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Abstract

Motivation: Submodular optimization, a discrete analogue to continuous convex optimization,
has been used with great success in many fields but is not yet widely used in biology. We ap-
ply submodular optimization to the problem of removing redundancy in protein sequence data
sets. This is a common step in many bioinformatics and structural biology workflows, including
creation of non-redundant training sets for sequence and structural models as well as selection
of “operational taxonomic units” from metagenomics data.
Results: We demonstrate that the submodular optimization approach results in representative
protein sequence subsets with greater structural diversity than sets chosen by existing methods.
In particular, we compare to a widely used, heuristic algorithm implemented in software tools
such as CD-HIT, as well to as a variety of standard clustering methods, using as a gold standard
the SCOPe library of protein domain structures. In this setting, submodular optimization con-
sistently yields protein sequence subsets that include more SCOPe domain families than sets of
the same size selected by competing approaches. We also show how the optimization framework
allows us to design a mixture objective function that performs well for both large and small rep-
resentative sets. The framework we describe is theoretically optimal under some assumptions,
and it is flexible and intuitive because it applies generic methods to optimize one of a variety of
objective functions. This application serves as a model for how submodular optimization can
be applied to other discrete problems in biology.
Availability: Source code is available at https://github.com/mlibbrecht/submodular_sequence_
repset.
Contact: william-noble@uw.edu

1 Introduction

Redundancy is ubiquitous in biological sequence data sets, and this redundancy often impedes
analysis. For example, because some proteins, such as those involved in disease or industrial
applications, are studied by many more researchers than proteins with less important or un-
known function, protein sequence databases contain hundreds or thousands of slight variants of
well-studied proteins and only one or a few copies of the sequences of less-studied proteins. Re-
moving this redundancy has two benefits. First, doing so removes computational and statistical
issues introduced by this redundancy. Second, members of a non-redundant set of sequences
can be interpreted as representatives of the whole set, such as using sequences to represent
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Figure 1: Protein sequence representative set selection. Points represent protein sequences,
projected into 2D based on their pairwise similarities according to BLAST using t-SNE [Van der
Maaten and Hinton, 2008]. All sequences are depicted from the SCOPe Class “Membrane and
cell surface proteins and peptides.” Color with text labels indicates SCOPe fold, and italicized
text indicates SCOPe family within a given fold. Black circles indicate the top ten representative
sequences chosen by the greedy algorithm on a mixture of facility-location (Rankprop sim; 0.5
weight) and sum-redundancy (percent ID sim; 0.5 weight). Numbers labeling these circles indicate
choice order. Choice #9 is colored red because it is the second chosen sequence within the same
fold. To produce the 2D embedding, we first computed a n×n pairwise distance matrix (for a set of
n sequences) with the formula: distance(i, j) = 1−percent id(i, j)/100. We used multidimensional
scaling (MDS) to project this distance matrix to a 30×n feature matrix . This MDS preprocessing
step is similar to the standard preprocessing step used by tSNE that applies principle component
analysis (PCA) to project a high-dimensional feature matrix to a 30 × n feature matrix [Van der
Maaten and Hinton, 2008]. We used tSNE to project this 30 × n matrix into a 2 × n matrix,
which is plotted. The diffuse points in the center are a common feature of tSNE plots, and are a
consequence of the algorithm imperfectly recapitulating the n-dimensional similarity matrix in two
dimensions.
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species or “operational taxonomic units” in a metagenomics study [Human Microbiome Project
Consortium, 2012].

Redundancy can be handled by selecting a representative subset of the original data set.
This representative subset is then used in downstream analysis. However, the task of choosing
this subset can be computationally challenging because finding the best representative subset
out of N items requires, in principle, considering all 2N possible subsets.

In many fields, representative subsets are selected using some form of submodular optimiza-
tion. The class of submodular functions is analogous to the class of convex functions. Submod-
ular functions, however, are defined over subsets of a given set of data items, whereas convex
functions are defined over real-valued vectors. Submodular functions are those that satisfy the
property of diminishing returns. If we think of a function f as measuring the quality of a
given subset, then the submodular property means that the incremental “value” of an item v
decreases as the context in which v is considered grows. Formally, for any two subsets A and
B of the set V , where A ⊆ B ⊂ V , and for any v ∈ V \ B, f is submodular if and only if
it satisfies f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B). In many applications, it is common to
search for a subset of maximal quality, as measured by a function f . The resulting optimiza-
tion problem is hopelessly difficult for an arbitrary set function, but when the set function is
submodular, the quality can be maximized within a constant factor of optimal in low-order
polynomial time [Fisher et al., 1978, Nemhauser et al., 1978, Minoux, 1978] (Methods). More-
over, these optimization algorithms are provably the best achievable in polynomial time under
some assumptions (Methods). For these reasons, submodular optimization has a long history
in economics [Vives, 2001, Carter, 2001], game theory [Topkis, 1998, Shapley, 1971], combinato-
rial optimization [Edmonds, 1970, Lovász, 1983, Schrijver, 2004], electrical networks [Narayanan,
1997], and operations research [Cornunéjols et al., 1990]. Furthermore, submodular optimization
has recently been used with great success for selecting representative subsets of text documents
[Lin et al., 2007, Lin and Bilmes, 2011, 2012], recorded speech [Liu et al., 2013, Wei et al., 2013,
2014], machine translation [Kirchhoff and Bilmes, 2014], and images [Tschiatschek et al., 2014].
However, submodular optimization is not yet widely used in biology.

To illustrate how submodular optimization can be applied to biological data sets, we focus
on the problem of choosing representative subsets from a database of protein sequences. Many
methods have been developed for this problem [Hobohm et al., 1992, Holm and Sander, 1998, Li
et al., 2001, Edgar, 2010, Parsons et al., 1992, Altschul et al., 1997, Enright and Ouzounis, 2000,
Rice et al., 2000], including the popular CD-HIT [Weizhong and Adam, 2006] and PISCES [Wang
and Dunbrack, Jr., 2003] algorithms. These sequence selection methods are very widely used—
for example, the CD-HIT papers have been cited a total of >3,000 times (Google Scholar)—and
are a standard preprocessing step applied to data sets of protein sequences, cDNA sequences and
microbial DNA. All of these existing methods are based on the following simple algorithm: start
with an empty set; order the sequences by length; then for each sequence, add the sequence to
the set if no sequence currently in the set is more similar to it than some threshold (usually 90%
sequence identity). Despite the ubiquity of this algorithm, it is simply a heuristic, apparently
without any theoretical or empirical justification for its use over any other.

We propose a principled framework for representative protein sequence subset selection using
submodular optimization. This approach involves defining a submodular objective function that
quantifies the desirable properties of a given subset of sequences, and then applying a submodular
optimization algorithm to choose a representative subset that maximizes this function. For
illustrative purposes, we applied this optimization framework to protein domain sequences drawn
from a single class (“Membrane and cell surface proteins and peptides”) within the Structural
Classification of Proteins—extended (SCOPe) database [Murzin et al., 1995]. The availability
of protein structures provide an orthogonal gold standard for judging the quality of a given
representative subset. The results (Figure 1) suggest that the submodular approach does a
good job of selecting protein sequences with diverse structural properties. In particular, among
the nine folds that comprise our selected class, the submodular method successively chooses
one exemplar sequence from fold before selecting two sequences from the same fold. The only
exception is that the method chooses two “transmembrane beta-barrel” protein domains before

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/051201doi: bioRxiv preprint 

https://doi.org/10.1101/051201
http://creativecommons.org/licenses/by-nc/4.0/


selecting the first “single transmembrane helix” domain; however, as illustrated in Figure 1,
this choice is not particularly surprising, given that the “transmembrane beta-barrel” fold is
comprised of two superfamilies with quite different structural properties.

In the remainder of this paper, we expand upon this example, demonstrating that submod-
ular optimization method does a better job of selecting representative protein sequence sets
than competing methods, when evaluated relative to protein structure gold standards. We also
demonstrate how optimization-based method development offers practical advantages over an
approach in which the algorithm and the property it tries to optimize (its objective function)
are inextricably intertwined. In particular, we demonstrate how a hybrid optimization function
allows us to design a method that excels at selecting either large or small representative sets.

Note that the task of representative subset selection is distinct from that of clustering. Clus-
tering focuses on sets of similar sequences, whereas representative subset selection focuses on
the individual sequences chosen to represent a larger set. A large number of methods have
been proposed for protein sequence clustering, including those based on Markov clustering [En-
right et al., 2002], connected component detection [Enright and Ouzounis, 2000], generative
modeling [Yang and Wang, 2003], minimal spanning trees [Guan and Du, 1998], and spectral
clustering [Paccanaro et al., 2006]. Applying these methods to representative subset selection
requires specifying, in addition, a procedure for selecting an exemplar sequence from each clus-
ter. In practice, clustering methods are rarely used for reducing redundancy in protein sequence
sets. Nonetheless, we empirically demonstrate below that our submodular selection approach
outperforms several commonly used clustering algorithms.

2 Methods

2.1 Submodularity

The property of submodularity is important for the optimization of the set functions defined
below. A submodular function [Fujishige, 2005] is defined as follows: given a finite set V =
{1, 2, . . . , n}, a discrete set function f : 2V → R is submodular if and only if:

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ), ∀S ⊆ T ⊆ V, v /∈ T. (1)

In other words, the incremental gain of adding item s to the set decreases when the set to
which s is added to grows from S to T . Intuitively, most reasonable measures of the quality or
“informativeness” of a set of items are submodular because the gain from adding a given item
is reduced when the set already contains other items similar to it.

Two other properties of set functions are relevant to their optimization. First, a set function
f is defined as monotone non-decreasing if

f(S ∪ {v})− f(S) ≥ 0, ∀v ∈ V \ S, S ⊆ V. (2)

Second, we say that f is normalized if f(∅) = 0.

2.2 Similarity functions

The measures of subset quality described below are based on pairwise similarities of sequences.
Such similarity measures are real-valued functions s(u, v) defined on pairs of sequences. We
considered two measures to quantify the similarity between a pair sequences: (1) the fraction
of residues that match between the two sequences (fraction identical), and (2) the similarity
measure used by the Rankprop method, defined as exp(−E-value/100) [Weston et al., 2004].
Both measures have been used successfully in previous work on protein sequences, and can be
calculated efficiently using an index-based method like BLAST [Altschul et al., 1990]. In both
cases, we define the similarity between all pairs of sequences not reported by BLAST as 0. Note
that, due to differing sequence lengths, both measures are not symmetric.
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2.3 Subset quality measures

Let V be the full set of sequences and let s(u, v) be a measure of similarity between a pair of
sequences u, v ∈ V . A subset quality function is defined over subsets f(A), where A ⊆ V . We
consider several such subset quality functions, each of which measures some property of a set of
sequences. In each case, a higher value of the function is desired.

First, we define the facility-location function as

ffacility-location(A) ,
1

|V |
∑
v∈V

max
a∈A

s(a, v). (3)

Intuitively, this function takes a high value when every sequence in V has at least one similar
representative in A. This function is also the objective function of the k-medoids clustering
method. The facility-location function is submodular, normalized and monotone non-decreasing.

Second, we define the sum-redundancy function as

fsum-redundancy(A) , κsum −
∑

a1,a2∈A

s(a1, a2), (4)

where κsum =
∑

a,b∈V s(a, b). Intuitively, for sets A of a given size |A|, this function takes a very
small value when A includes many pairs of similar sequences, and it takes a large value when all
the sequences in A are very dissimilar from one another. In other words, the sum-redundancy
function penalizes the redundancy in A. Optimizing the sum-redundancy function with the
monotone greedy algorithm (defined below) is identical to the commonly-used representative
subset heuristic of iteratively choosing the example that is most dissimilar from all previously-
chosen examples. The sum-redundancy is submodular and normalized, but not monotone non-
decreasing (in fact, it is monotone non-increasing).

Third, we define the max-redundancy function as

fmax-redundancy(A) , κmax −
∑
a1∈A

max
a2∈A,a2 6=a1

s(a1, a2). (5)

where κmax =
∑

a1∈V maxa2∈V,a2 6=a1
s(a1, a2). The max-redundancy function is very similar to

sum-redundancy, except that it penalizes only the most similar neighbor for each sequence in A
instead of all neighbors. The max-redundancy is submodular and normalized, but not monotone
non-decreasing and (like above) is monotone non-increasing.

2.4 Optimization algorithms

We are interested in choosing a subset of sequences A that maximizes a given measure of quality
of the subset. Because all of the set functions defined above are either monotone increasing or
monotone decreasing in the size of the set, optimizing the function over all subsets would result
in either the empty set or the full set, depending on the function. Therefore, we additionally
control the size of the returned set using one of two strategies. In the first setting, we constrain
the size of the returned set to a specific size k and solve the optimization problem

maximize f(A) (6)

subject to |A| = k.

In the second setting, we add a term to the objective that is proportional to the size of the
subset, scaled by a hyperparameter λ, and we optimize the unconstrained function

maximize f(A) + λ|A|. (7)

We use the constrained strategy when using the monotone greedy algorithm (defined below)
because that algorithm supports such constraints. The bidirectional greedy algorithm (defined
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below) works only for unconstrained problems, so we use the second strategy for that algorithm,
varying λ to indirectly control the resultant size. In practice, if a particular subset size (or some
other feature of the set such as minimum objective value) is desired, this can be achieved using
binary search.

Maximizing an arbitrary set function in general requires considering all 2|V | possible subsets
and is therefore impractical for large sets of sequences. In fact, even when this set function is
submodular, maximizing it exactly is NP-hard. However, submodular functions can be efficiently
approximated within a constant factor of optimal. In this work we apply the following two
optimization algorithms.

The first algorithm is the monotone greedy algorithm (Supplementary Algorithm 2). At
each iteration, the monotone greedy algorithm computes the difference in the objective function
obtained by adding each sequence and adds the sequence with the largest difference. It turns
out that when the objective function is submodular, monotone nondecreasing and normalized,
this simple algorithm is guaranteed to produce a solution within a factor of 1 − 1/e ≈ 0.63 of
optimal [Nemhauser et al., 1978]. This is the best approximation ratio achievable in polynomial
time unless P=NP [Feige, 1998]. Furthermore, this algorithm can be sped up using the fact
that the submodular property guarantees that, if adding a sequence v to A would result in a
difference of d in the objective, then adding v to a larger set A ∪ B will result in an objective
difference d′ ≤ d. This property allows the algorithm to skip considering many sequences, and
in practice often results in near-linear running time [Minoux, 1978].

The second algorithm is the bidirectional greedy algorithm (Supplementary Algorithm 3).
This algorithm, which is randomized, maintains a growing set, which is initialized to the empty
set, and a shrinking set, which is initialized to the full set. It considers each sequence v in
turn, and either adds v to the growing set or removes it from the shrinking set randomly with
probability proportional to the gain in the objective resulting from either change, respectively.
At the end of the algorithm, the growing set and shrinking set are identical, and this set is
returned. When the objective function is submodular and normalized (but not necessarily
monotone nondecreasing), the mean of the objective values found over many randomized runs
of this algorithm is guaranteed to be at least 1

2 of optimal [Buchbinder et al., 2012]. This is the
best approximation ratio achievable in polynomial time (independent of whether P=NP) [Feige
et al., 2011].

In the experiments below, we applied the monotone greedy algorithm to optimize the (mono-
tone) facility-location function (1−1/e approximation guarantee). We applied the bidirectional
greedy algorithm optimize the (nonmonotone) sum-redundancy and max-redundancy functions
(1/2 approximation guarantee). The bidirectional greedy algorithm can be used on mixtures
of these functions to maintain a 1/2 approximation guarantee. However, we achieved better
results on the development data set using the greedy algorithm to optimize these mixtures (no
theoretical guarantee; Supplementary Figure 8), so we used this strategy in our subsequent
experiments.

Note that the 1/2 approximation guarantee can be maintained by running both algorithms
and choosing the result with the better objective value. Moreover, although the greedy algorithm
does not have a mathematical guarantee for non-monotone problems, we have found that for
many problems it nonetheless performs better than the mathematically-guaranteed bidirectional
greedy algorithm (results not shown). As future work, we are interested in investigating math-
ematical properties of these functions that may explain why the greedy algorithm is performing
better than the current theory predicts.

2.5 Comparison to threshold algorithm (CD-HIT)

We call the algorithm used by most previous sequence subset selection methods, including CD-
HIT and PISCES, the threshold algorithm (Supplementary Algorithm 1). This algorithm starts
with an empty return set. It considers each sequence in decreasing order of sequence length,
adding a given sequence to the return set if there is no sequence currently in the return set with
similarity greater than some threshold τ . The value of τ controls the size of subset returned: a
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small τ results in a small set, while a large τ results in a large set.
In order to facilitate comparison, we implemented our own version of CD-HIT. The primary

difference between our implementation and the CD-HIT source is that our implementation uses
pre-computed BLAST alignments, while the CD-HIT source uses an on-the-fly index-based align-
ment method similar to BLAST. The main advantage of this on-the-fly method is that it does
not require an expensive database construction preprocessing step. However, when comparing
multiple methods on a single data set, it is much more efficient to perform a single alignment
step. Using a single set of alignments also removes the possibility for performance differences
due to slightly different alignment results. Note that the on-the-fly method could in principle
be used in the context of either the CD-HIT or submodular optimization. Our implementation
of CD-HIT and the CD-HIT source result in nearly-identical subsets (Supplementary Note 1).

2.6 Protein sequence data

To test these methods, we downloaded the full Structural Classification Of Proteins–extended
(SCOPe) database version 15 from http://scop.berkeley.edu [Murzin et al., 1995]. SCOPe
is a hierarchical structural classification database, consisting of four levels with increasing gran-
ularity: class, fold, superfamily, and family. In this work, we focus primarily on the family and
superfamily levels because these represent a reasonable level of granularity for subset selection.

We also downloaded the ASTRAL database from http://scop.berkeley.edu [Brenner
et al., 2000]. ASTRAL is a database of protein domain sequences, some of which are asso-
ciated with SCOPe categories. We used only ATOM-derived sequence records, and we chose
the subset of ASTRAL sequences that are associated with a SCOPe family, removing eight
sequences that were labeled with multiple SCOPe families. This resulted in a set of 78,048
sequences.

We also downloaded the results from all-by-all BLAST on the ASTRAL sequences from http:

//scop.berkeley.edu. BLAST was run using the command line blastpgp -d DBNAME -i

SEQ.fa -j 1 -h 1e-2 -v 5000 -b 5000 -a2 -z 100000000 -J T -O OUTPUT. This results in
all pairwise relationships with an E-value less than 0.01, where the similarity of each pair is mea-
sured by an E-value and a fraction sequence identity.

In order to overfitting to SCOPe, we performed all development on just the 16,880 AS-
TRAL sequences with the SCOPe Class “All beta proteins.” Unless otherwise noted, the figures
show performance on all of ASTRAL; we computed this performance only when preparing this
manuscript.

3 Results

3.1 Submodular optimization effectively eliminates redundancy in se-
quence data sets

To evaluate how well submodular optimization can remove redundancy in protein sequence data
sets, we applied it to ASTRAL sequences. We focus on the sum-redundancy function with per-
cent identity objective function because this function is most comparable to CD-HIT and it
performed best in our later evaluation (see below). As expected, submodular optimization pro-
duced representative subsets with less total redundancy (Figure 2A). This because submodular
optimization is a theoretically-based algorithm that explicitly aims to minimize redundancy,
while the threshold algorithm is a heuristic that lacks any guarantee. The improvement pri-
marily comes from the fact that the threshold method chooses many pairs of sequences with
identity just under the threshold, whereas optimizing sum-redundancy chooses very few se-
quences with any detectable identity at the cost of choosing a small number of closely-related
pairs (Figure 2B). The small number of closely-related pairs that are accepted is likely due to
the randomized nature of the algorithm.
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Figure 2: (A) Average redundancy in representative sets. The vertical axis is calculated for a
representative set A as (1/|A|)

∑
a1,a2∈A s(a1, a2), where s(a1, a2) is percent identity. Vertical lines

correspond to the sizes of subsets selected by CD-HIT using 40% and 90% sequence identity thresh-
olds. (B) Histogram of pairwise similarities within representative sets. We produced subsets of size
12,614 sequences (the size reported by CD-HIT with a 40% identity threshold) for all methods
by finding the smallest subset larger than the target size and randomly removing sequences to
reach this size. Vertical axis indicates the number of pairs of sequences with a given percent iden-
tity within each size-12,614 representative set, in 5% bins. Vertical line indicates 40% identity
threshold used by CD-HIT.

3.2 Representative subsets chosen by submodular optimization ex-
hibit high structural diversity

In order to evaluate the quality of a subset of sequences independently of a specific objec-
tive function, we compared these subsets to the Structural Classification Of Proteins–extended
(SCOPe) database. SCOPe contains 78,048 protein domain sequences, each assigned to one
of 4,994 protein families. These assignments are based on experimentally determined protein
structures, so they are independent from the sequence-based information used by the optimiza-
tion methods. Intuitively, a good representative subset should include one sequence from each
family, whereas a poor subset may include many sequences from the same family while leaving
other families with no representatives. Therefore, we defined the quality of a subset as the
number of SCOPe protein families with at least one sequence from that family in the subset.

Among the three submodular objective functions that we considered, we found that opti-
mizing the sum-redundancy function produced the best results on this evaluation metric. Our
evaluation considered 12 possible approaches: two submodular optimization algorithms on three
different objective functions, each computed using two different measures of sequence similarity.
To avoid overfitting to SCOPe, we performed all development and comparison of objective func-
tions on a subset of the data (∼21%) and applied only the three best methods to the full data
set. Optimizing sum-redundancy with the bidirectional greedy algorithm results in much better
coverage of SCOPe families than the threshold heuristic method that is employed by methods
such CD-HIT (Figure 3). For representative sets of size 12,614 (the size chosen by CD-HIT with
threshold 40%), the set chosen by submodular optimization leaves 27% fewer SCOPe families
uncovered (276 compared with 379) than the threshold method does. We reached a similar con-
clusion when performing the evaluation on SCOPe superfamilies and folds rather than families
(Supplementary Figures 3-8).
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Figure 3: Coverage of SCOPe families. (A) The vertical axis indicates is the number of families

with at least one representative, normalized to the range [0, 1] using the formula f ′(x) = f(x)−E(x)
M(x)−E(x) ,

where x is a subset size, f(x) is the value for the method in question on that subset size, E(x)
is expected (random mean) and M(x) is maximum possible (defined as M(x) = x if x < F ,
and M(x) = F otherwise, where F = 4,994 is the total number of SCOPe families). Vertical
lines correspond to the sizes of subsets selected by CD-HIT using 40% and 90% sequence identity
thresholds. (B) Area under the curve comparison. Bars indicate selection algorithms, ordered
by their area under the curve. Horizontal axis indicates area under the “family” coverage curve,
calculated as follows. Let V be the full set of sequences, i ∈ 1 . . . |V | be a subset size, m be a

particular method, A
(m)
i be the subset of size i chosen by m, and f(A) be the number of SCOPe

Families covered by A. Area under the curve = 1
|V |

∑|V |
i=1 f(A

(m)
i ). For subset sizes for which we

did not compute a subset, f() is imputed with linear interpolation.

3.3 A mixture of submodular objective functions outperforms any sin-
gle component objective

Although optimizing sum-redundancy performs best on the SCOPe-based evaluation metric for
large subsets, we found that optimizing a different function resulted in better performance for
very small subsets (<5,000 sequences; Figure 4A). Specifically, this good performance resulted
from (1) optimizing a function called facility-location instead of sum-redundancy, and (2) using
the similarity function used by the Rankprop method [Weston et al., 2004] that takes into ac-
count the statistical confidence of an alignment, instead of percent identity. The facility-location
function is defined as ffacility-location(A) , 1

|V |
∑

v∈V maxa∈A s(a, v) where V is the set of all se-

quences. Intuitively, this function takes a high value when every sequence in V has at least one
similar representative in A. This function makes up for a weakness of redundancy-minimizing
objectives such as sum-redundancy: such functions cannot differentiate representative sets with
no detectable similarity between any representatives. In contrast, facility-location can differen-
tiate sets of unrelated representatives by how well they cover unpicked sequences.

These observations suggest that sum-redundancy with the percent identical similarity met-
ric and facility-location with the Rankprop similarity metric may provide different types of
information. To test this hypothesis, we optimized a mixed objective function using the greedy
algorithm and evaluated the resulting representative subsets against the SCOPe evaluation met-
ric. We found that this mixture performed much better on SCOPe coverage than either function
individually, both for small and large subsets (Figures 3B and 4A). Moreover, this performance
is quite insensitive to mixture weight (Figure 4B). These results show that a mixture of objec-
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Figure 4: (A) Same as 3A, but including mixture objectives. (B) Comparison of mixture weights.
Each mixture objective is a combination of facility-location and sum-redundancy objectives, each
with either a percent ID or Rankprop similarity function. Horizontal axis indicates weight on
facility-location (weight on sum-redundancy equals one minus the weight on facility-location). Line
color indicates mixture objective. Vertical axis indicates area under the curve for SCOPe family
coverage (see Supplementary Figure 5). To avoid overfitting, the statistics in (A) were computed
on the subset of sequences with the SCOPe Class “All beta proteins”.

tive functions can better represent the quantity of interest than a single function. Optimizing
mixtures of objective functions this way is very natural using the submodular optimization
framework, but would be very difficult in a non-optimization-based framework.

3.4 Representative subset selection methods perform better than re-
purposed clustering methods

An alternative to applying a representative subset selection method is to apply a clustering
method and then choose a representative from each identified cluster. Using the SCOPe eval-
uation metric, we compared representative subset selection using submodular optimization to
eight variants of this clustering-based approach. We compared two similarity functions: per-
cent identity and Rankprop; three clustering methods: k-medoids++, affinity propagation and
agglomerative hierarchical clustering; and two methods for choosing a representative from each
cluster: “random” and “central”. Central representative selection chooses the cluster member
with the highest total similarity to the other cluster members (i.e. it optimizes a facility-location
objective for a single item). Random representative selection chooses a random member. Note
that k-medoids++ is identical to optimizing facility-location with the submodular greedy algo-
rithm.

We found that none of these clustering methods performed as well as either the submodular
optimization-based methods or the threshold heuristic (Figure 5 and Supplementary Figure 8).
The exception, as noted above, is that optimizing facility-location with the Rankprop similarity
metric performs well for small representative sets. This is likely because clustering methods aim
to optimize the quality of the entire cluster, whereas representative set selection methods focus
solely on identifying good representatives.

4 Discussion

The submodular optimization framework we present here results in theoretically guaranteed
performance in some circumstances, performs well in practice, and has the flexibility to express
a wide variety of desired properties of subsets of sequences. This approach is therefore preferable
to existing, widely used, heuristic methods for selecting representative subsets of biological
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Figure 5: Performance of clustering methods repurposed for representative set selection. Plot is
same as Figure 3, but includes clustering-based methods instead of submodular optimization-based.
Results are computed on our development set, composed of the subset of the data (∼21%) with
the SCOPe Class “All beta proteins”.

sequences. In this work we have explored only a small number of submodular functions; the
submodular optimization framework supports many other objective functions that may provide
even better results, including those based on cluster coverage, those based on the sequences
directly rather than alignments, and others. Because the SCOPe evaluation function is itself
submodular, a submodular objective function could also be efficiently learned from training data
to correlate well with it. Moreover, this application may serve as a model for how submodular
optimization can be applied to other discrete problems in biology, such as selecting representative
sets of protein structures, genomic loci, or mass spectra.
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