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Abstract The common approach in morphological analysis of dendritic spines
is to categorize spines into subpopulations based on whether they are stubby,
mushroom, thin, or filopodia. Corresponding cellular models of synaptic plas-
ticity, long-term potentiation, and long-term depression associate synaptic
strength with either spine enlargement or spine shrinkage. Although a va-
riety of automatic spine segmentation and feature extraction methods were
developed recently, no approaches allowing for an automatic and unbiased dis-
tinction between dendritic spine subpopulations and detailed computational
models of spine behavior exist.

We propose an automatic and statistically based method for the unsu-
pervised construction of spine shape taxonomy based on arbitrary features.
The taxonomy is then utilized in the newly introduced computational model
of behavior, which relies on transitions between shapes. Models of different
populations are compared using supplied bootstrap-based statistical tests.

We compared two populations of spines at two time points. The first popu-
lation was stimulated with long-term potentiation, and the other in the resting
state was used as a control. The comparison of shape transition characteris-
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tics allowed us to identify differences between population behaviors. Although
some extreme changes were observed in the stimulated population, statistically
significant differences were found only when whole models were compared.
Therefore, we hypothesize that the learning process is related to the subtle
changes in the whole ensemble of different dendritic spine structures, but not
at the level of single shape classes.

The source code of our software is freely available for non-commercial use1.
Contact: d.plewczynski@cent.uw.edu.pl.

Keywords Dendritic spines · Shape Transitions · Synaptic plasticity · Image
processing

1 Introduction

Brain plasticity depends on the functional and structural reorganization of
synapses. The majority of excitatory synapses are located on dendritic spines,
which are small membranous protrusions located on the surface of neuronal
dendrites. The important feature of dendritic spines is their structural variabil-
ity, which ranges from long, filopodia spines to short stubby and mushroom-
shaped spines. Dendritic spines are typically built of a head that is connected
to the dendrite by a neck. The size of the spine head is proportional to the
postsynaptic density area and correlates with postsynaptic receptor content
and synaptic strength [12], [21], [30]. The length of the dendritic spine neck
is correlated with postsynaptic potential [1], [31]. Thus, dendritic spine shape
has been accepted for determining the strength of synaptic connections and is
thought to underlie the processes of information coding and memory storage
in the brain. Furthermore, alterations in dendritic spine shape, size, and den-
sity are associated with a number of brain disorders [4], [8], [9], [13], [14], [22],
[25], [28].

The morphology of spines can change in an activity-dependent manner.
The structural plasticity of dendritic spines is related to synaptic function, as
the morphological modifications of pre-existing spines as well as the formation
or loss of synapses accompany learning and memory processes ([32], [33]; for
reviews see [3], [7]). The cellular models of synaptic plasticity, long-term po-
tentiation (LTP) and long-term depression (LTD), associate synaptic strength
with spine enlargement and spine shrinkage, respectively [7], [11], [34].

Understanding dendritic spine shape taxonomy and shape transitions upon
synaptic potentiation is of great importance. The common approach in mor-
phological analysis of dendritic spines is to categorize spines into subpopula-
tions based on whether they are stubby, mushroom, thin, and filopodia [27].
However, there is a lack of methods allowing for an automatic distinction
between dendritic spine subpopulations. To fill this gap, we provide a method-
ological approach to provide insight into dendritic spine shape taxonomy and
transitions in time. Similar to previous works, we potentiated the synapses

1 https://bitbucket.org/3dome/spines
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Dendritic spine taxonomy and shape transition analysis 3

with LTP stimulation that produces a long-lasting increase in network activity
and mimics several aspects of LTP including synaptic receptor incorporation
to the dendritic spine membrane. The morphology of single dendritic spines
was assessed using time-lapse imaging of living neurons. In the rest of the
paper, we refer to a population of spines stimulated by LTP as ACTIVE, and
the non-treated spines are denoted as CONTROL.

In Section 2, we describe the process of data gathering and data representa-
tion and the statistical approach to analysis of spine shapes. First, we analyze
the basic characteristics of features in populations ACTIVE and CONTROL
and conclude that before a meaningful comparison can be performed, pop-
ulations need to be normalized. Then, using a split of each population into
three subpopulations, growing, not changing and shrinking spines, we compare
the relative changes of features across time and note the differences between
ACTIVE and CONTROL. Furthermore, we develop simple but meaningful nu-
merical representations of spines. In Section 3, we provide an approach to den-
dritic spine taxonomy construction and models of shape transitions together
with statistical tests for model comparisons. For taxonomy development, we
propose a clustering-based approach that does not depend on subjective deci-
sions of experts and can accommodate arbitrary numerical features. Later, we
introduce the corresponding probabilistic model of spine transitions between
clusters in time. We also propose a bootstrap-based approach and two statis-
tical tests that are applied for the purpose of the comparison of models built
for different populations of spines. Finally, in Section 4, we present our results.
We conclude our work in Section 5.

2 Data preparation and analysis

In this section, we describe the statistical analyses of the dendritic cell popula-
tions ACTIVE and CONTROL. A comparison of the descriptor distributions
showed that initial data preprocessing is necessary, which we performed by
carefully choosing subsets of spines from both populations2. Further, we intro-
duce the automatic method for dividing each subset into three subpopulations:
growing, not changing and shrinking spines. We show how the corresponding
subpopulations significantly differ across ACTIVE and CONTROL. Finally,
we introduce the algorithm for spine representation dimensionality reduction.

2.1 Data acquisition

Dissociated hippocampal cultures were prepared as described previously in
[20]. On the 10th day, in vitro cells were transfected using Effectene (Qiagen)

2 Even under ideal experimental conditions, variation among the spines is still present;
thus, we choose to standardize them. This practice allows us to start with more homogeneous
data and to reveal subtle differences.
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according to the manufacturer’s protocol with a plasmid carrying red fluores-
cence protein under β-actin promoter. All the experiments were performed at
19-21 days in vitro. Image acquisition was performed using the Leica TCS SP 5
confocal microscope with PL Apo 40 x /1.25 NA oil immersion objective using
a 561 nm line of diode pumped solid state laser at 10% transmission at a pixel
size of 1024× 1024. Captured cell images consisted of series of z-stacks taken
at every 0.4µm step. On average, around 14-17 slices (depending on specimen
thickness) were taken per stack. The final sampling density was 0.07µm per
pixel.

The resolution of the confocal microscope along the optical axis (z axis)
is three time worse than the resolution along the lateral direction. The ma-
jority of observed dendritic spines arise in the lateral direction. Thus, due to
limitations of confocal microscopy, it is almost impossible to determine the
three-dimensional dendritic spine features. The spines that could be easily
distinguished and that protruded in the transverse direction were chosen for
analysis. Because of the synaptic scaling, dendritic spine structure and den-
sity are modulated with respect to the position along the dendritic tree [17].
To avoid this issue and following the approach by [18], we chose spines that
belonged to the secondary dendrites.

The next step of data preparation was to obtain numerical features of the
spines. Although many spine extraction methods exist [15], [6], [24], the meth-
ods do not prove to be more advantageous than the others. Therefore, we
analyzed the images semi-automatically using custom written software [23].
The recorded dendritic spine features were (denoted as DESCRIPTORS)
length, head width (denote hw), max width location (denote mwl), max width
(denote mw), neck width (denote nw), foot, circumference, area, width to
length ratio (denote wlr), length to width ratio (denote lwr), and length to
area ratio (denote lar). Although researches have not found a consensus yet on
which features should be considered, this set covers parameters that are the
most often used [18], [29], [31]. The spine length was determined by measuring
the curvilinear length along the spine virtual skeleton, which was obtained by
fitting the curve (fourth-degree polynomial). The fitting procedure involved
searching for a curve along which the integrated fluorescence was at a max-
imum level. Many spines were distinctly bent such that the distance along
a straight line between the tip and the base of the spine underestimates the
length of the spine. To define the head width, we used the diameter of the
largest spine section that was perpendicular to the virtual skeleton, while the
bottom part of the spine (third of the spine length adjacent to the dendrite)
was excluded. To define the neck width, we used the thinnest part of the spine
between the position of the head-width measurement and the point at which
the spine is anchored into the dendrite. Details can be found in [23].

We ended up with two groups of spines, the treatment ACTIVE consisting
of 433 samples and the control CONTROL consisting of 490 samples. For each
spine, all of the above 11 features were measured at two different timestamps:
t0 (the time before stimulation) and t1 (10 minutes after t0). Researchers
showed that after 10 minutes [29], modifications in the spine structure could
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Table 1 Differences between ACTIVE300 and CONTROL300 at time t0. Means and p-
values from the two-tailed t-test. Descriptor values are measured in µm except for the width
length ratio and the length width ratio. Significant differences are observed between all
descriptor values except for two features.

feature ACTIVE0 CONTROL0 p-value
length 1.268 1.539 0.000
head width 0.685 0.808 0.000
max width location 0.554 0.608 0.003
max width 0.792 0.958 0.000
width length ratio 0.667 0.657 0.721
length width ratio 2.161 2.223 0.577
neck width 0.418 0.552 0.000
foot 0.772 0.995 0.000
circumference 4.612 5.502 0.000
area 0.675 0.978 0.000
length area ratio 2.158 1.726 0.000

be already observed, and demonstrated that stimulation causes the cleavage
of important adhesion molecules at the dendritic spines [26]. Consequently,
by ACTIVE (CONTROL), we denote all features at all timestamps, and by
ACTIVEx, we denote all spines from the ACTIVE data set described only by
features at time tx (similarly, CONTROLx).

2.2 Balanced subset selection

In Table 1, we report the mean values for descriptors from ACTIVE0 and
CONTROL0 populations. We report p-values from two-tailed t-tests for the
difference of means between both sets.3 We report significant differences for
almost all descriptors (only for three features is the p-value above the threshold
value p > 0.001).

Such large differences between both sets may influence the statistical anal-
ysis of their behavior. Therefore, we decided to preprocess the datasets by
excluding some spines, such that the means in the new sets are similar with
respect to the statistical test used. Namely, we drew a number of pairs of clos-
est spines, each pair consisting of a spine from the ACTIVE set and a spine
from the CONTROL. The measure of how close the spines are is based on
the normalized Euclidean distance4 between the vectors of features at time
t0. The pseudo-code for the algorithm is presented in Algorithm S1 in the
Supplementary Materials.

In Table 2, we report new statistics on the differences between samples
after the 3005 closest pairs have been drawn. The same statistical test that

3 The null hypothesis is that the means are equal, and the alternative is that the means
are different.

4 Each feature is normalized by subtracting the mean and dividing by the standard devi-
ation, both calculated based on the feature values from the sets.

5 We tried various different numbers of spines (100, 200, 300, 400) and concluded that
300 is the largest which satisfies the desired condition for spines closeness.
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Table 2 Differences between ACTIVE3000 and CONTROL3000 at time t0. Means and
p-values from two-tailed t-tests are shown. Descriptor values are measured in µm, except
for the width length ratio and length width ratio. No significant differences between any
descriptor values are observed for all geometrical features.

feature ACTIVE3000 CONTROL3000 p-value
length 1.240 1.276 0.416
head width 0.736 0.743 0.762
max width location 0.593 0.586 0.789
max width 0.844 0.845 0.977
width length ratio 0.702 0.688 0.630
length width ratio 1.898 1.918 0.832
neck width 0.479 0.505 0.236
foot 0.840 0.855 0.606
circumference 4.566 4.591 0.834
area 0.720 0.748 0.330
length area ratio 1.871 1.837 0.556

was performed before is used here as well. The p-values are significantly higher
for all features, and no one feature is significantly different in the two com-
pared groups. We are going to further investigate these new ’normalized’ sets,
denoted as ACTIVE300 (the 300 closest spines drawn from ACTIVE) and
CONTROL300 (the 300 closest spines drawn from CONTROL).

2.3 Division of spines by changing characteristics

In this subsection, we consider relative changes of feature values at times t0
and t1. For a fixed feature, relative difference is calculated as: featurerel =
feature1−feature0

feature0 .
We consider the relative change in feature length across groups: ACTIVE300

and CONTROL300. Figure 1 shows the relative changes in the feature values
for both sets. Note that the ACTIVE300 population varies more as the cor-
responding histogram has heavier tails, than CONTROL300. We observe that
this is the case for all features. We presume that spines from the ACTIVE300
group compared with CONTROL300 may exhibit more extreme changes in de-
scriptor values. Therefore, the regions where ACTIVE is more frequent than
CONTROL could possibly be treated as varying. This motivates the following
criterion for splitting the spines from both populations into three subgroups:
shrinking, not changing and growing. We choose the two separating points
defining the three sub-groups such that the differences between the counts of
corresponding subgroups from the ACTIVE300 and CONTROL300 popula-
tions are maximized6. The exact method has been shown in Algorithm S2.

6 We expect that there is a higher percentage of growing spines from ACTIVE than
from CONTROL. Therefore, we decide to define the threshold point between growing and
not-growing groups to be the threshold maximizing the difference between number of grow-
ing spines from ACTIVE and the number of growing spines from CONTROL. What we
observed for shrinking spines is similar, therefore we similarly seek the threshold point be-
tween shrinking and not-shrinking groups.
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Fig. 1 Relative changes in dendritic spine length between time t0 and t1 for ACTIVE300
(solid red) and CONTROL300 (dashed blue), smoothed using kernel density estimation. We
note that ACTIVE300 varies more, as the corresponding histogram has heavier tails than
CONTROL300.

Fig. 2 Counts of shrinking, not changing and growing spines from selected populations
ACTIVE300 and CONTROL300 according to the split based on feature length. No signifi-
cant differences between the mean values in groups from both populations are observed.

This criterion assumes that the two groups are of the same size. If they were
not, we could easily normalize them by multiplying the appropriate samples
from both populations. The summary of the results of the proposed procedure
as conducted for feature length is presented in Figure 2.

We compared the mean values of features from the subgroups between
ACTIVE300 and CONTROL300 at time t1, e.g., to check whether the mean
of shortening ACTIVE300 is different than that of shortening CONTROL300.
It turns out that there are no significant differences between the populations.
In contrast, we applied Pearson’s χ2 test to check whether the division of the
ACTIVE spines is similar to the division of CONTROL spines. The rationale
behind this is that the procedure of dividing spines discriminates between the
groups more in terms of the counts obtained than in terms of the means of
the subgroups.
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Table 3 P-values from Pearson’s χ2 test comparing the counts of the growing, not changing
and shrinking subgroups between the selected populations ACTIVE300 and CONTROL300.
There are significant differences for most descriptors.

feature p-value feature p-value

length 0.0256 nw 0.0154
hw 0.0003 foot 0.0573
mwl 0.0011 circum. 0.0439
mw 0.0013 area 0.0003
wlr 0.0000 lar 0.0005
lwr 0.0000

The results are reported in Table 3. After the dividing process, Pearson’s
χ2 test was used to evaluate the differences between counts of populations.
We notice that all of the obtained p-values, other than those corresponding
to the feature foot, are smaller than 5%, which implies that the samples are
statistically significantly different under the significance level of 5%.

2.4 Simplification of shape representations

The initial 11 features describing spines can be reduced with the dimensionality
reduction technique to render the data representation to be more compact and
simple and to filter out the noise. The most popular approach for this purpose
is Principal Component Analysis (PCA; for details see [10]). We applied PCA
to spines from both populations CONTROL and ACTIVE and for both t0
and t1. For the first two features (components) in the reduced representation,
we cover about 91% of the variance in the data (see Figure S1). The removal
of farther features does not reduce the available information by much (only
9% of the variance is lost). The new features are linear combinations of the
initial features: Comp.1′ = −0.27 · length−0.49 · lwr−0.81 · circumference−
0.15 · area; Comp.2′ = −0.17 · hw − 0.17 · mw − 0.11 · wlr + 0.71 · lwr −
0.12 · nw− 0.12 · foot− 0.41 · circumference− 0.21 · area+ 0.44 · lar. We see
that Comp.1′ is composed mostly of features related to size such as length,
circumference, and area. Therefore, this feature can be treated as a generalized
size descriptor. Similarly, we can interpret Comp.2′ as a generalized contour
(shape complexity) descriptor.

The interpretation of the above components as size and contour descrip-
tors allows to construct more meaningful features. The initial features can be
directly divided into two sets: DESCRIPTORSSIZE = {length, circumfer-
ence, area} (size related features) and DESCRIPTORSCONTOUR = {hw,
foot, mwl, mw, wlr, lwr, lar, nw} (contour related features). Then, PCA is
applied separately to each of the sets. Using the first feature from PCA on
DESCRIPTORSSIZE and the first feature from PCA on
DESCRIPTORSCONTOUR, 87% of the variance is explained. The loss of
the variance compared with PCA computed on all features merged together is
equal to 4%. However, the new representation (denoted as
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Fig. 3 Distribution of spine shapes in space composed of the features Comp.1 and Comp.2.
Comp.1 is a generalized size descriptor, and Comp.2 is a generalized contour complexity
descriptor. Spine sizes change along Comp.1 from the smallest on the right side to the
biggest on the left side. The spine contour complexity changes along Comp.2 from the
simplest on the top to the most complicated on the bottom.

DESCRIPTORSPCA) is easy to interpret. New features provide a clear
meaning of size and contour complexity and simple form:

Comp.1 = −0.29 · length− 0.94 · circum.− 0.19 · area
Comp.2 = −0.14 · wlr + 0.94 · lwr + 0.28 · lar (1)

Comparing the loadings (weights) against previous formulas for Comp.1′ and
Comp.2′, we notice that the differences are small, i.e., below 15% in most
cases. The most important feature of the size descriptor is the circumference
(the highest loading), and the most important feature of the contour descriptor
is lwr. Most of the initial features, i.e., hw, foot, mwl, mw, and nw, are not
included (they are redundant).

Spine distributions in the new feature space Comp.1× Comp.2 are shown
in Figure 3. The whole space of features was partitioned into tiles of size 4×4,
and for each tile, one representative spine (the closest to the tile center) was
chosen. We can see how the spine size changes along Comp.1 from the smallest
on the right side to the biggest one on the left side. Similarly, spine contours
change along Comp.2, from the simplest on the top to the most complicated
on the bottom.

3 Methods

In this section, we apply two clustering methods to construct the spine shape
taxonomy in an unsupervised way. Further, we build the probabilistic model
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of shape changes in time. Finally, the bootstrap analysis is presented to statis-
tically evaluate differences between both resting and potentiated populations.

3.1 Clusters of shapes

Initially, spines are represented in some arbitrary multidimensional space of
features, e.g., DESCRIPTORSPCA. Our goal is to obtain a high-level repre-
sentation that would be both meaningful and simple. Therefore, we propose to
apply clustering. Clustering allows for groupings of similar objects (for exam-
ple, spines) called clusters. Clusters represent possible shapes of spines. The
underlying idea is that spines in a cluster have more similar shapes (they are
more similar in terms of derived features) among themselves than to spines
outside the given cluster. We consider two well-established algorithms, cmeans
[2] and average-linkage hierarchical [19], that represent two main types of clus-
tering, crisp and fuzzy.

In clustering, each spine s is assigned a vector w(s) = (w1(s), ..., wk(s)) of
k membership weights that are non-negative and sum up to 1. For example,
wn(s) is a membership of the spine s against the n-th cluster. In crisp clus-
tering, spines are assigned to exactly one cluster (wn(s) = 1 ⇐⇒ s assigned
to n-th cluster; 0 otherwise). In fuzzy clustering, weights can be arbitrary real
numbers between 0 and 1. Additionally, weights can be interpreted as proba-
bilities, e.g., wn(s) can be interpreted as the probability that spine s belongs
to the n-th cluster.

To obtain a taxonomy of shapes that would describe spines in both time
points equally well, we applied clustering to data ACTIVE∪CONTROL from
both time points t0 and t1. Consequently, each spine was included twice and
assigned two vectors of weights. Spine s at time t0 is assigned the vector
w0(s) and at time t1 the vector w1(s). We denote wi

n(s) = P i(s ∈ Cn) as the
probability that spine s belongs to the cluster n at time ti.

The prediction of weights of a new spine s (not in the training data) is not
always obvious. For hierarchical clustering, we used a 1-nn classifier, i.e., we
search for the most similar sample vector s′ from the training data and assign
w(s) = w(s′). In cmeans clustering, the prediction of weights of a new spine
s is more straightforward. Each spine, whether from the training data or not,
has weights assigned according to the same explicit formula.

The above clustering algorithms have either one (hierarchical) or two
(cmeans) parameters: k - number of clusters and m - fuzzifier (informs about
clusters fuzziness). Large m results in smaller weights and more fuzzy clus-
ters. For small m, e.g., m = 1, we obtain results close to crisp clustering.
Consequently, low values of both k and m are preferred. Although these pa-
rameters can be selected in many ways, we decided to use Within Cluster Sum
of Squares (WSS), as it has several good properties, i.e., simple meaning,
applicability to both crisp and fuzzy cases, and the same behavior no mat-
ter what data and what clustering algorithm are used (it decreases when k
increases and when m decreases). For balance between the number of clus-
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ters, data fitness values of k and m at ’knee point’ (the point where WSS
plot bends the most) should be selected. The definition of WSS is as follows:

WSS =
∑

n=1..k

∑
s wn(s)(s−cn)2 where cn =

∑
s
wn(s)·s∑
s
wn(s)

, where s stands for

the vector of features assigned to object s and cn is n-th cluster centroid.

3.2 Shape transition model

Assumptions and brief description. Researchers showed that the initial den-
dritic spine morphology may influence how this structure will change upon
specific treatment [29], [16], e.g., induction of long-term potentiation. There-
fore, we assume that changes of spines depend on their initial shapes and that
each spine follows patterns of behavior highly correlated with its initial shape.
We introduce the novel probabilistic model of behavior that relies on these
principles.

We represent spines as combinations of shapes and spine changes with
combinations of behavior patterns. Shape combinations are represented by
weights of shape clusters wn(s). Combinations of behavior patterns are repre-
sented with probabilities P (Cn → Cm|Cn), or the probability that the shape
represented by cluster Cn will change into the shape represented by cluster
Cm when t0 → t1. Probabilities P can be stored in a k × k matrix called
transition matrix, where rows are enumerated with n and columns with m.
An even more convenient representation of the same information is a graph,
where nodes represent shape clusters and edges are labeled with probabilities,
denoted as a transition graph.

Probability estimation. In the crisp, e.g., hierarchical model of shapes, we can

estimate the probability P as follows: Pcrisp(Cn → Cm|Cn) =

∑
s
w0

n(s)·w
1
m(s)∑

s
w0

n(s)
.

In the denominator, we have a number of spines that belong to cluster Cn

in time t0 (normalizer). In the denominator, there is a number of spines that
belong to cluster Cn in time t0 and to cluster Cm in time t1 (recall that only
for one n in w0

n(s) and for one m in a w1
m(s), the values are ones; elsewhere,

they are zeros). With such a computation, we consider how many spines moved
from shape cluster Cn to Cm and normalize it by the number of all spines in
the initial cluster Cn.

There are arbitrarily many generalizations that are consistent with the
above crisp derivation for the fuzzy model, e.g., cmeans model, i.e., w0

n(s) ·
w1

m(s) can be reformulated in many ways without changing the values of Pcrisp,
e.g., as min(w0

n(s), w1
m(s)). We suggest using the generalization for which the

model minimizes the error of behavior prediction of a spine s when t0 → t1.
The probability that spine s in time t1 will be in cluster Cm for our linear
model is given according to the law of total probability as follows:

P 1
prediction(s ∈ Cm) =

∑
n

P (Cn → Cm|Cn) · P 0(s ∈ Cn) (2)
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The overall prediction error can be computed as a sum of squared differences
between predicted (P 1

prediction) and derived probabilities (P 1):

E =
∑
s

∑
m

(P 1
prediction(s ∈ Cm)− P 1(s ∈ Cm))2 (3)

where for each spine s in the data, we compare the membership for cluster
Cm at time t1 with the prediction of the model. The problem can be now
formulated as an optimization task where we search for probabilities P (Cn →
Cm|Cn) that minimize the overall prediction error E:

objective : argmin E
subject to :
P (Cn → Cm|Cn) ≥ 0
∀s∀n

∑
m P (Cn → Cm|Cn) = 1

(4)

The above derivations can be easily represented in matrix form, and the
above optimization problem is an example of a standard quadratic program-
ming optimization task with constraints. Details are presented in Section S7
in Supplemental Materials.

Parameter reliability. To derive information on the reliability of the obtained
probabilities, we use the following bootstrap-based procedure. We generate
R = 1000 new populations sampled with replacement from the original popu-
lation. For each new population, we calculate all the probabilities again. The
average squared differences between probabilities for new populations and the
original populations are used as the estimates of parameter errors. Formally,
the error of the probability P (Cn → Cm|Cn) is calculated as:

SEnm =

√
1

R

∑
r=1..R

(P (Cn → Cm|Cn)− P (Cn → Cm|Cn) |r)2 (5)

where P (Cn → Cm|Cn)|r denotes the probability calculated for the r-th boot-
strap population.

3.3 Comparison of models

Bootstrap Hypothesis Testing [5] is a method of testing statistical hypotheses.
To apply the method, one has to first modify the testing sample so that the null
hypothesis is satisfied. Subsequently, a large number of bootstrap samples is
drawn from such a modified sample. Finally, for the fixed statistic of interest,
one must evaluate how extreme the value of the statistic is for the original
sample compared with the values obtained for the drawn bootstrap samples.

This general rule in our case proceeds as follows. We take the two groups
ACTIVE300 and CONTROL300 and join them into one group ACTIVE300∪
CONTROL300. At each iteration of bootstrap sampling, two new groups are
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drawn from the joint dataset. This way, the null hypothesis of a common
distribution for both groups is satisfied. Next, for each bootstrap, the sample
clusters and Shape Transition Model are constructed for both groups. Then,
the test statistic is computed. Finally, the statistic is computed on models
built for original groups and compared with the bootstrap sampling results.

Comparison of changes in cluster distributions. We cluster spines according
to their shapes (see Section 3.1). As a result, for each spine s at t0 and t1, we
obtain the set of weights representing a mixture of shapes. Then, we derive
the overall distribution (total weights) of shapes (by shapes, we mean shape
clusters) at both t0 and t1. The n-th cluster total weight (in case of crisp, e.g.,
hierarchical clustering, it is equivalent to number of spines) in t0 is equal to∑

s w
0
n(s) and in t1 is equal to

∑
s w

1
n(s). Consequently, the relative change in

the n-th cluster weight between t0 and t1 for population G can be computed

as follows: cn(G) =

∑
s∈G

w1
n(s)−

∑
s∈G

w0
n(s)∑

s∈G
w0

n(s)
. The statistic that measures the

difference between relative changes in distributions of shapes for populations
G1, G2 can be now defined as:

RDC(G1, G2) =
∑

n=1..k

(cn(G1)− cn(G2))
2

(6)

Comparison of transition matrices. By applying the Shape Transition Model
(see Section 3.2), we construct two Markov matrices (transition matrices) de-
scribing transitions for both populations. To check how similar the matrices
are, we decided to apply bootstrap hypothesis testing. For comparing the ma-
trices, we use the sum of squared differences between corresponding cells from
the two matrices:

SMD(G1, G2) =
∑

n=1..k

∑
m=1..k

(Pnm|G1 − Pnm|G2)2 (7)

where G1, G2 are populations, e.g., ACTIVE300, CONTROL300, to be com-
pared. Pnm|Gi ≡ P (Cn → Cm|Cn)|Gi stands for the value of a cell in the n-th
row and in the m-th column of the transition matrix P built with data from
population Gi.

4 Results

To obtain the taxonomy of spine shapes, we applied cmeans and hierarchical
clustering to ACTIVE∪CONTROL for t0 and t1. To select the proper values
of the parameters, we used WSS plots with ‘knee‘ shapes (see Figure S3). We
obtained k = 10 for hierarchical and k = 8, m = 4 for cmeans clustering.
According to WSS measures, these values ensure a good balance between the
complexity of results, i.e., the number of clusters and quality of cluster fitness.

Figure 4(a) presents the results of hierarchical clustering calculated for
ACTIVE ∪ CONTROL according to the procedure described in Section 2.4.
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(a) Clusters of spines.

Representants Representants

1 6

2 7

3 8

4 9

5 10
(b) Representative spines.

Fig. 4 Hierarchical clustering and representative spines obtained for ACTIVE ∪
CONTROL. The presented clusters represent the universal taxonomy of spine shapes. For
each cluster, we present three spines that are nearest to the cluster center. Representative
spines facilitate visual aid for interpretation purposes.

Each spine is represented with a single point, and the colors represent the clus-
ter memberships. For each cluster, we identified three representative spines
lying nearest to the cluster center. Representative spines are shown in Fig-
ure 4(b). Obtained clusters express the universal taxonomy of shapes that will
be later employed for the computation of Shape Transition Model for ACTIVE,
CONTROL, ACTIVE300 and CONTROL300. Representative spines can be
used for visual inspection and biological interpretation.

Apart from hierarchical clustering, we also consider cmeans clustering.
Table 4 presents the comparison of the prediction error E for both methods.
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Table 4 Prediction error E for various models and clustering methods. Values were obtained
using 10-fold cross-validation on ACTIVE ∪ CONTROL. Values in columns should not be
compared. For both clustering methods, Shape Transition Model performs better than the
baseline.

Clustering
method

Shape
Tran-
sition
Model

Majority
vote

No tran-
sitions

Random
transi-
tions

hierarchical 0.266 +/-
0.147

0.395 +/-
0.237

0.433 +/-
0.242

0.997 +/-
0.124

cmeans 0.024 +/-
0.004

0.853 +/-
0.029

0.037 +/-
0.007

0.054 +/-
0.012

Values were obtained using 10-fold cross-validation. Numbers from the same
column but in different rows should not be compared. Different clustering
methods result in different shape clusters that have different members and
thus are incomparable. Although errors E for different methods have different
ranges and cannot be compared, different models with the same method can
be compared.

The Shape Transition Model is compared with three baselines. The first
baseline is the majority vote model, where all spines from a particular cluster
move to a single destination cluster that is selected as the most popular choice.
The second baseline is the model, where we assume that all spines remain
in the initial clusters, i.e., weights in t1 are the same as in t0. Finally, the
third baseline assumes random values for probability P . For both clustering
methods, the Shape Transition Model has the smallest error E and predicts
spine behavior the best.

Transition graphs of the Shape Transition Model for ACTIVE and CONTROL
are shown in Figures 5(a) and 5(b). Each cluster of shapes is represented by
an oval. Initial sizes, i.e., weights of clusters (for hierarchical clustering equiva-
lent to number of spines), are listed. Edges representing transitions are labeled
with probability P . They are filtered out, and only transitions (probabilities)
of greater than 20% of the initial weight are visible.

Only five clusters (numbers 1-5) are well represented in the data. Clusters
1, 2 and 4 are the most dense. Clusters 3 and 5 are interpreted as peripheral.
Finally, clusters 6-10 have only a few spines. For transitions from clusters 6-10,
high errors were obtained. For example, SE for P (C9 → C10|C9) is equal to
66%. Conclusions concerning clusters 6-10 are not reliable. Analogous plots of
clustering results and transition graphs for cmeans are presented in Figures
S4, 5(a) and 5(b).

Graphs presented in Figures 5(a) and 5(b) should not be compared because
they are computed for populations of different characteristic at t0. Alterna-
tively, Figure 6 presents the comparison of transition graphs for CONTROL300
and ACTIVE300 for hierarchical clustering (exact values of the probabilities
can be found in Table S1). A similar analysis for cmeans is presented in Fig-
ure S6, and the values of the transitions in percents can be found in Table S2.
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(a) Transition graph for CONTROL. (b) Transition graph for ACTIVE.

Fig. 5 Transition graphs for hierarchical clustering. For each cluster, the initial weight
(number of spines in the cluster) is presented. Only transitions (probabilities) of values
higher than 20% are shown. Only clusters 1-5 are well represented in the data. Transitions
for the remaining clusters are uncertain.

(a) Transition graph for CONTROL300 (b) Transition graph for ACTIVE300

Fig. 6 Comparison of the transition graphs for balanced subpopulations and hierarchical
clustering. For each cluster, the initial weight (number of spines in the cluster) is presented.
Values are given in percents. Only transitions (probabilities) of values higher than 20%
are shown. Differences in transitions between graphs are observed, but because of high
uncertainties, none of them is significant.

In the case of the CONTROL300 and ACTIVE300 subsets (Figure 6),
only clusters 1, 2 and 4 contain enough spines to produce credible conclusions.
For CONTROL300, cluster 1 has slightly stronger inertia than for ACTIVE300
(91% vs. 87% spines remained in the same cluster). For cluster 2, the situation
is the opposite: 41% of spines from cluster 2 for CONTROL300 remain in
cluster 2 compared with 67% for ACTIVE300. For both populations, a large
transition of spines from cluster 2 to cluster 1 is observable. However, for
CONTROL300, it is present for 52% of the spines, whereas for ACTIVE300,
it is present only for 28%. Another difference is visible for transitions from
cluster 4. For CONTROL300, 73% of spines move to cluster 1 and 27% to
cluster 2. For ACTIVE300, only 54% of spines move to cluster 1, and the
rest move to clusters 2-5. Unfortunately, none of the observed differences is
significant when the errors are taken into consideration. Therefore, to identify
such differences, the models must be compared as a whole.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/051227doi: bioRxiv preprint 

https://doi.org/10.1101/051227


Dendritic spine taxonomy and shape transition analysis 17

Table 5 P-values of RDC and SMD statistics with bootstrap tests used to compare bal-
anced subpopulations ACTIVE300 and CONTROL300 for various clustering methods. Dif-
ferences that are statistically significant are shown in bold font.

Method RDC p-value SMD p-value
hierarchical 0.493 0.011
cmeans 0.004 0.298

Table 5 presents p-values of RDC and SMD statistics used for a compar-
ison of models for ACTIVE300 and CONTROL300. Results below 0.05 are
marked in bold font. Detailed plots of the statistical distributions using kernel
estimation are shown in Figures S7 and S8. For hierarchical clustering, only
SMD shows a significant difference between ACTIVE300 and CONTROL300.
This statistic compares transitions of spines between shapes, which is well cap-
tured by hierarchical clustering. The RDC statistic relies only on changes of
distributions, and hierarchical clustering enforces that each spine belongs to
only one shape cluster at the particular time point, which may noticeably af-
fect the overall distributions. In contrast, distributions are well captured by
cmeans clustering, where each spine is an arbitrary mixture of shapes and
RDC shows a significant difference. Different clustering methods are sensi-
tive to different properties of the data. The selection of the right clustering
method and appropriate test depends on the characteristic of the data that is
of interest to the researcher.

5 Discussion and conclusions

The majority of excitatory synapses in the brain are located on dendritic
spines. These highly dynamic and plastic structures undergo constant morpho-
logical changes in different physiological and pathological processes [11]. The
structure of the dendritic spines is tightly correlated with their function and
reflects the synapse properties. Synapse strengthening or weakening along with
dendritic spine formation and elimination assure correct processing and stor-
age of the incoming information in the neuronal network. This plastic nature
of the dendritic spines allows them to undergo activity-dependent structural
modifications, which are thought to underlie learning and memory formation.
At the cellular level, the most extensively studied aspect of this phenomena is
related to dendritic spine enlargement in response to stimulation.

In this study, we explored the impact of the externally applied stimula-
tion on the dendritic spine structural dynamics. We applied statistical tests
and examined a population consisting of 923 dendritic spines. We used two
dissociated neuronal cell cultures and compared dendritic spine volume and
shape changes between two populations at two different states, unstimulated
(CONTROL) and LTP-stimulated (ACTIVE ), and at two time points (with
a 10-minute time interval). We preprocessed the datasets and reduced the
dendritic spine number to 300 for each analyzed group. We introduced an
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automatic way of splitting the populations into growing, not changing, and
shrinking spines and showed that the two-dimensional descriptors of dendritic
spine change differently between the corresponding populations in a significant
manner.

The obtained results show that changes in the dendritic spine shape and
size are associated with neuronal cell activation upon stimulation. By employ-
ing statistical analysis, we confirmed that neuronal activity influences the over-
all composition of the dendritic spine population. Additionally, we provided a
probabilistic model for dendritic spine population dynamics. First, the resting
state model was constructed (Figure 5(a)). Then, the probabilistic null model
for active neurons was built (Figure 5(b)). We showed that LTP treatment
induced transition of filopodia-like spines (cluster 4) into mushroom-shaped
spines (cluster 2). For the first time, we provided the exact transition proba-
bilities for this morphological transformation (from cluster 4 to cluster 2, the
transition probability was found to be 0.27 ± 0.11). Our result supports the
previous studies [29] who report chemical LTP-induced spine enlargement in
dissociated cultures.

Finally, we compared models for balanced populations (Figure 6). We found
differences between active and non-active neurons. Unfortunately, none of the
observed differences between the models was significant when particular tran-
sitions between shape clusters were considered. Large errors predominated the
differences between values in cells of appropriate transition matrices. However,
statistically significant differences were detected when whole models of pop-
ulations were compared. Different clustering algorithms showed statistically
significant differences between the two analyzed groups (ACTIVE300, CON-
TROL300 ). Crisp clustering captured the difference in shapes transitions well,
whereas fuzzy clustering captured the difference in changes of shape cluster
distributions.

We hypothesize that biological information is not stored in the specific
spines shapes or sizes; rather, it is related to the dynamical changes at the
population level. The subtle changes in the relative number of dendritic spines
for each structural type, matching different shapes or volumes, could be respon-
sible for forming or rearranging information-processing pathways in neuronal
networks. According to our model, the dynamics of the entire dendritic spine
groups, not the individual entities, are at the center of this cellular phenomena.
This may serve to better understand the complex mechanism of information
processing in the brain.

Acknowledgements The authors are grateful to Prof. Jakub Wlodarczyk, Prof. Grzegorz
Wilczynski and Prof. Subhadip Basu for extensive discussions on the information process-
ing problem in neuronal systems and especially to Blazej Ruszczycki for preparation of the
segmentation software used for acquiring the morphological descriptors. Some calculations
were performed at the Interdisciplinary Centre for Mathematical and Computational Mod-
elling, University of Warsaw, grant No. G49-19. The data used in the experimental part
of the study were gathered in the Laboratory of Cell Biophysics at Nencki Institute of
Experimental Biology under the supervision of Prof. Jakub Wlodarczyk.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/051227doi: bioRxiv preprint 

https://doi.org/10.1101/051227


Dendritic spine taxonomy and shape transition analysis 19

Funding. Tomasz Kusmierczyk and Michal Lukasik were partially supported by research
fellowships within ”Information technologies: research and their interdisciplinary applica-
tions” agreement POKL.04.01.01-00-051/10-00. Marta Magnowska and Matylda Roszkowska
were supported by the grant no. N N301 665140 from National Science Centre Poland. Dar-
iusz Plewczynski was supported by the Polish National Science Centre (Grant numbers
2013/09/B/NZ2/00121 and 2014/15/B/ST6/05082) and COST BM1405 and BM1408 EU
actions.

References

1. Araya, R., Jiang, J., Eisenthal, K.B., Yuste, R.: The spine neck filters membrane poten-
tials. Proceedings of the National Academy of Sciences 103(47), 17,961–17,966 (2006)

2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer
Academic Publishers, Norwell, USA (1981)

3. Caroni, P., Donato, F., Muller, D.: Structural plasticity upon learning: regulation and
functions. Nature Reviews Neuroscience 13(7), 478–490 (2012)

4. DeKosky, S.T., Scheff, S.W.: Synapse loss in frontal cortex biopsies in alzheimer’s dis-
ease: correlation with cognitive severity. Annals of Neurology 27(5), 457–464 (1990)

5. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Macmillan Publishers
Limited (1993)

6. Fanti, Z., Elena Martinez-Perez, M., De-Miguel, F.F.: Neurongrowth, a software for
automatic quantification of neurite and filopodial dynamics from time-lapse sequences
of digital images. Developmental Neurobiology 71(10), 870–881 (2011)

7. Holtmaat, A., Svoboda, K.: Experience-dependent structural synaptic plasticity in the
mammalian brain. Nature Reviews Neuroscience 10(9), 647–658 (2009)

8. Hutsler, J.J., Zhang, H.: Increased dendritic spine densities on cortical projection neu-
rons in autism spectrum disorders. Brain Research 1309, 83–94 (2010)

9. Irwin, S.A., Patel, B., Idupulapati, M., Harris, J.B., Crisostomo, R.A., Larsen, B.P.,
Kooy, F., Willems, P.J., Cras, P., Kozlowski, P.B., et al.: Abnormal dendritic spine
characteristics in the temporal and visual cortices of patients with fragile-x syndrome: a
quantitative examination. American Journal of Medical Genetics 98(2), 161–167 (2001)

10. Jolliffe, I.T.: Principal Component Analysis. Springer Verlag, New York (2002)
11. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., Noguchi, J.: Structural dy-

namics of dendritic spines in memory and cognition. Trends in Neurosciences 33(3),
121–129 (2010)

12. Kharazia, V., Weinberg, R.: Immunogold localization of ampa and nmda receptors in
somatic sensory cortex of albino rat. Journal of Comparative Neurology 412(2), 292–302
(1999)

13. Knobloch, M., Mansuy, I.M.: Dendritic spine loss and synaptic alterations in alzheimers
disease. Molecular Neurobiology 37(1), 73–82 (2008)

14. Levenga, J., Willemsen, R.: Chapter 8 - perturbation of dendritic protrusions in intellec-
tual disability. In: M. Dierssen, R.D.L. Torre (eds.) Down Syndrome: From Understand-
ing the Neurobiology to Therapy, Progress in Brain Research, vol. 197, pp. 153–168.
Elsevier (2012)

15. Li, Q., Deng, Z.: A surface-based 3-d dendritic spine detection approach from confocal
microscopy images. Image Processing, IEEE Transactions on 21(3), 1223–1230 (2012)

16. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C., Kasai, H.: Structural basis of long-term
potentiation in single dendritic spines. Nature 429(6993), 761–766 (2004)

17. Menon, V., Musial, T.F., Liu, A., Katz, Y., Kath, W.L., Spruston, N., Nicholson, D.A.:
Balanced synaptic impact via distance-dependent synapse distribution and complemen-
tary expression of ampars and nmdars in hippocampal dendrites. Neuron 80(6), 1451–
1463 (2013)

18. Michaluk, P., Wawrzyniak, M., Alot, P., Szczot, M., Wyrembek, P., Mercik, K.,
Medvedev, N., Wilczek, E., De Roo, M., Zuschratter, W., et al.: Influence of matrix met-
alloproteinase mmp-9 on dendritic spine morphology. Journal of Cell Science 124(19),
3369–3380 (2011)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/051227doi: bioRxiv preprint 

https://doi.org/10.1101/051227


20 Tomasz Kusmierczyk et al.

19. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Com-
puter Journal 26(4), 354–359 (1983)

20. Nunez, J.: Primary culture of hippocampal neurons from p0 newborn rats. Journal of
Visualized Experiments 895(19) (2008)

21. Nusser, Z., Lujan, R., Laube, G., Roberts, J.D.B., Molnar, E., Somogyi, P.: Cell type
and pathway dependence of synaptic ampa receptor number and variability in the hip-
pocampus. Neuron 21(3), 545–559 (1998)

22. Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E., Woolfrey, K.M.: Dendritic
spine pathology in neuropsychiatric disorders. Nature Neuroscience 14(3), 285–293
(2011)

23. Ruszczycki, B., Szepesi, Z., Wilczynski, G., Bijata, M., Kalita, K., Kaczmarek, L., Wlo-
darczyk, J.: Sampling issues in quantitative analysis of dendritic spines morphology.
BMC Bioinformatics 13(1), 1–12 (2012)

24. Schmitz, S.K., Hjorth, J.J., Joemai, R.M., Wijntjes, R., Eijgenraam, S., de Bruijn, P.,
Georgiou, C., de Jong, A.P., van Ooyen, A., Verhage, M., et al.: Automated analysis
of neuronal morphology, synapse number and synaptic recruitment. Journal of Neuro-
science Methods 195(2), 185–193 (2011)
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S6 Algorithms for subset selection and group division

Large differences between the sets ACTIVE and CONTROL may influence the
statistical analysis of their behavior. Therefore, we decided to preprocess the
datasets by excluding some spines, such that the means in the new sets are
close with respect to the statistical test used. Below we show pseudocode for
algorithm, where subsets of spines are selected, forming new sets for further
analysis.

Algorithm S1 SUBSET-SELECTION
Input:
Lists of spines: ACTIVE and CONTROL
A function of state of all variables: STOP CONDITION

Output:
Lists of spines: ACTIVESUBSET and CONTROLSUBSET

1: Normalize each feature of ACTIVE and CONTROL by subtracting the common mean
and dividing by the common standard deviation,

2: Initialize ACTIVESUBSET and CONTROLSUBSET to empty lists,
3: while STOP CONDITION is not satisfied do
4: draw the pair of spines x1 ∈ ACTIVE and x2 ∈ CONTROL of the smallest euclidean

distance
5: move x1 and x2 from their lists respectively to ACTIVESUBSET and

CONTROLSUBSET
6: end while
7: return ACTIVESUBSET and CONTROLSUBSET

We choose the two separating points defining the three sub-groups such
that the differences between the counts of corresponding subgroups from the
ACTIVE300 and CONTROL300 populations are maximized7. The exact method

7 We expect that there is a higher percentage of growing spines from ACTIVE than
from CONTROL. Therefore, we decide to define the threshold point between growing and
not-growing groups to be the threshold maximizing the difference between number of grow-
ing spines from ACTIVE and the number of growing spines from CONTROL. What we
observed for shrinking spines is similar, therefore we similarly seek the threshold point be-
tween shrinking and not-shrinking groups.
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has been shown in Algorithm S2. This criterion assumes that the two groups
are of the same size. If they were not, we could easily normalize them by
multiplying the appropriate samples from both populations. See Figure 2 for
summary of the results.

Let ACTIVEREL
feature denote the representation of ACTIVE with relative

differences of feature feature. Similarly for CONTROLREL
feature and subsets

ACTIVE300REL
feature and CONTROL300REL

feature.

Algorithm S2 SEPARATING-POINTS
Input:
Lists of feature values: ACTIVEREL

feature and CONTROLREL
feature, for a fixed feature

Output:
A value: SPLITPOINT

1: Sort ACTIVEREL
feature and CONTROLREL

feature increasingly,
2: Initialize counters: ACTIVECNT = 0 and CONTROLCNT = 0,
3: Initialize information on the splitting point: SPLITV AL = 0, SPLITPOINT =
NULL

4: while at least one list: ACTIVEREL
feature or CONTROLREL

feature is non-empty do

5: x = smaller of the 2 elements at the front of the lists: ACTIVEREL
feature and

CONTROLREL
feature,

6: delete all occurrences of x from ACTIVEREL
feature and add the number of its occur-

rences to ACTIVECNT
7: delete all occurrences of x from CONTROLREL

feature and add the number of its occur-
rences to CONTROLCNT

8: if SPLITV AL < ACTIVECNT− CONTROLCNT then
9: SPLITV AL = ACTIVECNT− CONTROLCNT

10: SPLITPOINT = x
11: end if
12: end while
13: return SPLITPOINT

S7 Matrix formulation of Shape Transition Model

Shape Transition Model can be represented in the matrix form where:

– W i - N × k matrix of weights where each row represents a single spine at
time ti

– P - k× k matrix of transition probabilities P (Cn → Cm|Cn) indexed by n
and m.

Predictions of the model can be calculated as follows:

W 1
prediction = W 0P

Prediction error can be calculated as follows (||A|| ≡
√∑

ij Aij):

E = ||W 1
prediction −W 1||2
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The optimization problem is given by: (1k - k-element vertical vector of ones):

objective : argmaxP ||W 0P −W 1||2
subject to :
P ≥ 0
P · 1k = 1k

and can be transformed to the standard quadratic programming form:

objective : argmaxx
1
2x

TQx+ cTx
subject to :
A · x ≤ b
Aeq · x = beq

where:

– x = x(P ) is a vector of length k2

– Q = Q(W i,W j), A = A(W i,W j), Aeq = Aeq(W i,W j) are matrices of size
k2 × k2

– c = c(W i,W j), b = b(W i,W j), beq = beq(W i,W j) are vectors of length k2

S8 Supplemental figures and tables

Fig. S1 Proportion of the explained variance for different numbers of components (left) and
loadings (weights) for two of the most important components (right). PCA was calculated on
DESCRIPTORS of CONTROL ∪ ACTIV E data. For two features (components) about
91% of the variance is explained. We see that Comp.1′ is composed mostly of features related
to size such as length, circumference, and area. Therefore, this feature can be treated as a
generalized size descriptor. Similarly, we can interpret Comp.2′ as a generalized contour
(shape complexity) descriptor.
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Fig. S2 Proportion of the explained variance for PCA on components (features) describing
size (left) and contour (right). PCA was calculated separately on DESCRIPTORSSIZE =
{length, circumference, area} (size related features) and on DESCRIPTORSCONTOUR =
{hw, foot, mwl, mw, wlr, lwr, lar, nw} (contour complexity related features) of CONTROL∪
ACTIV E data. Using the first feature from PCA on DESCRIPTORSSIZE and the first
feature from PCA on DESCRIPTORSCONTOUR 87% of the variance is explained.

Table S1 Transition matrices t0 → t10 for CONTROL300 and ACTIVE300 for hierarchi-
cal clustering. Values are denoted in percents, SE in brackets, source clusters in rows, and
destination clusters in columns. Only clusters 1, 2 and 4 contain enough spines to produce
credible conclusions. According to estimated errors, transitions observed for other cases are
not meaningful.

CONTROL300
Cluster 1 2 3 4 5 6 7-10
1 91 (34) 6 (2) 0 2 (1) 0 0 0
2 52 (20) 41 (16) 0 2 (1) 2 (1) 2 (1) 0
3 0 100

(58)
0 0 0 0 0

4 54 (22) 15 (8) 8 (5) 15 (8) 8 (5) 0 0
5 0 0 100

(63)
0 0 0 0

6 0 0 0 0 0 0 0
7-10 0 0 0 0 0 0 0

ACTIVE300
Cluster 1 2 3 4 5 6 7-10
1 87 (32) 12 (4) 0 0 0 0 0
2 28 (11) 67 (25) 0 2 (1) 2 (1) 0 0
3 0 0 0 0 0 0 0
4 73 (29) 27 (11) 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7-10 0 0 0 0 0 0 0
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(a) cmeans (k = 8, m = 4)

(b) hierarchical clustering (k = 10)

Fig. S3 Parameters selection for shape clustering methods (WSS plots for ACTIVE ∪
CONTROL). Red circles mark the selected values in ’knee points’.
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Table S2 Transition matrices t0 → t10 for CONTROL300 and ACTIVE300 for cmeans
clustering. Values are denoted in percents, SE in brackets, source clusters in rows, and
destination clusters in columns. In contrast to hierarchical clustering case all clusters contain
nonneglible amounts of spines.

CONTROL300
Cluster 1 2 3 4 5 6 7 8
1 43 (18) 5 (4) 0 (1) 4 (3) 22 (11) 0 (4) 0 (3) 25 (12)
2 2 (1) 17 (6) 13 (5) 10 (4) 3 (2) 21 (8) 28 (10) 6 (3)
3 0 (0) 5 (2) 50 (19) 0 (1) 0 (0) 15 (6) 29 (12) 1 (1)
4 1 (1) 19 (7) 5 (2) 35 (13) 10 (4) 14 (7) 4 (2) 12 (5)
5 11 (5) 11 (5) 3 (2) 23 (9) 27 (12) 3 (3) 2 (2) 20 (8)
6 2 (1) 20 (8) 10 (4) 8 (4) 5 (3) 40 (14) 15 (6) 0 (1)
7 5 (2) 15 (6) 19 (8) 17 (7) 4 (2) 10 (4) 21 (8) 9 (4)
8 4 (3) 19 (8) 2 (2) 14 (6) 17 (8) 9 (5) 11 (6) 24 (10)

ACTIVE300
Cluster 1 2 3 4 5 6 7 8
1 33 (15) 19 (9) 7 (4) 0 (4) 11 (7) 0 (1) 12 (6) 19 (9)
2 2 (1) 23 (9) 5 (3) 25 (10) 5 (3) 15 (8) 8 (4) 16 (7)
3 1 (1) 13 (5) 40 (15) 2 (1) 0 (0) 13 (5) 27 (10) 3 (1)
4 0 (0) 14 (6) 14 (6) 20 (9) 4 (2) 31 (13) 15 (6) 2 (2)
5 19 (9) 0 (1) 0 (0) 21 (10) 46 (18) 0 (0) 0 (1) 14 (6)
6 5 (2) 13 (5) 21 (8) 5 (3) 3 (1) 30 (12) 19 (7) 6 (3)
7 2 (1) 15 (5) 16 (6) 16 (6) 4 (2) 18 (7) 24 (9) 6 (2)
8 9 (4) 15 (6) 1 (1) 19 (7) 18 (8) 0 (0) 5 (2) 33 (13)
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Fig. S4 Results (clusters plot, transition graph and spines selected as clusters’ represen-
tants) of cmeans clustering applied to ACTIVE ∪ CONTROL. For each cluster the initial
weight (sum of weights of spines in the cluster at time t0) is presented. Only transitions of
values higher than 20% are shown on the graph. In contrast to hierarchical clustering case
all clusters contain nonneglible amounts of spines. However, differences between spines from
different clusters are not that significant and easy to interpret.
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(a) CONTROL (b) ACTIVE

Fig. S5 Transition graphs for for cmeans clustering. For each cluster the initial weight
(sum of spines’ weights in the cluster at time t0) is presented. Values are given in rounded
percents. Only transitions (probabilities) of values higher than 20% are shown. Subfigures
should not be compared because they are computed for populations of different characteristic
at t0.

(a) CONTROL300 (b) ACTIVE300

Fig. S6 Transition graphs for balanced subpopulations and cmeans clustering. For each
cluster the initial weight (sum of spines’ weights in the cluster at time t0) is presented.
Values are given in rounded percents. Only transitions of values higher than 20% are shown.
Although, most of observed differences between transitions are not significant when errors
are taken into consideration, statistically significant difference between graphs was found
using RDC statistic.
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(a) RDC distribution for cmeans cluster-
ing

(b) RDC distribution for hierarchical clus-
tering

Fig. S7 RDC statistic used to compare CONTROL300 and ACTIVE300. Kernel estima-
tion used for smoothing. Statistically significant difference between subpopulations observed
for cmeans case.

(a) SMD distribution for cmeans cluster-
ing

(b) SMD distribution for hierarchical
clustering

Fig. S8 SMD statistic used to compare CONTROL300 and ACTIVE300. Kernel estima-
tion used for smoothing. Statistically significant difference between subpopulations observed
for hierarchical case.
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