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Abstract

The simple bimolecular ligand–receptor binding interaction is often linearized
by assuming pseudo-first-order kinetics when one species is present in excess.
Here, a phase-plane analysis allows the derivation of a new condition for
the validity of pseudo-first-order kinetics that is independent of the initial
receptor concentration. The validity of the derived condition is analyzed
from two viewpoints. In the first, time courses of the exact and approximate
solutions to the ligand–receptor rate equations are compared when all rate
constants are known. The second viewpoint assess the validity through the
error induced when the approximate equation is used to estimate kinetic
constants from data. Although these two interpretations of validity are often
assumed to coincide, we show that they are distinct, and that large errors are
possible in estimated kinetic constants, even when the linearized and exact
rate equations provide nearly identical solutions.
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1. Introduction1

In biochemical kinetics, simplifying assumptions that decouple or reduce2

the order of rate equations for complex reaction mechanisms are ubiquitous.3

Aside from making theoretical analysis of complex reactions more tractable,4

order-reducing approximations can greatly simplify the interpretation of ex-5

perimental data [1, 2]. Experiments performed under conditions that allow6

for linearization have historically been the preferred method for estimating7

equilibrium and rate constants because they allow for the isolation of a subset8

of the interactions [3, 4, 5]. For this reason, when designing an experiment,9

it is essential to know the necessary conditions for the simplifying assump-10

tions to be valid. Significant theoretical work has been directed at deriving11

rigorous bounds for the validity of simplifying assumptions [6, 7, 8, 9, 10, 11],12

but this work often overlooks the manner in which the reduced models are13

used to interpret experimental results. In many cases, the simplified models14

are used to estimate equilibrium and rate constants from experimental data15

[12, 13, 14, for example]. Rarely is the validity of a simplifying assumption16

analyzed with this utility in mind. To examine how this viewpoint can affect17

the conditions for validity, we consider the simplest model for ligand–receptor18

binding with 1:1 stoichiometry [15].19

In the simplest case, the binding of a ligand L to a receptor R is a bi-20

molecular reversible association reaction with 1:1 stroichiometry yielding a21

ligand–receptor intermediate complex C:22

L+R
k1



k−1

C , (1)

where k1 and k−1 are, respectively, the association and dissociation rate con-23

stants of the ligand–receptor complex. This reaction scheme is mathemat-24

ically described by a system of coupled nonlinear second-order differential25

equations. By applying the law of mass action to reaction (1), we obtain26

d[C]

dt
= −d[R]

dt
= −d[L]

dt
= k1

(
[R][L]−KS[C]

)
. (2)

In this system the parameter KS = k−1/k1 is the equilibrium constant [15, 4]27

and the square brackets denote concentration. Since no catalytic processes28

are involved, the reaction is subject to the following conservation laws:29

[R0] = [R](t) + [C](t) (3)

[L0] = [L](t) + [C](t) , (4)
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where [R0] and [L0] are the initial receptor and initial ligand concentrations.30

If the bimolecular reaction (1) is initiated far from the equilibrium and in the31

absence of ligand–receptor complex, the system (2) has the initial conditions32

at t = 0:33

([L], [R], [C]) = ([L0], [R0], 0) . (5)

We have expressed quantities in terms of concentration of species. These34

equations are frequently given in terms of binding site number, using the35

identity [15]36

[C] =
( n

NAV

)
C , (6)

where n is the cell density, NAV is Avogadro’s number, and C denotes the37

number of ligand-bound receptors per cell. We use the concentration formu-38

lation here for clarity and without loss of generality.39

The system (2) can be solved, subject to the conservation laws [16]. Sub-40

stituting (3) and (4) into (2) we obtain:41

d[C]

dt
= k1

(
([R0]− [C])([L0]− [C])−KS[C]

)
. (7)

We can rewrite this expression by factoring as follows:42

d[C]

dt
= k1

(
(λ+ − [C])(λ− − [C])

)
, (8)

where43

λ± =
(KS + [R0] + [L0])±

√
(KS + [R0] + [L0])2 − 4[R0][L0]

2
. (9)

This ordinary differential equation is readily solved subject to the initial44

conditions (5) as45

[C](t) = λ−

(
1− exp(− t

tC
)

1− λ−
λ+

exp(− t
tC

)

)
, (10)

with46

tC =

[
k1
√

(KS + [R0] + [L0])2 − 4[R0][L0]

]−1
. (11)

The quantity tC is the timescale for significant change in [C]. In this par-47

ticular case, tC can be considered as the time required for the reaction to48
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reach steady-state. Solutions for [R](t) and [L](t) can now be constructed by49

substituting (10) into conservation laws (3) and (4).50

Although there is a closed form solution for the reacting species of the sim-51

ple bimolecular ligand–receptor interaction, experimental biochemists prefer52

to determine the kinetic parameters of the ligand–receptor binding using53

graphical methods [15]. One of the graphical methods commonly used con-54

sists of plotting the solution of the ligand association assuming no ligand55

depletion on a logarithmic scale with respect to time. Both the association56

and dissociation rate constants can be determined using this linear graphical57

method [17]. Similarly, if one seeks to avoid inaccuracies due to logarithmic58

fitting, nonlinear regression can be used to fit the kinetic data to a single59

exponential. However, the use of both of these methods has the disadvan-60

tage of making an assumption with respect to the relative concentrations of61

ligand and binding sites [16].62

In the ligand–receptor interaction with 1:1 stochiometry and no ligand63

depletion it is generally thought that, if the initial ligand concentration is64

much higher than the initial receptor concentration, i.e.65

[L0]� [R0] , (12)

the ligand concentration [L] remains effectively constant during the course66

of the reaction, and only the receptor concentration [R] changes appreciably67

with time [18, 19, 3, 4]. Since kinetic order with respect to time is the same68

as with respect to [R], reaction (1) is said to follow pseudo-first-order (PFO)69

kinetics if the [R] dependence is of first order. The rates of second-order70

reactions in chemistry are frequently studied within PFO kinetics [20, 21].71

In the present case, the second-order reaction (1) becomes mathematically72

equivalent to a first-order reaction, reducing to73

R
kϕ



k−1

C , (13)

where kϕ ≡ k1[L0] is the pseudo rate constant. This procedure is also known74

as the method of flooding [5]. The solution of the governing equations for a75

reaction linearized by PFO kinetics (or flooding) is straightforward, and is76

widely employed to characterize kinetics and fit parameters with the aid of77

progress curves. An error is however present due to the fact that, in actuality,78

the concentration of the excess reactant does not remain constant [20].79
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In 1961, Silicio and Peterson [20] made numerical estimates for the frac-80

tional error in the observed PFO constant for second-order reactions. They81

found that the the fractional error is less than 10% if the reactant concentra-82

tion ratio, [R0] : [L0] say, is tenfold. On the other hand, Corbett [22] found83

that simplified expressions with the PFO kinetics can yield more accurate84

data than is generally realized, even if only a twofold excess of one the reac-85

tants is employed. For ligand–receptor dynamics, Weiland and Molinoff [16]86

claim that the PFO simplification is acceptable if experimental conditions are87

such that less than 10% of the ligand is bound. These results indicate that88

the conditions whereby a second-order ligand–receptor reaction is reduced to89

first order remain to be well-established.90

It is widely believed that second-order reactions can be studied by PFO91

kinetics using progress curves only when the excess concentration of one of92

the reactants is large [21, 5, for example]. However, contrary to the widely93

established knowledge, Schnell and Mendoza [10] have found that the con-94

dition for the validity of the PFO in the single substrate, single enzyme95

reaction does not require an excess concentration of one of the reactant with96

respect to the other. In the present work, we derive the conditions for the97

validity of the PFO approximation in the simple ligand–receptor interaction.98

Additionally, we show two fundamentally different methods of assessing the99

validity of the approximation. The first compares the exact and approximate100

solutions to the rate equations under identical conditions. The second mea-101

sures the veracity of parameters estimated by fitting the approximate model102

to data. Although these two measures of validity are generally assumed to103

coincide, we show that they are quantitatively and qualitatively distinct. In104

Section 2 the reduction of the ligand–receptor association by PFO kinetics is105

summarized followed by its dynamical analysis in Section 3. The new valid-106

ity condition is derived in Section 4, and an analysis of the errors observed107

with the PFO kinetics is presented in Section 5. This is followed by a brief108

discussion (Section 6).109

2. The governing equations of the ligand–receptor dynamics with110

no ligand depletion111

In ligand–receptor dynamics with 1:1 stochiometry and no ligand deple-112

tion, the second-order ligand–receptor interaction in reaction (1) is neglected113

when condition (12) holds; the reaction effectively becomes first order since114

the concentration of the reactant in excess is negligibly affected. This is115
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equivalent to assuming that116

[L0]− [C] ≈ [L0] . (14)

The alternative case, in which the depletion of the receptor is assumed to be117

negligible, is shown to be symmetric in Appendix A. By substituting (14)118

into (7), the equation can be simplified as follows:119

d[C]

dt
= k1

(
[R0][L0]− (KS + [L0])[C]

)
. (15)

Note that this equation can also be obtained by applying the law of mass120

action to reaction scheme (13). The solution for (15) with the conservation121

laws (4) and (5) can be obtained by direct integration [23]:122

[C](t) =
[R0][L0]

KS + [L0]

(
1− exp (−(kϕ + k−1)t)

)
. (16)

Note that expressions for [R](t) and [L](t) can again be obtained by substi-123

tuting (16) into (3) and (4), respectively.124

Experimentally, the clear advantage of applying the pseudo-first-order125

kinetics to the ligand–receptor reaction is that, as shown by equation (16),126

it provides solutions that can be linearized by using a logarithmic scale to fit127

progress curves of the interacting species and thus it could lead to complete128

reaction characterization, namely the rate constants k1 and k−1.129

As we have previously pointed out, it has been assumed that the condition130

[L0]� [R0] implies131

[L](t) = [L0]− [C](t) ≈ [L0] ⇒
∣∣∣∣ [C]

[L0]

∣∣∣∣
max

� 1 . (17)

Up to this point, most of the scientists using the PFO kinetics assume that132

it is reasonable to overestimate the maximum complex concentration when133

there is a ligand excess, because all receptor molecules could instantaneously134

combine with ligand molecules, i.e. [C]max = [R0]. However, this simplifi-135

cation is unrealistic from the biophysical chemistry point of view as it will136

assume that in the conservation law (4) all ligand molecules are only in one137

form: the free ligand [see, equation (17)]. In the next section, we obtain a138

more a reliable estimate of [C]max by studying the geometry of the phase139

plane of system (2). This will permit us to make a better estimate of the140

conditions for the validity of the PFO ligand–receptor dynamics (1).141
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3. Phase-plane analysis leads to conditions for the validity of the142

pseudo-first-order kinetics143

The phase-plane trajectories of system (2) are determined by the ratio of144

d[C]/dt to d[L]/dt:145

d[C]

d[L]
= −1 . (18)

This expression is integrated to obtain the family of solution curves:146

[C]([L]) = −[L] +m , (19)

where

m =

{
[C0] for ([C], [L]) = (0, [L0]) at t = 0

[L0] for ([C], [L]) = ([C0], 0) at t = 0 .

The use of [L0] as the constant in (19) for initial conditions on the horizontal147

axis follows from the relation d[C]/dt = −d[L]/dt.148

The phase plane is divided into two regions by the nullcline149

[C]([L]) =
[R0][L]

KS + [L]
, (20)

obtained by setting d[C]/dt = 0 or d[L]/dt = 0 in (2). Note that for [L] = KS150

(equilibrium constant), [C] = [R0]/2. The nullcline converges at large ligand151

concentrations because152

lim
[L]→∞

[C]([L]) = [R0] . (21)

The phase plane trajectories (19) and its nullcline (20) are show in Fig. 1.153

The trajectory flow is attracted by a unique curve, which is a stable manifold154

and is equivalent to the nullcline for this case. All trajectories tend to this155

manifold as they approach the steady state as t→∞ [24].156

Binding of ligand to cell surface receptors has been amenable to in vitro157

experimental investigation for the past four decades [25]. In the typical exper-158

imental approach, isolated membranes possessing free receptors are studied159

using ligands as pharmaceutical agents [26]. The reaction mixture is free160

of ligand–receptor complex at the beginning of the experiment, that is the161

initial conditions are like those stated in (5). It is important to note that162

for a ligand-receptor interaction with trajectories departing from the positive163

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2016. ; https://doi.org/10.1101/051136doi: bioRxiv preprint 

https://doi.org/10.1101/051136
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Phase-plane behavior of the ligand–receptor reaction (1). The solid
curves with arrows are the trajectories in the phase planes, which are described by (19).
The trajectories tend to a stable manifold as they approach to the steady-state. In this
case, the manifold is the nullcline (20) of the system, which converges to [R0] for large
ligand concentrations.

horizontal axis, i.e. with initial conditions (5), the trajectories are bounded164

by165

0 ≤ [C](L) ≤ [C]? for ([L], [C])(t = 0) = ([L0], 0) , (22)

where [C]? is the ligand–receptor complex concentration at the steady-state,166

and is equivalent to the maximum ligand–receptor complex concentration167

([C]max) that the trajectories can reach if they depart from the positive hor-168

izontal axis. [C]? can be estimated from the intersection of (19) and (20) or169

by estimating the steady-state value of the ligand–receptor complex concen-170

tration in (10), that is171

[C]? = lim
t→∞

[C](t) = lim
t→∞

[
λ−

(
1− exp(− t

tC
)

1− λ−
λ+

exp(− t
tC

)

)]
= λ− , (23)

where λ− is given by (9).172

It suffices therefore to investigate the behavior of the ratio of the solu-173

tion (10) at steady-state to [L0], which we do in the next section.174
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4. Derivation of a new sufficient condition for the validity of the175

pseudo-first-order kinetics176

To derive a mathematical expression in terms of the kinetic parameters177

for condition (17), we will use the fact that, for initial conditions given by178

(22), [C]max is the concentration given by allowing the reaction described179

by (10) to go to steady-state. We can now formulate (17) as follows:180

(KS + [R0] + [L0])−
√

(KS + [R0] + [L0])2 − 4[R0][L0]

2[L0]
� 1 . (24)

This can be rewritten as181 (
(KS + [R0] + [L0])

2[L0]

)(
1−
√

1− r
)
� 1 , (25)

with

r =
4[R0][L0]

(KS + [R0] + [L0])2
.

At this point it is convenient to nondimensionalize the above expression182

by using reduced concentrations. Scaling with respect to KS, equation (25)183

becomes184 (
(1 + [R′0] + [L′0])

2[L′0]

)(
1−
√

1− r′
)
� 1 , (26)

where185

r′ =
4[R′0][L

′
0]

(1 + [R′0] + [L′0])
2
, with [R′0] =

[R0]

KS

and [L′0] =
[L0]

KS

. (27)

Quadratic expressions similar to (26) are common in chemical kinetics. For186

practical use in the analysis of chemical kinetics experiments, quadratic ex-187

pressions are generally replaced with simpler expressions. Noting that188

r′ =
4[R′0][L

′
0]

(1 + [R′0] + [L′0])
2
� 1 (28)

for any value of [R′0] and [L′0] (for more details, see Appendix B), we can then189

calculate a Taylor series expansion of (26) to obtain right-hand factor of190 (
1−
√

1− r′
)

=
1

2
r′ +

1

8
r′2 +O(r′3) ≈ 1

2
r′ , (29)

9
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which simplifies (26) to191

[R′0]

1 + [R′0] + [L′0]
� 1 . (30)

This is a simple analytical expression for the condition for the validity of192

PFO kinetics. Note that condition (30) is valid for193

(a) [L′0]� [R′0] , or

(b) [L′0] ≤ [R′0] , if [R′0]� 1 .
(31)

Interestingly, we have a new condition for the use of the PFO approx-194

imation in ligand–receptor binding with 1:1 stoichiometry. Equation (31a)195

is the constraint (12) already in widespread use. However, equation (31b)196

extends the range of conditions under which PFO dynamics may be applied.197

The regions of validity of the PFO approximation are illustrated graphically198

in Fig. 2 by plotting conditions (30) and (31) in the space of initial ligand199

concentrations, [L0], and equilibrium constant, KS, normalized by [R0]. Typ-200

ically, PFO kinetics are assumed valid when the ratio of [L0]:[R0] is greater201

than 10:1 [20, 3, 27] Applying this same “rule of thumb”, we set the left-hand202

side of (30) equal to 0.1 to separate valid from non-valid regions in Fig. 2.203

Note that the plane is divided into three regions by lines corresponding to204

condition (30) and the generally used condition (12). Region B comprises205

a portion of the space where PFO kinetics were previously assumed to be206

invalid, but in fact the errors introduced by the approximation in this region207

are expected to be small, even for initial conditions such that [L0] ≈ [R0].208

5. There are two types of errors observed with the application of209

approximations in reaction kinetics210

In reaction kinetics, there are two type of errors that can be committed211

when applying an approximation to the governing equations of a complex212

reaction. Research in mathematical chemistry and biology primarily focuses213

on estimates of errors in the concentrations of reacting and product species.214

This error – which we name concentration error – is commonly evaluated215

by calculating the difference between the solution of the approximate equa-216

tion (16) with that of the exact equation (10) (see, for example, [28]). The217

concentration error provides a measure of how closely the approximate solu-218

tion matches the exact solution. However, experimentally, PFO approxima-219

tions are often used to derive expressions that facilitate estimating kinetic220
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]
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C

Figure 2: Validity regions in the [L0]/[R0]–KS/[R0] log-log plane for the use of
pseudo-first-order kinetics to model ligand–receptor reaction (1). The dashed
line indicates 10[R0] = [L0], the lower line is 9[R0] = [L0] +KS . In region A, [R0]� [L0],
where PFO kinetics has here been shown to be valid, as previously thought. In region B,
[R0] does not greatly exceed [L0], but KS � [R0]. Here we have shown that PFO kinetics
holds, even for [L0] ≈ [R0]. In region C, where [R0] does not greatly exceed [L0] and
KS/[R0] is not much greater than 1, PFO kinetics is not valid.

constants using nonlinear regression methods. Therefore, of particular utility221

are error estimates from fitting kinetic parameters using the mathematical222

expression derived with the PFO approximation. We called these estimation223

errors.224

Naively, it would seem that if the difference between the complex concen-225

tration, C (t), is small between the PFO approximation and exact solution,226

then the PFO equation should provide accurate estimates of the rate con-227
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stants when used to model experimental data. This, however, is not neces-228

sarily true in general. To better understand why the concentration and esti-229

mation errors are not the same, and to show where they diverge, we compare230

errors based on the numerical difference between the exact and PFO models231

with those based on estimating rates constants using the PFO model.232
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Figure 3: Time course of species concentrations and concentration errors of
pseudo-first-order approximation for the ligand–receptor reaction (1). Panels
(a)-(c) show the concentration of the complex as a function of time for the cases: (a)
[L0] = 10[R0] and KS = [R0], (b) [L0] = [R0] and KS = 30[R0], (c) [L0] = [R0] and KS =
[R0]. The dashed lines correspond to calculations assuming pseudo-first-order kinetics,
while solid lines are exact solutions. (d)-(f) show the errors induced by assuming pseudo-
first-order kinetics for case (a)-(c), respectively.

5.1. Analysis of the concentration error233

Theoretically we define a concentration error measure as234

CE(t) =

∣∣∣∣ [C]exact(t)− [C]PFO(t)

Cexact(t)

∣∣∣∣ . (32)

For the bimolecular ligand–receptor binding (1), we can calculate analytically235

the above expression by replacing [C]exact(t) with (10), and [C]PFO(t) with236

(16). However, this expression is too cumbersome, and hence we present a237
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numerical analysis of the concentration error. Fig. 3 presents the time course238

of the exact and approximate complex concentration [Fig. 3(a)–(c)], and a239

calculation of the percentage concentration error (100 × CE) [Fig. 3(d)–(f)]240

introduced by the PFO approximation for initial conditions lying in region241

A, B and C of Fig. 2, respectively. The error remains less than 3% over the242

course of the reaction for the cases satisfying condition (30), and approaches243

30% for the point in region C.244
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Figure 4: Maximum and steady-state concentration errors for the ligand–
receptor reaction (1). Panel (a) shows a heat map of the maximum concentration
error incurred by assuming pseudo-first-order approximation for different initial condi-
tions. Coloring corresponds to the error as defined in (32). Similarly, Panel (b) shows the
steady-state concentration error between the exact and pseudo-first-order solutions. The
black lines correspond to condition (30) when the left-hand side is equal to 10.

It is useful to define a scalar measure based on (32). For this there245

are many options, yet in order to remain as conservative as possible, we246

choose the maximum value of concentration error over the time course of247

the reaction, which we call the maximum concentration error. Additionally,248

we calculate the steady-state concentration error, defined as limt→∞CE (t).249

Fig. 4 shows the maximum and steady-state concentration error contours250

for initial conditions in the [L0]–KS plane. In general, the maximum con-251

centration error is well-described by the newly-derived condition. The error252

contours allow for a quantification of what is meant by “much less than”.253

The commonly used requirement that [L0] ≥ 10[R0] produces errors always254
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less than 5%. In fact, when KS is less than [R0], a ratio of ligand to receptor255

of approximately 4:1 is enough to constrain the error to below 5%. Although256

the condition for the validity is symmetric in [L0] and [KS], the errors are257

not. The ratio of KS:[R0] must be approximately 20:1 for the error to remain258

below 5%. This is not surprising since the exact solution is not symmetric in259

[L0] and KS, so we should expect that the two quantities would have different260

effects. Nevertheless, the notion that PFO kinetics can rightly be assumed261

even when the ligand is not present in excess holds true.262

5.2. Analysis of the estimation error263

Next, we calculate the error in estimated rate constants by generating264

sample data using the exact solution. The frequency of the sampling, ωobs,265

and the time span of the sampling window, tobs, are varied. Values of ωobs266

range from t−1c to 4t−1c . Higher sampling frequencies were also tested, but267

results are not presented as they did not show appreciable difference from268

the case of ωobs = 4t−1c . The sampling windows tested begin at t = 0 and269

continue for tobs = 3tc, 10tc, 100tc. An “experimental protocol” for a nu-270

merical experiment then consists of choosing specific ωobs and tobs, and using271

(10) to calculate [C]
(
nω−1obs

)
for integers n ∈ [0, tobsωobs]. For each simu-272

lated data set (for which there is no experimental error), the rate constants273

k1 and k−1 are estimated by fitting the data with equation (16) using the274

Levenberg–Marquardt algorithm as implemented in SciPy (version 0.17.0,275

http://www.scipy.org) with initial estimates for k1 and k−1 equal to the val-276

ues used to generate the data. We then define the estimation error of a277

parameter ki as278

EE (ki) =

∣∣∣∣ki − k?iki

∣∣∣∣ , (33)

where k?i is the estimate of ki calculated from fitting the PFO solution to279

the generated data. Additionally, for the ligand–receptor interaction, we280

calculate the mean estimation error as an aggregate measure of the parameter281

estimation282

MEE = mean {EE (k1) ,EE (k−1)} . (34)

Concentration error measures, such as the maximum or steady-state con-283

centration errors, that compare exact and approximate solutions to the ligand–284

receptor complex concentration, are fundamentally different from those in-285

curred by using an approximate model to fit experimental data. To illustrate286

this point, Fig. 5 shows contours for the mean estimation error when different287
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Figure 5: Mean estimation error in the rate constants when applying the
pseudo-first-order approximation to the ligand–receptor reaction (1). Heat
maps of the mean estimation error of the rate constants are shown for different experimen-
tal protocols. Columns, from left to right, correspond to increasing length of observation
time. Rows, from top to bottom, correspond to increasing frequency of sampling. For short
observation windows, large errors occur even when [L0]� [R0]. Also, counter-intuitively,
the error at some initial conditions increases as the sampling frequency increases (e.g.
down column 1). The black lines correspond to condition (30) when the left-hand side is
equal to 10.

“experimental protocols” are used to generate data. For a given sampling fre-288

quency, the mean estimation error contours increasing conform to the contour289

derived from condition (30) as tobs increases. However, for initial conditions290
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with [L0] ≥ 10[R0] and KS ≤ [R0], significant estimation errors can occur if291

the observation time is not sufficiently long. Even after 10tc of observation,292

at which point [C](t) > 0.999[C]∗, the mean error in the estimated param-293

eters can exceed 10% when KS is small. Only after nearly 100tc the mean294

estimation error contours closely mimic the theoretical condition for the va-295

lidity of the PFO kinetics. This highlights the difference between the errors296

calculated by comparing the exact and approximate solutions of the concen-297

tration equations, and those errors due to fitting an approximate model to298

data. Additionally, it should caution experimentalists from applying PFO299

approximations whenever one species is in excess. The values of the rate300

constants must be considered as well.301

Interestingly, increasing the frequency of sampling does not necessarily302

improve the estimation of the rate constants. In fact, the first column in303

Fig. 5 shows, that the mean estimation error actually increases as more sam-304

ple points are used. This effect saturates quickly as the frequency is increased,305

but nevertheless, using fewer exact data points can lead to improved predic-306

tions. One major benefit of numerous data points is that it reduces error307

due to measurement noise, and this likely will outweigh the gains from using308

fewer data points when fitting. Yet, in cases where accurate measurements309

are possible, fitting more data to an approximate model can have deleterious310

effects on the accuracy of parameter estimates made from such a fit. It may311

be possible to take advantage of both of these effects by recording data at312

a high frequency, say using an optical assay [29], then performing a number313

of fits on subsets of the data sampled at lower frequency, thereby reducing314

both the experimental noise and the estimation error incurred by fitting to315

an approximate model.316

5.3. The error in the estimated parameters for high ligand concentration is317

due to inaccuracies in k−1318

Greater understanding of the estimation errors found at high ligand con-
centrations and low KS can be gained by comparing the estimation errors
of k1 and k−1 individually. Fig. 6 shows contours of EE (k1) [panel (a)]
and EE (k−1) [panel (b)] for numerical data generated with ωobs = 2t−1c and
tobs = 3tc. From this, it is clear that the inaccuracies lie in predictions of the
dissociation rate constant k−1. The reason k−1 errors are large for cases in
which [L0]� [R0] and KS � [R0] can be understood by examining the PFO
solution (16) in the limit KS/[L0]→ 0. Keeping terms up to linear order in
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Figure 6: Comparison of estimation errors for k1 and k−1. Heat maps of the
EE (k1) and EE (k−1) are presented in (a) and (b), respectively. The sampling frequency
used to generate data was ωobs = 2t−1

c , and the observation window was tobs = 3tc. The
black lines correspond to condition (30) when the left-hand side is equal to 10. The error
contour for k−1 estimation shows clear deviations from the analytical conditions, whereas
k1 estimations are accurate where PFO kinetics is shown to be theoretically valid.

KS/[L0], we obtain

[C] (t) ≈ [R0] (1− exp (−k1[L0]t))

[
1− KS

[L0]

(
1− k1[L0]t

exp (k1[L0]t)− 1

)]
.

(35)

The zeroth-order term has no dependence on k−1. Hence, in this limit there319

is no unique mapping between the parameters ([R0], [L0], k1, k−1) and time320

onto the concentration [C], since [C] is completely described by the parame-321

ters ([R0], [L0], k1) and time. This implies that estimates of k−1 from progress322

curve experiments performed under conditions of high ligand concentration323

and low disassociation constant are unreliable. However, estimates of the324

association rate constant k1 from such experiments should be valid. Unfor-325

tunately, since KS is not generally known a priori, a different measurement,326

such as an equilibrium binding assay, is required to estimate its value. Then,327

with knowledge of KS, k−1 can be calculated.328
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Figure 7: Comparison of approximate model with exact and fitted parameters
for the ligand–receptor reaction (1). The blue line represents the exact solution and
blue squares are simulated data points. The green dashed line is the pseudo-first-order
approximation using the same rate constants used to in the exact solution. The red dot-
dashed line is the pseudo-first-order approximation using rate constants found by fitting
the pseudo-first-order model to the data generated using the exact solution.

5.4. The pseudo-first-order kinetics can lead to significant estimation errors329

when the conditions of the pseudo-first-order approximation are valid330

Taken together, Fig. 4 and Fig. 5 illustrate an important, yet often over-331

looked, distinction between methods by which to assess the validity of an ap-332

proximation in chemical kinetics. The first method, popular among theorist,333

attempts to answer the following question: Given a set of known parameters,334

how well does the approximate model represent the exact model? This com-335

parison can be made by calculating a maximum or steady-state concentration336

error, as we do here, or through other measures such as a mean-squared dif-337

ference over the time course. The second method, which is of greatest impor-338

tance to experimentalists, answers a subtly different question: Given data,339

how well do parameters estimated by fitting the data with an approximate340

model represent the actual parameters? This distinction, between a forward341

and an inverse problem, is not generally considered when deriving conditions342

for the validity of reduced kinetic models [30]. To illustrate this, Fig. 7 shows343
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data points generated with exact solution to the governing equations of the344

ligand–receptor reaction (1), the PFO solution using the same rate constants345

as those used to generate the exact data points, and the PFO solution us-346

ing rate constants calculated through nonlinear regression of the simulated347

data. The PFO solution using the exact rate constants captures the kinetics348

much more closely than the PFO solution using estimated rate constants,349

especially as steady-state is approached. Often, it is the former case that is350

used by theorists to determine valid ranges for an approximation, while the351

latter case is where the approximation is actually used to interpret data. As352

we have shown, these two cases are distinct. Hence, when providing ranges353

for the validity of a simplifying approximations to theory, it is crucial that354

the application of that theory be kept in mind.355

6. Discussion356

We have investigated the application of the PFO approximation to ligand–357

receptor binding dynamics. PFO kinetics are used to linearize the solutions to358

the differential equations that describe the concentration of ligand, receptor359

and ligand–receptor complex over time, allowing them to be fit by a single360

exponential [16, 15]. This approximation is known to introduce errors that361

are acceptably small under certain conditions, which have generally been362

described by [L0] � [R0]. In this paper, we show that this condition is363

somewhat more stringent than necessary, specifically when [R0] � Ks. In364

fact the condition [R0] � Ks provides another sufficient condition under365

which one may safely use the PFO approximation, with little regard to the366

concentration [L0].367

Although it is possible to derive closed-form solutions that describe the368

kinetics of simple ligand–receptor binding [see, equation (10)], this equation369

is cumbersome. The PFO approximation gives a much simpler solution [see,370

equation (16)], which can be linearized by use of logarithmic plots to facilitate371

data fitting [17]. With this simpler form a linear fit suffices to determine372

all of the relevant rate constants leading to a complete description of the373

reaction kinetics. The new condition developed here extends the validity374

of this method into new territory, increasing its usefulness. Specifically, in375

cases where reagents are either expensive or difficult to isolate in significant376

quantities, the new condition suggests far more economical usage (in some377

cases, orders of magnitude lower concentration) of reagents is possible.378
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Additionally, we have shown that there is often an inconsistency between379

the derivation of conditions for validity of an approximation, and the relevant380

measure of error for applications of that approximation. Approximations to a381

theory are generally taken as valid if, using identical input parameters, exact382

and approximate solutions for species concentration are sufficiently similar.383

This requires minimizing the concentration error introduced in equation (32).384

However, approximate models are often used to estimate kinetic parameters385

through fitting to experimental data. We have demonstrated that estimation386

errors may be significant, even for conditions in which the approximate and387

exact models are nearly identical. This effect is particularly apparent when388

one reactant is in excess, the disassociation constant is small, and the length389

of the observation is not sufficiently long.390

Commonly, experimental protocols for kinetic binding assays call for mea-391

surements to be made until concentrations “plateau” [27]. However, the def-392

inition of “plateau” is often left to the judgment of the investigator. Our393

analysis shows that stopping measurement prematurely can lead to signif-394

icant errors in the rate constants estimated by such experiments. A more395

rigorous definition of the necessary experimental time to reach plateau should396

involve the inherent timescale, tc. The error contours in Fig. 5 show that for397

many initial conditions, specifically for those with large enough KS, mea-398

surements over 3tc are sufficient. It should be possible, however, to test if399

the experimental conditions are problematic without prior knowledge of KS,400

so long as the initial concentrations of receptor is known. If, at steady-state,401

[C] is very near [R0], then the affinity of the ligand for the receptor is high402

enough (and KS will be small enough) to make the value of k−1 from regres-403

sion analysis unreliable. Since affinities between ligands and receptors are404

typically quite high, this will often be the case. Hence this suggest that it is405

necessary to estimate the equilibrium constant using a separate assay. Then,406

with knowledge of KS, the rate constants can be unambiguously estimated407

from kinetic data.408

Lastly, we emphasize that the difference between the concentration error409

and estimation error are not specific to the case of ligand–receptor binding.410

The problem of estimating parameter values for models is well known in the411

model calibration field [31], and has also received attention from mathemat-412

ical and systems biologists [30, 32]. The essential questions are whether or413

not a parameter in a model actually corresponds to the underlying physical414

property it is meant to represent, and whether the value of the parameter can415

be uniquely determined from data. Frequently, the value of the parameter416
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that provides the best fit to data differs from the most accurate assessment417

of the underlying physical property, estimated through some other means. In418

the case of ligand–receptor binding, the rate constants estimated using PFO419

kinetics correspond to a best-fit of experimental data to an approximate420

model. In many cases, these estimates will not coincide with the actual rate421

constants for the second-order reaction. In fact, this difference is quite general422

and future studies should investigate how the validity of approximations in,423

for example, Michaelis–Menten kinetics, or inhibited ligand–receptor binding424

might change when their ability to accurately predict parameters from data425

is considered.426
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Appendix A. Symmetry of case with no receptor depletion427

The second case referred to in the text (Section 2) applies when the428

concentration of the receptor [R0] is much greater than that of the ligand429

[L0], which implies that430

[R0]− [C] ≈ [R0] . (A.1)

Substituting (A.1) into equation (7) gives431

d[C]

dt
= k1

(
[R0][L0]− (KS + [R0])[C]

)
. (A.2)

[Compare with (15)]. Solving this equation yields432

[C](t) =
[R0][L0]

KS + [R0]

(
1− exp(−(kϕ + k−1)t)

)
. (A.3)

This solution is symmetrical with (16). Condition (A.1) gives us the following433

implication parallel with (17)434

[R](t) = [R0]− [C](t) ≈ [R0] ⇒
∣∣∣∣ [C]

[R0]

∣∣∣∣
max

� 1 . (A.4)

Similar to the case with no ligand depletion, the maximum concentration435

is equal to λ−. Hence, following the same procedure as in Section 4, a436

condition, symmetric to (30), for the case with negligible receptor depletion437

is found to be438

[L′0]

1 + [L′0] + [R′0]
� 1 . (A.5)

Appendix B. Validity of approximation (28)439

The derivation of the conditions given by (30) requires that equation (28)440

be satisfied, which we reiterate as441

r′ � 1 (B.1)

4[R′0][L
′
0]

(1 + [R′0] + [L′0])
2
� 1 . (B.2)

The above inequality can be written as442

1

1 + [R′0] + [L′0]
� 1

2
√

[R′0][L
′
0]
. (B.3)
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Since the denominators are both positive, we can rearrange this as443

−
(

[R′0]− 2
√

[R′0][L
′
0] + [L′0]

)
� 1 (B.4)

and factoring the left side then gives444

−
(√

[R′0]−
√

[L′0]
)2
� 1. (B.5)

In the above inequalities, the left side is always negative and the right side445

is clearly positive. Therefore, it is appropriate to assume that r′ � 1.446
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