 µL DMSO, 0.4 µM of each primer, and 0.5 U HotStart Taq DNA 335 

polymerase (TaKaRa Biotechnology Co., Dalian, China) under a temperature profile of 95 ºC 336 

for 10 min, followed by 35 cycles of 94 ºC for 20 sec, 47 ºC for 30 sec, and 72 ºC for 2 min, 337 

and final extension at 72 ºC for 7 min. For pyrosequencing, PCR products were gel-purified 338 

using Qiagen QIAquick PCR purification kit, quantified using the Quant-iT PicoGreen 339 

dsDNA Assay kit (Invitrogen, Grand Island, NY, USA), pooled and A-amplicon-sequenced 340 

on a Roche GS FLX (Branford, Connecticut, USA) at the Kunming Institute of Zoology. 341 

Bioinformatic analyses. – The sequences obtained were run through a pipeline for quality 342 

control, denoising and chimera removal, OTU-picking and taxonomic assignment. Quality 343 

Control: Header sequences and low-quality reads were removed from the raw output in the 344 

QIIME 1.8.0 environment (split_libraries.py: -l 100 -L 500 -H 30)54. The 65 samples 345 

collected in 2012 had been sequenced on four 1/8 regions, producing 679,361 raw reads and 346 

525,679 post-quality-control reads (mean read length 286 bp). The 59 samples collected in 347 
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2013 had been sequenced on three 1/8 regions, producing 327,226 raw reads and 256,996 348 

post-quality-control reads (mean read length 308 bp). These amplicon lengths were consistent 349 

with the expected mean length for ITS2 (327.2 bp, SD=40) reported by Toju et al.18. 350 

Denoising and chimera removal: Denoiser in QIIME55 was used to remove characteristic 454 351 

sequencing errors. Next, ITSx 1.0.356 was used to extract the variable ITS2 region from the 352 

whole reads (i.e. conserved 5.8S and LSU flanking sequences were stripped) and to remove 353 

non-fungal-ITS reads. The extracted sequences were clustered at 99% similarity with 354 

USEARCH v7.0.109057 to remove replicate sequences and chimeras. OTU-picking and 355 

taxonomic assignment: We used two methods to cluster the reads into OTUs. First, we used a 356 

reference-based method in QIIME (pick_open_reference_otus.py: max_accepts 20 357 

max_rejects 500 stepwords 20 length 12 –suppress_align_and_tree) in which reads were first 358 

clustered by matching at 97% similarity to the UNITE 12_11 fungal database58, which itself 359 

had previously been clustered at 97% similarity for use within QIIME. Unassigned reads (the 360 

vast majority) were then clustered de novo using the uclust option at 97% similarity, 361 

producing 1,807 OTUs in total. For these latter OTUs, we attempted to assign taxonomies 362 

using QIIME’s assign_taxonomy.py against the UNITE database. Second, we performed de 363 

novo 97%-similarity clustering with CROP 1.3359, producing 1,565 OTUs. We assigned 364 

taxonomies against Genbank using the NNCauto and QCauto methods in Claident60. 365 

Sequence data are deposited at datadryad.org (doi: to be assigned) and in GENBANK‘s Short 366 

Read Archive (Accession number: PRJNA252416). An example bioinformatic script is in 367 

Supplementary Information and also deposited at datadryad.org (doi: to be assigned). 368 

Statistical analyses. – Analyses were performed using vegan 2.0-1061 and mvabund 369 

3.8.462 in R 3.1.063. The HTML outputs of the R scripts are in Supplementary Information and 370 

also deposited at datadryad.org (doi: to be assigned). From both the OTU tables generated 371 

(CROP and uclust, see Bioinformatic analysis), we deleted one SN wood piece that had only 372 

35 reads and then split the tables by wood species (LC, LX, and SN) and sample time 373 

(September 2012 and June 2013). We then generated a second pair of OTU tables by 374 

rarefying to the lowest read number per wood piece in the dataset (rrarefy() in R). Thus, for 375 

each wood species and sampling time, we have four OTU tables: CROP/non-rarefied, 376 

CROP/rarefied, uclust/non-rarefied, and uclust/rarefied. Finally, for each table, we used 377 
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vegan’s diversity() function to estimate Shannon and Simpson diversity in each wood piece. 378 

For each wood species, we used lm() in R to linearly regress emissions against fungal 379 

diversity. Thus, the June 2012 and September 2012 CO2 estimates were tested against the 380 

September 2012 fungal diversity estimate, and the June 2013 CO2 estimate was tested against 381 

the June 2013 fungal diversity estimate. Residuals were all adjudged visually to be near 382 

normally distributed, but with small indications of nonlinearity. We ignored the nonlinearities 383 

because the residuals suggested accelerating CO2 emissions at the lowest fungal diversity, 384 

making our results conservative. In trial models, we also tested for significant effects of wood 385 

surface temperature and decay class (see Experimental setup), but they did not interact 386 

significantly with the fungal diversity term and mostly did not enter significantly as additive 387 

terms, and so have been omitted here for simplicity. Liu et al.8 also did not find a correlation 388 

between decay class and CO2 emissions rates for these wood pieces. 389 

To test whether a ‘pure diversity’ effect is sufficient to explain the observed 390 

diversity-function relationships, we use a method by Sandau et al.24 where community 391 

similarities (1-Jaccard binary) between all wood pieces are used to create a 392 

variance-covariance matrix that is then included in the linear regressions, thus taking into 393 

account potential non-independence of wood pieces due to the fact that some communities 394 

are similar to each other (Supporting Information S3). In Supporting Information S4, we also 395 

use conventional community analyses to test for an effect of community composition on CO2 396 

emissions. We limit our tests to June 2012 and 2013, as only these exhibited significant 397 

declines in emissions with fungal-species diversity (Fig. 1A, C, D, F). 398 
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Figure legends 575 

Figure 1. Linear regressions of CO2 emission rates on Shannon fungal diversities measured 576 

from individually metabarcoded wood pieces. Top. The solid black curve indicates the air 577 

temperature. Carets indicate times of CO2 measurements. Blue shading indicates the warm 578 

months when wood decomposition is >50% of maximum. A-C. CO2 emissions decline with 579 

increased fungal species diversity in two of the species in June 2012 (LC and SN) and in all 580 

three species in June 2013. In September 2012, CO2 emissions are lower, and there is no 581 

relationship. The OTU-picking method is de novo clustering with CROP. D-F. Same as A-C 582 

but the OTU-picking method is QIIME’s reference-based matching against the UNITE 583 

database, with de novo clustering of non-matched reads with uclust. Non-significant 584 

regressions are indicated by dashed lines. Shown here are the non-rarefied datasets. 585 

Rarefaction does not change the results (Supporting Information S1).  LC = Lithocarpus 586 

chintungensis, LX = L. xylocarpus, SN = Schima noronhae. 587 

Figure 2. Correspondence analysis ordinations of fungal communities, by tree species and 588 

sampling date. Point size is scaled to CO2 emissions, and the gradient represents fungal 589 

Shannon diversity. In all ordinations (A-F), CO2 emissions decrease with higher fungal 590 

diversity (point size decreases up the gradient, echoing Fig. 1). Also evident is that the lower 591 

diversity wood pieces are compositionally very dissimilar to each other and to the higher 592 

diversity wood pieces. Left-hand column (A, C, E). June 2012 CO2 vs. September 2012 593 

fungal diversity. Right-hand column (B, D, F). June 2013 CO2 vs. June 2013 fungal 594 

diversity. A-B. Lithocarpus chintungensis. Note that the label for point 14 at the top of A is 595 

obscured by the small point size. C-D. L. xylocarpus. E-F. Schima noronhae. Shown here are 596 

the non-rarefied datasets clustered using CROP (see Methods). Rarefaction or using 597 

uclust-clustering does not change the results (Supporting Information S4).598 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 13, 2016. ; https://doi.org/10.1101/051235doi: bioRxiv preprint 

https://doi.org/10.1101/051235


Yang et al. High fungal diversity and slow wood decomposition 

  Page 21 

Tables 

Table 1. Taxonomic assignments to Class level for the ITS2 Operational Taxonomic Units (OTUs). uclust and CROP refer to the two 

OTU-clustering methods used, and GenBank and UNITE refer to the fungal reference databases used (see Methods: Bioinformatic Analyses for 

details).  
 

CROP + Genbank (1,565 OTUs) 

Kingdom Fungi Ascomycota Basidiomycota Chytridiomycota Zygomycota Glomeromycota Mortierellales Phylum unidentified 

1194 OTUs 632 319 1 3 1 3 235 

76.3% of total 52.9% of Fungi 26.70% 0.10% 0.30% 0.10% 0.30% 19.70% 

uclust + UNITE (1,806 OTUs) 

Kingdom Fungi Ascomycota Basidiomycota Chytridiomycota Zygomycota Phylum unidentified 

742 OTUs 378 169 2 5 188 

41.1% of total 50.9% of Fungi 22.80% 0.30% 0.70% 25.30% 
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Table 2. Estimates of the contribution of fungal community composition to CO2 emissions, 

using the method of Sandau et al.24. The generated parameter λ varies between 0 and 1, with 0 2 

indicating that variation in composition does not explain variation in emissions. Composition 

only contributes to explaining variation in one tree species in one sampling date (SN, June 4 

2013). Conventional community analysis (Supporting Information S4) also detected a 

contribution of composition in SN in June 2013. LC = Lithocarpus chintungensis, LX = L. 6 

xylocarpus, SN = Schima noronhae. 

 8 

CO2 

sample 

date 

Species 
OTU 

clustering 

method 

λ 

Jun-12 

LC 
CROP 0.000 

uclust 0.000 

LX 
CROP 0.002 

uclust 0.000 

SN 
CROP 0.001 

uclust 0.004 

    

Jun-13 

LC 
CROP 0.000 

uclust 0.000 

LX 
CROP 0.000 

uclust 0.001 

SN 
CROP 0.366 

uclust 0.500 

 

 10 
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S1	Summary	of		Regression	analyses
OTU-pickng rarefaction CO2	measurement species diversity p-value notes
CROP nonrarefied Jun-12 LC Shannon 0.007
CROP nonrarefied Jun-12 LC Simpson 0.015
CROP nonrarefied Jun-12 LX Shannon 0.080
CROP nonrarefied Jun-12 LX Simpson 0.040
CROP nonrarefied Jun-12 SN Shannon 0.027 removed	influential	woodpiece=110
CROP nonrarefied Jun-12 SN Simpson 0.018 removed	influential	woodpiece=110
CROP nonrarefied Sep-12 LC Shannon 0.460
CROP nonrarefied Sep-12 LC Simpson 0.642
CROP nonrarefied Sep-12 LX Shannon 0.116
CROP nonrarefied Sep-12 LX Simpson 0.057
CROP nonrarefied Sep-12 SN Shannon 0.700
CROP nonrarefied Sep-12 SN Simpson 0.474
CROP nonrarefied Jun-13 LC Shannon 0.003
CROP nonrarefied Jun-13 LC Simpson 0.000
CROP nonrarefied Jun-13 LX Shannon 0.025
CROP nonrarefied Jun-13 LX Simpson 0.016
CROP nonrarefied Jun-13 SN Shannon 0.003
CROP nonrarefied Jun-13 SN Simpson 0.001
CROP rarefied Jun-12 LC Shannon 0.005
CROP rarefied Jun-12 LC Simpson 0.014
CROP rarefied Jun-12 LX Shannon 0.084
CROP rarefied Jun-12 LX Simpson 0.044
CROP rarefied Jun-12 SN Shannon 0.020 removed	influential	woodpiece=110
CROP rarefied Jun-12 SN Simpson 0.037 removed	influential	woodpiece=110
CROP rarefied Sep-12 LC Shannon 0.563
CROP rarefied Sep-12 LC Simpson 0.572

The	(bolded) Shannon	results	from	this	
first	section	are	plotted in	Fig.	1A-C.
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CROP rarefied Sep-12 LX Shannon 0.123
CROP rarefied Sep-12 LX Simpson 0.062
CROP rarefied Sep-12 SN Shannon 0.693
CROP rarefied Sep-12 SN Simpson 0.475
CROP rarefied Jun-13 LC Shannon 0.004
CROP rarefied Jun-13 LC Simpson 0.001
CROP rarefied Jun-13 LX Shannon 0.030
CROP rarefied Jun-13 LX Simpson 0.019
CROP rarefied Jun-13 SN Shannon 0.004
CROP rarefied Jun-13 SN Simpson 0.001
uclust nonrarefied Jun-12 LC Shannon 0.003
uclust nonrarefied Jun-12 LC Simpson 0.005
uclust nonrarefied Jun-12 LX Shannon 0.086
uclust nonrarefied Jun-12 LX Simpson 0.044
uclust nonrarefied Jun-12 SN Shannon 0.538 removed	influential	woodpiece=110
uclust nonrarefied Jun-12 SN Simpson 0.439 removed	influential	woodpiece=110
uclust nonrarefied Sep-12 LC Shannon 0.499
uclust nonrarefied Sep-12 LC Simpson 0.593
uclust nonrarefied Sep-12 LX Shannon 0.138
uclust nonrarefied Sep-12 LX Simpson 0.066
uclust nonrarefied Sep-12 SN Shannon 0.500
uclust nonrarefied Sep-12 SN Simpson 0.265
uclust nonrarefied Jun-13 LC Shannon 0.003
uclust nonrarefied Jun-13 LC Simpson 0.000
uclust nonrarefied Jun-13 LX Shannon 0.028
uclust nonrarefied Jun-13 LX Simpson 0.018
uclust nonrarefied Jun-13 SN Shannon 0.004
uclust nonrarefied Jun-13 SN Simpson 0.001

The	(bolded)	Shannon	results	from	this	
thrd	section	are	plotted	in	Fig.	1D-F.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 13, 2016. ; https://doi.org/10.1101/051235doi: bioRxiv preprint 

https://doi.org/10.1101/051235


uclust rarefied Jun-12 LC Shannon 0.005
uclust rarefied Jun-12 LC Simpson 0.003
uclust rarefied Jun-12 LX Shannon 0.094
uclust rarefied Jun-12 LX Simpson 0.049
uclust rarefied Jun-12 SN Shannon 0.096 removed	influential	woodpiece=110
uclust rarefied Jun-12 SN Simpson 0.144 removed	influential	woodpiece=110
uclust rarefied Sep-12 LC Shannon 0.441
uclust rarefied Sep-12 LC Simpson 0.590
uclust rarefied Sep-12 LX Shannon 0.136
uclust rarefied Sep-12 LX Simpson 0.066
uclust rarefied Sep-12 SN Shannon 0.482
uclust rarefied Sep-12 SN Simpson 0.247
uclust rarefied Jun-13 LC Shannon 0.004
uclust rarefied Jun-13 LC Simpson 0.001
uclust rarefied Jun-13 LX Shannon 0.026
uclust rarefied Jun-13 LX Simpson 0.018
uclust rarefied Jun-13 SN Shannon 0.004
uclust rarefied Jun-13 SN Simpson 0.001
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Supporting Information S2.  Wood chemistry analyses. 

 

Methods 

In January 2013, 27 decaying wood samples from our larger study were removed from the 

field for chemical analyses. Included were 3 pieces from each combination of wood species 

(LC, LX, and SN) and decay class (DKC 1, 2, 3), spanning the range of previously observed 

decomposition rates. These pieces were dried at 60 oC to constant weights and milled to pass 

a 40 mesh (425 micron opening) sieve. They were analyzed for total carbon and nitrogen 

(Macro Elemental CN Analyzer, Vario MAX CN, Germany), for total phosphorus 

(continuous Flow Analyzer, Auto Analyzer 3, Germany) after acid digestion, and for lignin 

(Fibertec 2010 System, Fibertec, Denmark). The metabarcoded wood pieces remain in the 

field and were not analyzed. 

 

Column headings explanation 

Tag:  Permanent identification number assigned to each piece of wood in this study 

Tree_species:  LC = Lithocarpus chintungensis, LX = Lithocarpus xylocarpus (LX), and SN 

= Schima noronhae 

Average_CO2:  CO2 release rate for each wood piece from 2010 to 2012, average of 6 

measurements, micromoles CO2 per dry gram of wood carbon per hour 

Total_carbon_g/kg:  Carbon as grams per dry kilogram of wood weight 

Total_Nitrogen_g/kg:  Nitrogen as grams per dry kilogram of wood weight 

Total_Phosphorous_g/kg:  Phosphorus as grams per dry kilogram of wood weight 

lignin_%:  Lignin as percent of dry wood-piece weight 
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Tag Tree_species Decay_class Average_CO2 
Total_carbon_g/

kg 
Total_Nitrogen_g/k

g 
Total_Phosphorus_

g/kg lignin_% 

52 LC 1 0.529  458 3.96 0.20  26.8  
160 LC 1 0.482  452 3.7 0.16 19.6  
164 LC 1 0.335  455 3.51 0.12 19.7  

2 LC 2 0.601  450 3.67 0.17 22.1  

119 LC 2 1.980  496 4.30  0.22 18.6  

214 LC 2 0.298  460 2.65 0.07 16.4  
11 LC 3 0.450  458 3.08 0.13 23.7  
67 LC 3 0.723  488 7.56 0.27 31.0  
76 LC 3 0.404  491 4.69 0.11 25.2  
92 LX 1 0.264  497 2.69 0.08 23.0  

219 LX 1 0.358  454 3.33 0.20  19.3  
223 LX 1 0.796  455 4.19 0.25 17.8  
141 LX 2 1.146  492 5.78 0.36 16.0  
142 LX 2 1.430  505 8.38 0.64 19.4  
243 LX 2 0.392  454 3.44 0.11 24.8  
191 LX 3 1.493  452 5.42 0.57 17.3  
267 LX 3 1.454  459 7.40  0.37 24.0  
269 LX 3 0.534  464 5.47 0.27 18.7  
29 SN 1 0.269  455 2.29 0.06 16.7 
40 SN 1 0.752  451 3.92 0.17 20.8  

317 SN 1 0.463  527 2.42 0.12 20.6  
7 SN 2 0.803  454 3.17 0.13 19.3  

108 SN 2 0.980  453 1.45 0.07 16.2 
313 SN 2 0.421  453 3.11 0.09 18.4  
23 SN 3 0.449  470 3.19 0.14 19.2  
25 SN 3 0.848  452 1.88 0.07 16.6  

321 SN 3 0.335  503 3.13 0.10  21.8  
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Wood	Chemistry:	Supplementary	Information	S2	
## [1] "Tag"                       "Tree_species"             	

## [3] "Decay_class"               "Average_CO2"              	

## [5] "Total_carbon_g_per_kg"     "Total_Nitrogen_g_per_kg"  	

## [7] "Total_Phosphorus_g_per_kg" "lignin_pct"	

	

	

The	high	correlation	between	Total_Phosphorous_g_per_kg	and	Total_Nitrogen_g_per_kg	

means	that	we	cannot	include	them	in	the	same	model	(collinearity).	So	we	run	two	

separate	models.	We	also	run	models	separately	for	each	decay	class,	because	wood	

chemistry	changes	with	age,	due	to	selective	retention	of	N	and	P	while	C	is	lost.	This	gives	

us	6	total	models	(3	decay	classes	X	2	models).	As	a	result,	we	informally	carry	out	a	Table-

wide	correction	of	P-values	by	multiplying	all	P-values	by	6	before	assessing	statistical	

significance.	
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Decay	class	1	
wood_dkc1 <- wood %>% filter(Decay_class == 1)	
	

mod1.1 <- lm(Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + Total_Phosp
horus_g_per_kg + lignin_pct, data=wood_dkc1)	

summary(mod1.1)	

## 	

## Call:	

## lm(formula = Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + 	

##     Total_Phosphorus_g_per_kg + lignin_pct, data = wood_dkc1)	

## 	

## Residuals:	

##        1        2        3        4        5        6        7        8 	

## -0.05078  0.03754  0.01324  0.08299 -0.18550  0.10251 -0.04800  0.09029 	

##        9 	

## -0.04229 	

## 	

## Coefficients:	

##                             Estimate Std. Error t value Pr(>|t|)  	

## (Intercept)               -6.173e-02  1.132e+00  -0.055   0.9599  	

## Tree_speciesLX            -2.262e-02  1.454e-01  -0.156   0.8863  	

## Tree_speciesSN             1.849e-01  1.553e-01   1.190   0.3195  	

## Total_carbon_g_per_kg     -4.838e-05  2.635e-03  -0.018   0.9865  	

## Total_Phosphorus_g_per_kg  3.061e+00  1.061e+00   2.884   0.0633 .	

## lignin_pct                 1.936e-03  2.238e-02   0.087   0.9365  	

## ---	

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

## 	

## Residual standard error: 0.1508 on 3 degrees of freedom	

## Multiple R-squared:  0.775,  Adjusted R-squared:  0.3999 	

## F-statistic: 2.066 on 5 and 3 DF,  p-value: 0.2921	

vif(mod1.1)	

##                               GVIF Df GVIF^(1/(2*Df))	

## Tree_species              1.929908  2        1.178648	

## Total_carbon_g_per_kg     1.729095  1        1.314950	

## Total_Phosphorus_g_per_kg 1.499699  1        1.224622	

## lignin_pct                1.548025  1        1.244196	

par(mfrow=c(2,2))	
plot(mod1.1)	
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par(mfrow=c(1,1))	

	

	

 

mod1.2 <- lm(Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + Total_Nitro
gen_g_per_kg + lignin_pct, data=wood_dkc1)	

summary(mod1.2)	

## 	

## Call:	

## lm(formula = Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + 	

##     Total_Nitrogen_g_per_kg + lignin_pct, data = wood_dkc1)	

## 	

## Residuals:	

##         1         2         3         4         5         6         7 	

##  0.031887  0.026213 -0.058099  0.001404 -0.048399  0.046995  0.039522 	

##         8         9 	

## -0.035806 -0.003717 	

## 	

## Coefficients:	
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##                          Estimate Std. Error t value Pr(>|t|)   	

## (Intercept)             -2.171285   0.642439  -3.380   0.0431 * 	

## Tree_speciesLX           0.080254   0.059500   1.349   0.2702   	

## Tree_speciesSN           0.265343   0.067685   3.920   0.0295 * 	

## Total_carbon_g_per_kg    0.003182   0.001322   2.407   0.0953 . 	

## Total_Nitrogen_g_per_kg  0.376884   0.049140   7.670   0.0046 **	

## lignin_pct              -0.010503   0.009978  -1.053   0.3698   	

## ---	

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

## 	

## Residual standard error: 0.06452 on 3 degrees of freedom	

## Multiple R-squared:  0.9588, Adjusted R-squared:  0.8901 	

## F-statistic: 13.96 on 5 and 3 DF,  p-value: 0.02735	

vif(mod1.2)	

##                             GVIF Df GVIF^(1/(2*Df))	

## Tree_species            1.760129  2        1.151824	

## Total_carbon_g_per_kg   2.376907  1        1.541722	

## Total_Nitrogen_g_per_kg 2.304348  1        1.518008	

## lignin_pct              1.680777  1        1.296448	

par(mfrow=c(2,2))	
plot(mod1.2)	
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par(mfrow=c(1,1))	

	

Decay	class	2	
wood_dkc2 <- wood %>% filter(Decay_class == 2)	
	

mod2.1 <- lm(Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + Total_Phosp
horus_g_per_kg + lignin_pct, data=wood_dkc2)	

summary(mod2.1)	

## 	

## Call:	

## lm(formula = Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + 	

##     Total_Phosphorus_g_per_kg + lignin_pct, data = wood_dkc2)	

## 	

## Residuals:	

##         1         2         3         4         5         6         7 	

##  0.174691  0.068453 -0.243143  0.089657 -0.080636 -0.009021 -0.011913 	

##         8         9 	

##  0.346874 -0.334961 	

## 	

## Coefficients:	

##                            Estimate Std. Error t value Pr(>|t|)  	

## (Intercept)               -18.00200    6.55221  -2.747   0.0709 .	
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## Tree_speciesLX             -0.40482    0.35162  -1.151   0.3330  	

## Tree_speciesSN              0.37527    0.33322   1.126   0.3420  	

## Total_carbon_g_per_kg       0.03817    0.01294   2.949   0.0601 .	

## Total_Phosphorus_g_per_kg  -0.93261    1.43524  -0.650   0.5621  	

## lignin_pct                  0.06381    0.05536   1.153   0.3325  	

## ---	

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

## 	

## Residual standard error: 0.3374 on 3 degrees of freedom	

## Multiple R-squared:  0.8613, Adjusted R-squared:  0.6301 	

## F-statistic: 3.726 on 5 and 3 DF,  p-value: 0.154	

vif(mod2.1)	

##                               GVIF Df GVIF^(1/(2*Df))	

## Tree_species              3.044532  2        1.320931	

## Total_carbon_g_per_kg     5.819261  1        2.412314	

## Total_Phosphorus_g_per_kg 5.047178  1        2.246592	

## lignin_pct                1.809937  1        1.345339	

par(mfrow=c(2,2))	
plot(mod2.1)	
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par(mfrow=c(1,1))	
	

mod2.2 <- lm(Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + Total_Nitro
gen_g_per_kg + lignin_pct, data=wood_dkc2)	

summary(mod2.2)	

## 	

## Call:	

## lm(formula = Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + 	

##     Total_Nitrogen_g_per_kg + lignin_pct, data = wood_dkc2)	

## 	

## Residuals:	

##        1        2        3        4        5        6        7        8 	

##  0.23634 -0.01925 -0.21709  0.10930 -0.02207 -0.08722  0.02891  0.21552 	

##        9 	

## -0.24442 	

## 	

## Coefficients:	

##                          Estimate Std. Error t value Pr(>|t|)  	

## (Intercept)             -20.67956    5.46283  -3.786   0.0323 *	

## Tree_speciesLX           -0.32065    0.29045  -1.104   0.3502  	

## Tree_speciesSN            0.37561    0.26721   1.406   0.2545  	

## Total_carbon_g_per_kg     0.04412    0.01097   4.022   0.0276 *	

## Total_Nitrogen_g_per_kg  -0.16922    0.11752  -1.440   0.2455  	

## lignin_pct                0.08208    0.04792   1.713   0.1853  	

## ---	

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

## 	

## Residual standard error: 0.2771 on 3 degrees of freedom	

## Multiple R-squared:  0.9064, Adjusted R-squared:  0.7505 	

## F-statistic: 5.813 on 5 and 3 DF,  p-value: 0.08912	

vif(mod2.2)	

##                             GVIF Df GVIF^(1/(2*Df))	

## Tree_species            2.984744  2        1.314398	

## Total_carbon_g_per_kg   6.196153  1        2.489207	

## Total_Nitrogen_g_per_kg 5.874488  1        2.423734	

## lignin_pct              2.010507  1        1.417923	

par(mfrow=c(2,2))	
plot(mod2.2)	
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par(mfrow=c(1,1))	
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Decay	class	3	
wood_dkc3 <- wood %>% filter(Decay_class == 3)	
	

mod3.1 <- lm(Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + Total_Phosp
horus_g_per_kg + lignin_pct, data=wood_dkc3)	

summary(mod3.1)	

## 	

## Call:	

## lm(formula = Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + 	

##     Total_Phosphorus_g_per_kg + lignin_pct, data = wood_dkc3)	

## 	

## Residuals:	

##        1        2        3        4        5        6        7        8 	

## -0.12025 -0.09827  0.21852  0.05433  0.17236 -0.22669 -0.23209  0.20408 	

##        9 	

##  0.02801 	

## 	

## Coefficients:	

##                            Estimate Std. Error t value Pr(>|t|)	
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## (Intercept)                4.987860   3.305601   1.509    0.228	

## Tree_speciesLX             0.231284   0.452830   0.511    0.645	

## Tree_speciesSN             0.461017   0.389484   1.184    0.322	

## Total_carbon_g_per_kg     -0.012712   0.008088  -1.572    0.214	

## Total_Phosphorus_g_per_kg  1.978470   1.168513   1.693    0.189	

## lignin_pct                 0.048483   0.044828   1.082    0.359	

## 	

## Residual standard error: 0.29 on 3 degrees of freedom	

## Multiple R-squared:   0.84,  Adjusted R-squared:  0.5734 	

## F-statistic: 3.151 on 5 and 3 DF,  p-value: 0.1869	

vif(mod3.1)	

##                                GVIF Df GVIF^(1/(2*Df))	

## Tree_species              10.084610  2        1.782029	

## Total_carbon_g_per_kg      2.176807  1        1.475401	

## Total_Phosphorus_g_per_kg  3.462959  1        1.860903	

## lignin_pct                 4.046438  1        2.011576	

par(mfrow=c(2,2))	
plot(mod3.1)	

	

par(mfrow=c(1,1))	
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mod3.1 <- lm(Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + Total_Nitro
gen_g_per_kg + lignin_pct, data=wood_dkc3)	

summary(mod3.1)	

## 	

## Call:	

## lm(formula = Average_CO2 ~ Tree_species + Total_carbon_g_per_kg + 	

##     Total_Nitrogen_g_per_kg + lignin_pct, data = wood_dkc3)	

## 	

## Residuals:	

##        1        2        3        4        5        6        7        8 	

## -0.05622 -0.05175  0.10797  0.33802  0.11382 -0.45185 -0.24040  0.10428 	

##        9 	

##  0.13612 	

## 	

## Coefficients:	

##                          Estimate Std. Error t value Pr(>|t|)	

## (Intercept)              6.597447   4.439941   1.486    0.234	

## Tree_speciesLX           0.140959   1.070537   0.132    0.904	

## Tree_speciesSN           0.307366   0.552132   0.557    0.617	

## Total_carbon_g_per_kg   -0.014093   0.010568  -1.333    0.275	

## Total_Nitrogen_g_per_kg  0.164312   0.262019   0.627    0.575	

## lignin_pct              -0.006041   0.125806  -0.048    0.965	

## 	

## Residual standard error: 0.3813 on 3 degrees of freedom	

## Multiple R-squared:  0.7234, Adjusted R-squared:  0.2625 	

## F-statistic:  1.57 on 5 and 3 DF,  p-value: 0.3772	

vif(mod3.1)	

##                              GVIF Df GVIF^(1/(2*Df))	

## Tree_species            31.380994  2        2.366828	

## Total_carbon_g_per_kg    2.149593  1        1.466149	

## Total_Nitrogen_g_per_kg 15.056027  1        3.880210	

## lignin_pct              18.432599  1        4.293320	

par(mfrow=c(2,2))	
plot(mod3.1)	
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par(mfrow=c(1,1))	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 13, 2016. ; https://doi.org/10.1101/051235doi: bioRxiv preprint 

https://doi.org/10.1101/051235


	

 

 

sessionInfo()	

## R version 3.3.0 (2016-05-03)	

## Platform: x86_64-apple-darwin13.4.0 (64-bit)	

## Running under: OS X 10.11.5 (El Capitan)	

## 	

## locale:	

## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8	

## 	

## attached base packages:	

## [1] stats     graphics  grDevices utils     datasets  methods   base     	

## 	

## other attached packages:	

## [1] car_2.1-2      corrplot_0.77  cowplot_0.6.2  ggplot2_2.1.0 	

## [5] dplyr_0.4.3    xlsx_0.5.7     xlsxjars_0.6.1 rJava_0.9-8   	

## 	

## loaded via a namespace (and not attached):	

##  [1] Rcpp_0.12.5        formatR_1.4        nloptr_1.0.4      	

##  [4] plyr_1.8.4         tools_3.3.0        digest_0.6.9      	

##  [7] lme4_1.1-12        evaluate_0.9       gtable_0.2.0      	
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## [10] nlme_3.1-128       lattice_0.20-33    mgcv_1.8-12       	

## [13] Matrix_1.2-6       DBI_0.4-1          yaml_2.1.13       	

## [16] parallel_3.3.0     SparseM_1.7        stringr_1.0.0     	

## [19] knitr_1.13         MatrixModels_0.4-1 grid_3.3.0        	

## [22] nnet_7.3-12        R6_2.1.2           rmarkdown_0.9.6   	

## [25] minqa_1.2.4        magrittr_1.5       scales_0.4.0      	

## [28] htmltools_0.3.5    MASS_7.3-45        splines_3.3.0     	

## [31] assertthat_0.1     pbkrtest_0.4-6     colorspace_1.2-6  	

## [34] labeling_0.3       quantreg_5.26      stringi_1.1.1     	

## [37] lazyeval_0.1.10    munsell_0.4.3	
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Higher fungal diversity is correlated with lower CO2 

emissions from dead wood in a natural forest: 

S3 Sandau et al. analyses 
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fungus_Sandau_analysis.R
Negorashi2011

Thu Oct 30 17:34:54 2014

###############################################

### R routine to include correlation structure in a linear model.

### (modified from Sandau et al 2014 in MEE by Viorel D. Popescu)

###############################################

## MAIN FUNCTIONS

###############################################

# FOR ALL FUNCTIONS THE INPUT PARAMETERS ARE:

# y = RESPONSE VARIABLE

# x = DESIGN MATRIX OF EXPLANATORY VARIABLES

# zf = DESIGN MATRIX FOR THE FIRST RANDOM EFFECT

# zt = DESIGN MATRIX FOR THE SECOND RANDOM EFFECT

# M = CORRELATION MATRIX

# THE OUTPUT IS A LIST CONTAINING:

# beta = MAXIMUM LIKELIHOOD ( OR RESTRICTED MAXIMUM LIKELIHOOD ) ESTIMATION OF THE FIXED 

PARAMETERS

# se = STANDARD ERRORS OF THE FIXED PARAMETERS

# T = T-VALUES OF THE FIXED PARAMETERS

# pvalue = P-VALUE OF THE FIXED PARAMETERS

# lambda = LAMBDA PARAMETER FOR THE STRENGTH OF THE CORRELATION STRUCTURE

# sigma2 = OVERALL VARIANCE OF THE RESIDUALS

# loglike = MAXIMUM LOG-LIKELIHOOD ESTIMATION ( OR RESTRICTED LOG-LIKELIHOOD )

rm(list=ls())

# Run these functions once before all the Sandau et al. analyses #

####  START FUNCTIONS for MODEL W/CORRELATION STRUCTURE m_corr MODEL ###################

###############

#MAXIMUM LIKELIHOOD ESTIMATOR WITH CORRELATION STRUCTURE 

fit_ML <- function(y,X,M){
  
  n <- length(y)
  p <- dim(X)[2]
  f <- function(a){-profile_ML_psi_lambda(1/(1+exp(-a[1])),y,X,M)}
  out <- optim(c(0), f, method="SANN")
  print(out)
  lambda <- 1 / (1 + exp(-out$par[1]))
  M2 <- M * lambda + diag(diag(M)) * (1-lambda)
  Pi <- solve(M2)
  out2 <- ML_beta_sigma(y,X,Pi)
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  T <- out2$beta / out2$se 
  pvalue <- dt(T,n-p)
  loglike <- -0.5 * n * log(2*pi) -1/(2*out2$sigma2) * t(y - X %*% out2$beta) %*% Pi  %*
% (y - X %*% out2$beta) -0.5 * n * log(out2$sigma2) + 0.5 * determinant(Pi,logarithm=TRU
E)$modulus[1]
  out3 <- c(out2, list(T = T, pvalue = pvalue, lambda = lambda, loglike = as.vector(logl
ike)))
  out3
  
}

## profile function

ML_beta_sigma <- function(y,X,Pi){
  
  n <- dim(X)[1]
  p <- dim(X)[2]
  beta <- solve( (t(X) %*% Pi %*% X), t(X) %*% Pi %*% y)
  sigma2 <- 1/n * t(y - X %*% beta) %*% Pi  %*% (y - X %*% beta)
  se <- sqrt( diag( solve(t(X) %*% Pi %*% X) ) * sigma2 )
  out <- list(beta = as.vector(beta), sigma2 = sigma2, se = se)
  out
  
}

###

profile_ML_psi_lambda <- function(lambda,y,X,M){
  
  n <- length(y)
  M2 <- M * lambda + diag(diag(M)) * (1-lambda)
  Pi <- solve(M2) 
  out <- ML_beta_sigma(y,X,Pi)
  l <- -0.5 * n * log(out$sigma2) + 0.5 * determinant(Pi,logarithm=TRUE)$modulus[1]
  l
  
}
### END FUNCTIONS for MODEL W/CORRELATION STRUCTURE m_corr MODEL ####

### START FUNCTIONS for MODEL W/O CORRELATION STRUCTURE m_ref MODEL #####

fit_ML_without_lambda <- function(y,X){
  
  M <- diag(rep(1,length(y)))
  n <- length(y)
  p <- dim(X)[2]
  f <- function(a){-profile_ML_psi(y,X,M)}  
  #out <- optim(c(0,0), f)
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  Pi <- solve(M)
  out2 <- ML_beta_sigma(y,X,Pi)
  T <- out2$beta / out2$se 
  pvalue <- dt(T,n-p)
  loglike <- -0.5 * n * log(2*pi) -1/(2*out2$sigma2) * t(y - X %*% out2$beta) %*% Pi  %*
% (y - X %*% out2$beta) -0.5 * n * log(out2$sigma2) + 0.5 * determinant(Pi,logarithm=TRU
E)$modulus[1]
  out3 <- c(out2, list(T = T, pvalue = pvalue, loglike = as.vector(loglike)))
  out3
  
}

ML_beta_sigma <- function(y,X,Pi){
  
  n <- dim(X)[1]
  p <- dim(X)[2]
  beta <- solve( (t(X) %*% Pi %*% X), t(X) %*% Pi %*% y)
  sigma2 <- 1/n * t(y - X %*% beta) %*% Pi  %*% (y - X %*% beta)
  se <- sqrt( diag( solve(t(X) %*% Pi %*% X) ) * sigma2 )
  out <- list(beta = as.vector(beta), sigma2 = sigma2, se = se)
  out
  
}

profile_ML_psi <- function(y,X,M){
  n <- length(y)
  Pi <- solve(M) 
  out <- ML_beta_sigma(y,X,Pi)
  l <- -0.5 * n * log(out$sigma2) + 0.5 * determinant(Pi,logarithm=TRUE)$modulus[1]
  l
}
#### END FUNCTIONS for MODEL W/O CORRELATION STRUCTURE m_ref MODEL ####

#### START THE ANALYSES #########################################################

library(vegan)

## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.0-10
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library(car)

setwd("~/Dropbox/Working Docs/Barcode soup censuses/Schaefer, Fungus/analyses 31 Oct 201
4 Doug Viorel")

# June2012CO2.crop.lc.txt # 

# June2012CO2.crop.lx.txt # 

# June2012CO2.crop.sn.txt, omitting influential woodpieceID=110 # 

# June2013CO2.crop.lc.txt # 

# June2013CO2.crop.lx.txt, omitting woodpieceID=95 because no CO2 value # 

# June2013CO2.crop.sn.txt, omitting woodpieceID=31 because no CO2 value# 

# June2012CO2.uclust.lc.txt # 

# June2012CO2.uclust.lx.txt # 

# June2012CO2.uclust.sn.txt, omitting influential woodpieceID=110 # 

# June2013CO2.uclust.lc.txt # 

# June2013CO2.uclust.lx.txt, omitting woodpieceID=95 because no CO2 value # 

# June2013CO2.uclust.sn.txt, omitting woodpieceID=31 because no CO2 value# 

filename <- 'June2012CO2.crop.lc.txt' # i paste each file name from the list above into 
this command, select all (which starts the run by clearing the workspace), and run all c

ommands. Then repeat for each file

fung <- read.table(filename,header=TRUE)
colnames(fung)[2] <- "CO2"
names(fung[,1:2])

## [1] "Fungus.apn.lc.run1.sep.env.woodpieceID"
## [2] "CO2"

# str(fung)

nrow(fung) # because number of rows differs across months

## [1] 25

ncol(fung) # because number of cols differs between CROP and uclust

## [1] 2866
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# calculate the similarity matrix (1 - Jaccard dissimilarity)

# rows and cols in the 'fung' matrix vary across dates and wood species  

M.fung.dis <- as.dist(vegdist(fung[1:nrow(fung),3:ncol(fung)], binary=T, method="jaccard
"))
M.fung <- 1-as.matrix(M.fung.dis)

# Predicted variable is CO2 emissions

Y.fung.CO2 = as.matrix(fung$CO2)

# Predictor variable is the Shannon diversity index

# rows and cols in the 'fung' matrix vary across dates and wood species

X.fung.div = as.matrix(diversity(fung[1:nrow(fung),3:ncol(fung)]))

# Get the design matrix for the model [Y.fung.CO2 ~ X.fung.div]

X.fungi = as.matrix(model.matrix(Y.fung.CO2~X.fung.div))

## Fit LM MODEL ##

m_lm=lm(Y.fung.CO2~X.fung.div)
summary(m_lm)

## 
## Call:
## lm(formula = Y.fung.CO2 ~ X.fung.div)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2371 -0.3129 -0.1149  0.2254  1.9306 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.4957     0.4281   5.830 6.11e-06 ***
## X.fung.div   -0.5366     0.1814  -2.957  0.00706 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7508 on 23 degrees of freedom
## Multiple R-squared:  0.2755, Adjusted R-squared:  0.244 
## F-statistic: 8.746 on 1 and 23 DF,  p-value: 0.007061
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plot(X.fung.div, Y.fung.CO2)
abline(lm(Y.fung.CO2 ~ X.fung.div))

#### Fit Model WITH CORRELATION STRUCTURE 

m_corr <- fit_ML(Y.fung.CO2,X.fungi,M.fung) 

## $par
## [1] -17.52438
## 
## $value
## [1] -8.209146
## 
## $counts
## function gradient 
##    10000       NA 
## 
## $convergence
## [1] 0
## 
## $message
## NULL

m_corr # look at the lambda value, which is the strength of the correlation structure. W
ith input dataset JuneOTU.lc.txt, the lambda value is close to zero, meaning almost no e

ffect of the community structure on the amount of CO2 released.  Consequently, the coeff

icient estimates, p-values and loglikelihood are similar to the lm model. 
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## $beta
## [1]  2.4957317 -0.5366139
## 
## $sigma2
##           [,1]
## [1,] 0.5185433
## 
## $se
## [1] 0.4106264 0.1740396
## 
## $T
## [1]  6.077865 -3.083286
## 
## $pvalue
## [1] 4.020548e-06 6.212384e-03
## 
## $lambda
## [1] 2.450513e-08
## 
## $loglike
## [1] -27.26432

predicted = m_corr$beta[1] + m_corr$beta[2]*X.fung.div
predicted; points(X.fung.div, predicted, col="red") # With the JuneOTU.lc.txt dataset, t
he 
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##         [,1]
## 1  0.8051847
## 2  0.8733322
## 3  2.2978963
## 4  1.2073624
## 5  0.8997118
## 6  0.8459969
## 7  1.8267251
## 8  1.2746412
## 9  1.7810741
## 10 1.0817882
## 11 1.7162385
## 12 1.3560805
## 13 0.9979075
## 14 2.2881198
## 15 1.8884770
## 16 1.3821675
## 17 1.0240120
## 18 0.9888807
## 19 1.0031981
## 20 0.8466022
## 21 1.2706007
## 22 0.8042258
## 23 1.1899057
## 24 1.2969998
## 25 1.8048714
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### END MODEL WITH CORRELATION STRUCTURE

### FIT REFERENCE MODEL (no correlation structure)

m_ref <- fit_ML_without_lambda(Y.fung.CO2,X.fungi) 
m_ref
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## $beta
## [1]  2.4957317 -0.5366139
## 
## $sigma2
##           [,1]
## [1,] 0.5185433
## 
## $se
## [1] 0.4106264 0.1740396
## 
## $T
## [1]  6.077865 -3.083286
## 
## $pvalue
## [1] 4.020548e-06 6.212384e-03
## 
## $loglike
## [1] -27.26432

### END REFERENCE MODEL

# estimation of p-value of lambda (see Zuur et al. 2009, pp. 123-124)

pl <- 0.5*(1-pchisq(m_corr$loglike-m_ref$loglike,1))
pl

## [1] 0.5

# write results to a table

results <- cbind(filename,m_corr$lambda,pl)
write.table(results,"Sandau et al results.txt",append = TRUE,sep="\t",col.names=FALSE,qu
ote=FALSE)
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Higher fungal diversity is correlated with lower CO2 

emissions from dead wood in a natural forest: 

S4 Conventional Community Analyses 
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Supporting Information S4.  Conventional community analyses to test for an 

effect of fungal community composition per se on CO2 emissions. 

Methods 

We removed singleton OTUs (OTUs occurring in only one sample) and 

visualized the OTU tables using correspondence analysis (cca() in R). We tested the 

hypothesis that CO2 emissions explain variation in community composition by using: 

(1) cca(OTUtable ~ CO2) + anova(by="term", perm=9999) in vegan (Oksanen et al., 

2013) and (2) manyglm(OTUtable ~ CO2, family="negative binomial") + 

anova(resamp="pit.trap", nBoot=999) in mvabund (Warton et al., 2012). As four 

versions of each OTU table were tested, we Bonferroni-corrected for multiple tests by 

multiplying the resulting p-values by 4. mvabund is a multivariate implementation of 

generalized linear models, and unlike dissimilarity-based methods such as cca, 

mvabund does not confound location with dispersion effects, which can inflate both 

type 1 and 2 errors (Warton et al., 2012). Based on the correspondence-analysis plots, 

we deemed some low-diversity wood pieces to be possible influential outliers (i.e. 

individual samples likely to be largely responsible for any significant community 

effects), and we removed these data points and repeated the analyses. 

Results 

After Bonferroni correction, no June 2012 samples showed significant effects of 

fungal composition on CO2 emissions, regardless of wood species, statistic, OTU-

clustering method, or rarefaction (Table S4). 

For June 2013 samples, CCA detected marginally significant effects of 

composition for all three wood species after Bonferroni correction, but for LC and 

LX, statistical significance relied on one or two highly dissimilar, low-fungal-

diversity wood samples (Main text, Fig. 2). For SN, significant CCA effects were 

robust to the removal of three potentially influential points, but the mvabund test for 

SN was non-significant after Bonferroni correction. Overall, our data do not reject the 

null hypothesis that higher fungal species diversity per se, and not any particular 

fungal species, is responsible for reducing CO2 emissions. 
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Table S4. Inferring a ‘pure diversity’ effect of fungal communities on CO2 emissions. 
For each of the six fungal communities visualized in Figure 2, two statistical methods 
(canonical correspondence analysis and mvabund, see Methods), were used to test for 
significant effects of fungal community composition on CO2 emissions. For all June 
2012 CO2 samples, no significant effects of fungal community (September 2012) 
were found. For the June 2013 CO2 samples, marginally significant effects after 
Bonferroni correction (p < 0.05) were detected, but only by CCA, not by mvabund. 
Moreover, the significant CCA effects in the two Lithocarpus species were not robust 
to the removal of a few outlying, low-diversity wood pieces, as seen in Fig. 2. Wood 
species are indicated by LC, LX, SN, for Lithocarpus chintungensis, L. xylocarpus, 
and Schima noronhae, respectively. 
 

CO2 sample 
date1 Species Test 

method 
Low-diversity wood 
pieces removed?2 

p-value 
range3 

June 2012 

LC 
CCA 

no, full dataset 0.10-0.37 
14 removed 0.13-0.39 

mvabund no, full dataset 0.15-0.23 

LX 
CCA 

no, full dataset 0.04-0.09 
9, 15 removed 0.17-0.26 

mvabund no, full dataset 0.39-0.47 

SN 
CCA 

no, full dataset 0.09-0.15 
7, 10 removed 0.04-0.24 

mvabund no, full dataset 0.06-0.54 

June 2013 

LC 
CCA 

no, full dataset 0.01-0.02* 
9, 17 removed 0.17-0.46 

mvabund no, full dataset 0.03-0.08 

LX 
CCA 

no, full dataset 0.01-0.03* 
9 removed 0.04-0.18 

mvabund no, full dataset 0.15-0.32 

SN 
CCA 

no, full dataset 0.01-0.02* 
10, 11, 14 removed 0.01-0.05* 

mvabund no, full dataset 0.03-0.05 
1 September 2012 fungal community was tested against June 2012 CO2 emissions, as in 
Fig. 1. 
2 Numbers refer to points in Fig. 2. 
3 Asterisks indicate formally significant effects (p<0.05) after Bonferroni correction for 
four tests:  CROP/non-rarefied, CROP/rarefied, uclust/non-rarefied, and uclust/rarefied. 
Original p-values reported here. 
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Higher fungal diversity is correlated with lower CO2 

emissions from dead wood in a natural forest: 

S5 Gravimetric vs CO2 estimated loss 
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Supporting Information S5.  Mass loss from wood pieces (g over 3 years) as measured 
gravimetrically and as estimated from average CO2 emission rates in decay class 1 (DKC1, 
top), decay class 2 (middle), and decay class 3 (bottom). Black lines are linear regressions 
and red lines represent 1:1 correspondences. 
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Higher fungal diversity is correlated with lower CO2 

emissions from dead wood in a natural forest: 

SI Bioinformatic Command Scripts 
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# Background Information.   
# 2012 samples (LC) were run in 3 regions in Jan 13, and 2 regions were 

supplemented in Feb 13.  
  2013 samples and 2012 samples (LX, SN) were run in 5 regions in Aug 13. 21 

samples per region. 
  On GSFLX454 
   
########################################### split libraries 

#################################################### 
#2012# 
validate_mapping_file.py -m FungusMap_1.txt -o mapping_output 
validate_mapping_file.py -m FungusMap_2.txt -o mapping_output 
validate_mapping_file.py -m FungusMap_3.txt -o mapping_output 
split_libraries.py -m FungusMap_1.txt -f 1.TCA.454Reads.fna -q 

1.TCA.454Reads.qual -o split_library_output/1 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 

split_libraries.py -m FungusMap_2.txt -f 2.TCA.454Reads.fna -q 
2.TCA.454Reads.qual -o split_library_output/2 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 42576 

split_libraries.py -m FungusMap_3.txt -f 3.TCA.454Reads.fna -q 
3.TCA.454Reads.qual -o split_library_output/3 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 79479 

split_libraries.py -m FungusMap_1.txt -f 7.TCA.454Reads.fna -q 
7.TCA.454Reads.qual -o split_library_output/7 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 143667 

split_libraries.py -m FungusMap_2.txt -f 8.TCA.454Reads.fna -q 
8.TCA.454Reads.qual -o split_library_output/8 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 211778 

 
#2013# 
validate_mapping_file.py -m FungusMap_4.txt -o mapping_output 
validate_mapping_file.py -m FungusMap_5.txt -o mapping_output 
validate_mapping_file.py -m FungusMap_6.txt -o mapping_output 
validate_mapping_file.py -m FungusMap_7.txt -o mapping_output 
validate_mapping_file.py -m FungusMap_8.txt -o mapping_output 
split_libraries.py -m FungusMap_4.txt -f 4.TCA.454Reads.fna -q 

4.TCA.454Reads.qual -o split_library_output/4 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 

split_libraries.py -m FungusMap_5.txt -f 5.TCA.454Reads.fna -q 
5.TCA.454Reads.qual -o split_library_output/5 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 86179 

split_libraries.py -m FungusMap_6.txt -f 6.TCA.454Reads.fna -q 
6.TCA.454Reads.qual -o split_library_output/6 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 167521 

split_libraries.py -m FungusMap_7.txt -f 7.TCA.454Reads.fna -q 
7.TCA.454Reads.qual -o split_library_output/7 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 256997 

split_libraries.py -m FungusMap_8.txt -f 8.TCA.454Reads.fna -q 
8.TCA.454Reads.qual -o split_library_output/8 -l 100 -L 500 -H 30 -z 
truncate_only -b 10 -n 351216 

 
 
#####################################Denoiser on QIIME pipeline 

################################################# 
#2012# 
denoiser.py -i H2P9ZGK01.txt -f ../split_library_output/1/seqs.fna --primer 

TCCTCCGCTTATTGATATGC -v -o denoise/1 -c -n 8 
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denoiser.py -i H2P9ZGK02.txt -f ../split_library_output/2/seqs.fna --primer 
TCCTCCGCTTATTGATATGC -v -o denoise/2 -c -n 8 

denoiser.py -i H2P9ZGK03.txt -f ../split_library_output/3/seqs.fna --primer 
TCCTCCGCTTATTGATATGC -v -o denoise/3 -c -n 8 

denoiser.py -i H3RH8HN07.txt -f ../split_library_output/7/seqs.fna --primer 
TCCTCCGCTTATTGATATGC -v -o denoise/7 -c -n 8 

denoiser.py -i H3RH8HN08.txt -f ../split_library_output/8/seqs.fna --primer 
TCCTCCGCTTATTGATATGC -v -o denoise/8 -c -n 8 

 
inflate_denoiser_output.py -c denoise/1/centroids.fasta -s 

denoise/1/singletons.fasta -f ../split_library_output/1/seqs.fna -d 
denoise/1/denoiser_mapping.txt -o inflated_1_seqs.fna    

inflate_denoiser_output.py -c denoise/2/centroids.fasta -s 
denoise/2/singletons.fasta -f ../split_library_output/2/seqs.fna -d 
denoise/2/denoiser_mapping.txt -o inflated_2_seqs.fna  

inflate_denoiser_output.py -c denoise/3/centroids.fasta -s 
denoise/3/singletons.fasta -f ../split_library_output/3/seqs.fna -d 
denoise/3/denoiser_mapping.txt -o inflated_3_seqs.fna  

inflate_denoiser_output.py -c denoise/7/centroids.fasta -s 
denoise/7/singletons.fasta -f ../split_library_output/7/seqs.fna -d 
denoise/7/denoiser_mapping.txt -o inflated_7_seqs.fna  

inflate_denoiser_output.py -c denoise/8/centroids.fasta -s 
denoise/8/singletons.fasta -f ../split_library_output/8/seqs.fna -d 
denoise/8/denoiser_mapping.txt -o inflated_8_seqs.fna  

 
cat FungusMap_1.txt FungusMap_2.txt FungusMap_3.txt > Map_2012.txt 
cat inflated_1_seqs.fna inflated_2_seqs.fna inflated_3_seqs.fna 

inflated_7_seqs.fna inflated_8_seqs.fna > denoised_seqs_2012.fna 
truncate_reverse_primer.py -f denoised_seqs_2012.fna -m Map_2012.txt -o 

reverse_primer_removed_2012/ 
 
#2013# 
denoiser.py -i IET0IJC04.txt -f split_library_output/4/seqs.fna --primer 

TCCTCCGCTTATTGATATGC -v -o denoise/4 -c -n 8 
denoiser.py -i IET0IJC05.txt -f split_library_output/5/seqs.fna --primer 

TCCTCCGCTTATTGATATGC -v -o denoise/5 -c -n 8 
denoiser.py -i IET0IJC06.txt -f split_library_output/6/seqs.fna --primer 

TCCTCCGCTTATTGATATGC -v -o denoise/6 -c -n 8 
denoiser.py -i IET0IJC07.txt -f split_library_output/7/seqs.fna --primer 

TCCTCCGCTTATTGATATGC -v -o denoise/7 -c -n 8 
denoiser.py -i IET0IJC08.txt -f split_library_output/8/seqs.fna --primer 

TCCTCCGCTTATTGATATGC -v -o denoise/8 -c -n 8 
 
inflate_denoiser_output.py -c denoise/4/centroids.fasta -s 

denoise/4/singletons.fasta -f split_library_output/4/seqs.fna -d 
denoise/4/denoiser_mapping.txt -o inflated_4_seqs.fna    

inflate_denoiser_output.py -c denoise/5/centroids.fasta -s 
denoise/5/singletons.fasta -f split_library_output/5/seqs.fna -d 
denoise/5/denoiser_mapping.txt -o inflated_5_seqs.fna    

inflate_denoiser_output.py -c denoise/6/centroids.fasta -s 
denoise/6/singletons.fasta -f split_library_output/6/seqs.fna -d 
denoise/6/denoiser_mapping.txt -o inflated_6_seqs.fna    

inflate_denoiser_output.py -c denoise/7/centroids.fasta -s 
denoise/7/singletons.fasta -f split_library_output/7/seqs.fna -d 
denoise/7/denoiser_mapping.txt -o inflated_7_seqs.fna    

inflate_denoiser_output.py -c denoise/8/centroids.fasta -s 
denoise/8/singletons.fasta -f split_library_output/8/seqs.fna -d 
denoise/8/denoiser_mapping.txt -o inflated_8_seqs.fna    
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cat FungusMap_4.txt FungusMap_5.txt FungusMap_6.txt FungusMap_7.txt 

FungusMap_8.txt> Map_2013.txt 
cat inflated_4_seqs.fna inflated_5_seqs.fna inflated_6_seqs.fna 

inflated_7_seqs.fna inflated_8_seqs.fna > denoised_seqs_2013.fna 
truncate_reverse_primer.py -f denoised_seqs_2013.fna -m Map_2013.txt -o 

reverse_primer_removed_2013/ 
 
##################################### extract ITS2 region with ITSx 

############################################## 
#2012# 
ITSx -i 

reverse_primer_removed_2012/denoised_seqs_2012_rev_primer_truncated.fna -o 
ITSx_output_2012 

#use grep to remove all non fungal sequences from the file 
ITSx_output_2012.ITS2.fasta 

#restore the original QIIME headers to the ITSx output files 
perl restore_headers.pl denoised_seqs_2012_rev_primer_truncated.fna 

ITSx_output_2012/ITSx_output_2012_ITS2_F 
 
#2013# 
ITSx -i 

reverse_primer_removed_2013/denoised_seqs_2013_rev_primer_truncated.fna -o 
ITSx_output_2013 

#use grep to remove all non fungal sequences from the file 
ITSx_output_2013.ITS2.fasta 

#restore the original QIIME headers to the ITSx output files 
perl restore_headers.pl denoised_seqs_2013_rev_primer_truncated.fna 

ITSx_output_2013/ITSx_output_2013_ITS2_F 
 
#combine two years seqs# 
cat ITSx_2012_output.ITS2_F.restored.fasta 

ITSx_2013_output.ITS2_F.restored.fasta > ITSx_output_all_F.fasta  
 
######################################### Denoise with USEARCH 

####################################################        
pick_otus.py -i ITSx_output_all_F.fasta -m usearch --word_length 64 -f 

its_12_11_otus/rep_set/99_otus.fasta -g 1 -F intersection -o 
ITSx_usearch_qf_intersection_0.99denoise -j 0.99 

 
############################# CROP OTU picking at 97% similarity with 

crop/intel/1.33############################## 
CROP -i repr_set.fasta -o CROP.exact_otus -s -b 86 -z 882 
 
#Downstream processing of CROP output, 2849 OTUs # 
#Use TextWrangler to replace commas in CROP.exact_otus.cluster.list with tab 

characters, creating CROP.exact_otus.cluster.tab.list  
#Merge CROP and USEARCH pipeline OTU maps (see 

http://qiime.sourceforge.net/scripts/merge_otu_maps.html for what this means). 
merge_otu_maps.py -i 

ITSx_usearch_qf_intersection_0.99denoise/ITSx_output_all_F_otus.txt,CROP.exact_o
tus.cluster.tab.list -o merged_otu_crop97_map.txt 

 
# making OTU tables # 
make_otu_table.py -i merged_otu_crop97_map.txt -o 

merged_otu_table_crop97_notax.biom 
 
#nonsingleread # 
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mkdir nonsingleread 
filter_otus_from_otu_table.py -i merged_otu_table_crop97_notax.biom -o 

nonsingleread/otu_table_crop97_notax_nonsingleread.biom -n 1 
 
#Assign taxonomy by Claident# 
clidentseq blastn -strand plus -task blastn -word_size 9 end --

bdb=fungi_ITS_genus --method=NNC+QC --numthreads=6 CROP.exact_otus.cluster.fasta 
retri_nncqc_neighb_seq.txt 

classigntax --taxdb=fungi_ITS_genus retri_nncqc_neighb_seq.txt 
claident_nncqc_identresult.txt 

      
#add taxonomy into otutable# 
#perl file 'table_add_taxonomy_QIIME.pl' written by XXW and YCX 
perl table_add_taxonomy_QIIME.pl -i1 otu_table_crop97_notax_nonsingleread.txt 

-i2 claident_nncqc_identresult_edited.txt -o otutable_claident_nncqc_tax.txt 
 
#add 'Unassigned' after otus failed to assign#  
     
#convert txt file to biom 
biom convert -i otutable_claident_nncqc_tax_edit2.txt -o 

otutable_claident_nncqc_tax_edit2.biom --table-type="OTU table" --process-obs-
metadata taxonomy 

 
biom convert -i otutable_crop_claident_final.txt -o 

otutable_crop_claident_final.biom --table-type="OTU table" --process-obs-
metadata taxonomy 

 
#taxonomy summary# 
summarize_taxa_through_plots.py -i otutable_claident_nncqc_tax_edit2.biom -o 

otu_taxa_summary2 -m map_2yearsall.txt 
 
summarize_taxa_through_plots.py -i otutable_crop_claident_final.biom -o 

otu_taxa_summary_final -m map_2yearsall.txt 
 
 
############################## UCLUST OTU picking at 97% similarity V1 

############################################## 
pick_open_reference_otus.py -i ITSx_output_all_F.fasta -r 

its_12_11_otus/rep_set/97_otus.fasta -o ucrss_ITSx_all/ -p params_97.txt --
suppress_align_and_tree 

 
#params_97.txt as followed# 
 assign_taxonomy:rdp_max_memory 20000 
 pick_otus:enable_rev_strand_match True 
 pick_otus:max_accepts 20 
 pick_otus:max_rejects 500 
 pick_otus:stepwords 20 
 pick_otus:word_length 12 
 assign_taxonomy:id_to_taxonomy_fp 

its_12_11_otus/taxonomy/97_otu_taxonomy.txt 
 assign_taxonomy:reference_seqs_fp its_12_11_otus/rep_set/97_otus.fasta 
 beta_diversity:metrics bray_curtis 
 
# making OTU tables # 
#nonsingleread # 
mkdir nonsingleread 
filter_otus_from_otu_table.py -i otu_table_mc2_w_tax.biom -o 

nonsingleread/otu_table_mc2_w_tax_nonsingleread.biom -n 1 
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# convert biom to txt (qiime 1.8)# 
biom convert -i otu_table_mc2_w_tax_nonsingleread.biom -o 

otu_table_mc2_w_tax_nonsingleread_tax.txt -b --header-key taxonomy 
 
#delete 1: the samples are not sequences in batch, 2: delete OTUs counts 

sum=0/1 
#convert back to biom 
biom convert -i otutable_uclust_tax_final.txt -o 

otutable_uclust_tax_final.txt.biom --table-type="OTU table" --process-obs-
metadata taxonomy 

 
#taxonomy summary# 
summarize_taxa_through_plots.py -i otutable_uclust_tax_final.txt.biom -o 

otu_taxa_summary2 -m map_2yearsall.txt 
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