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Abstract

The simple bimolecular ligand-receptor binding interaction is often linearized
by assuming pseudo-first-order kinetics when one species is present in excess.
Here, a phase-plane analysis allows the derivation of a new condition for
the validity of pseudo-first-order kinetics that is independent of the initial
receptor concentration. The validity of the derived condition is analyzed
from two viewpoints. In the first, time courses of the exact and approximate
solutions to the ligand-receptor rate equations are compared when all rate
constants are known. The second viewpoint assess the validity through the
error induced when the approximate equation is used to estimate kinetic
constants from data. Although these two interpretations of validity are often
assumed to coincide, we show that they are distinct, and that large errors are
possible in estimated kinetic constants, even when the linearized and exact
rate equations provide nearly identical solutions.

Keywords: pseudo-first-order kinetics, ligand-receptor binding,
experimental design, approximation validity, rate constant estimation,
fitting procedure.

*Corresponding author.
Email addresses: stroberg@umich.edu (Wylie Stroberg), schnells@umich.edu
(Santiago Schnell)

Preprint submitted to Mathematical Biosciences April 29, 2016


https://doi.org/10.1101/051136
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/051136; this version posted April 30, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

1 1. Introduction

2 In biochemical kinetics, simplifying assumptions that decouple or reduce
s the order of rate equations for complex reaction mechanisms are ubiquitous.
+ Aside from making theoretical analysis of complex reactions more tractable,
s order-reducing approximations can greatly simplify the interpretation of ex-
¢ perimental data [1, 2]. Experiments performed under conditions that allow
7 for linearization have historically been the preferred method for estimating
¢ equilibrium and rate constants because they allow for the isolation of a subset
o of the interactions [3, 4, 5]. For this reason, when designing an experiment,
10 it is essential to know the necessary conditions for the simplifying assump-
u tions to be valid. Significant theoretical work has been directed at deriving
12 rigorous bounds for the validity of simplifying assumptions [6, 7, 8, 9, 10, 11],
13 but this work often overlooks the manner in which the reduced models are
1 used to interpret experimental results. In many cases, the simplified models
15 are used to estimate equilibrium and rate constants from experimental data
16 [12, 13, 14, for example|. Rarely is the validity of a simplifying assumption
17 analyzed with this utility in mind. To examine how this viewpoint can affect
18 the conditions for validity, we consider the simplest model for ligand-receptor
10 binding with 1:1 stoichiometry [15].
20 In the simplest case, the binding of a ligand L to a receptor R is a bi-
a1 molecular reversible association reaction with 1:1 stroichiometry yielding a
» ligand-receptor intermediate complex C"
k1
L+R = C, (1)
k_y
23 where k; and k_; are, respectively, the association and dissociation rate con-
a  stants of the ligand-receptor complex. This reaction scheme is mathemat-

s ically described by a system of coupled nonlinear second-order differential
2 equations. By applying the law of mass action to reaction (1), we obtain

die] _ dr] _ d[L] _ kl([R][L] —KS[OD , (2)

At dt
z In this system the parameter Kg = k_;/k; is the equilibrium constant [15, 4]
s and the square brackets denote concentration. Since no catalytic processes
20 are involved, the reaction is subject to the following conservation laws:

[Ro] = [R](t) +[C](?) (3)
[Lo] = [L](t) +[C](?) (4)
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3 where [Ry] and [Lg| are the initial receptor and initial ligand concentrations.
u If the bimolecular reaction (1) is initiated far from the equilibrium and in the
» absence of ligand-receptor complex, the system (2) has the initial conditions
3 att=0:

([L], [R], [C]) = ([Lo], [Ro], 0) - ()

s We have expressed quantities in terms of concentration of species. These
55 equations are frequently given in terms of binding site number, using the
5 identity [15]

1= (5=)c (6)

Nav
57 where n is the cell density, N4y is Avogadro’s number, and C' denotes the
;s number of ligand-bound receptors per cell. We use the concentration formu-
3 lation here for clarity and without loss of generality.

40 The system (2) can be solved, subject to the conservation laws [16]. Sub-
a stituting (3) and (4) into (2) we obtain:

d[C]
= =k (([Ro) = [CD)([Lo] — [€)) — K[CT) - (7)

22 We can rewrite this expression by factoring as follows:

d[c]

k(O - (DO~ (D) | )
3 Where
Ay — (Ks + [Ro] + [Lo)) & /(K + [Ro] + [Lo])? — 4[Ro][Lo] ()
2

s This ordinary differential equation is readily solved subject to the initial

s conditions (5) as
1— eXp(—ti)
Cl(t) = A £ , 10
€100 (1_%%(_%)) (10

46 With

to = |t/ s+ TR+ (Lol — TRl | ()

« The quantity tc is the timescale for significant change in [C]. In this par-
s ticular case, to can be considered as the time required for the reaction to
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» reach steady-state. Solutions for [R](¢) and [L](¢) can now be constructed by
o substituting (10) into conservation laws (3) and (4).

51 Although there is a closed form solution for the reacting species of the sim-
52 ple bimolecular ligand-receptor interaction, experimental biochemists prefer
53 to determine the kinetic parameters of the ligand—receptor binding using
s« graphical methods [15]. One of the graphical methods commonly used con-
55 sists of plotting the solution of the ligand association assuming no ligand
ss depletion on a logarithmic scale with respect to time. Both the association
s and dissociation rate constants can be determined using this linear graphical
s method [17]. Similarly, if one seeks to avoid inaccuracies due to logarithmic
so fitting, nonlinear regression can be used to fit the kinetic data to a single
s exponential. However, the use of both of these methods has the disadvan-
&1 tage of making an assumption with respect to the relative concentrations of
2 ligand and binding sites [16].

63 In the ligand-receptor interaction with 1:1 stochiometry and no ligand
s« depletion it is generally thought that, if the initial ligand concentration is
s much higher than the initial receptor concentration, i.e.

[Lo] > [Ro] , (12)

e the ligand concentration [L] remains effectively constant during the course
v of the reaction, and only the receptor concentration [R] changes appreciably
¢ with time [18, 19, 3, 4]. Since kinetic order with respect to time is the same
e as with respect to [R], reaction (1) is said to follow pseudo-first-order (PFO)
w0 Kkinetics if the [R] dependence is of first order. The rates of second-order
7 reactions in chemistry are frequently studied within PFO kinetics [20, 21].
72 In the present case, the second-order reaction (1) becomes mathematically
73 equivalent to a first-order reaction, reducing to

R = C, (13)
k_1

7 where k, = ki[Lo] is the pseudo rate constant. This procedure is also known
75 as the method of flooding [5]. The solution of the governing equations for a
76 reaction linearized by PFO kinetics (or flooding) is straightforward, and is
77 widely employed to characterize kinetics and fit parameters with the aid of
7 progress curves. An error is however present due to the fact that, in actuality,
79 the concentration of the excess reactant does not remain constant [20].
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80 In 1961, Silicio and Peterson [20] made numerical estimates for the frac-
&1 tional error in the observed PFO constant for second-order reactions. They
&2 found that the the fractional error is less than 10% if the reactant concentra-
s tion ratio, [Ry] : [Lo] say, is tenfold. On the other hand, Corbett [22] found
s« that simplified expressions with the PFO kinetics can yield more accurate
&s data than is generally realized, even if only a twofold excess of one the reac-
ss tants is employed. For ligand-receptor dynamics, Weiland and Molinoff [16]
&z claim that the PFO simplification is acceptable if experimental conditions are
ss such that less than 10% of the ligand is bound. These results indicate that
8o the conditions whereby a second-order ligand-receptor reaction is reduced to
o first order remain to be well-established.

a It is widely believed that second-order reactions can be studied by PFO
» kinetics using progress curves only when the excess concentration of one of
3 the reactants is large [21, 5, for example]. However, contrary to the widely
o established knowledge, Schnell and Mendoza [10] have found that the con-
os dition for the validity of the PFO in the single substrate, single enzyme
s Treaction does not require an excess concentration of one of the reactant with
o7 respect to the other. In the present work, we derive the conditions for the
e validity of the PFO approximation in the simple ligand-receptor interaction.
o Additionally, we show two fundamentally different methods of assessing the
wo validity of the approximation. The first compares the exact and approximate
w1 solutions to the rate equations under identical conditions. The second mea-
12 sures the veracity of parameters estimated by fitting the approximate model
03 to data. Although these two measures of validity are generally assumed to
14 coincide, we show that they are quantitatively and qualitatively distinct. In
s Section 2 the reduction of the ligand-receptor association by PFO kinetics is
ws summarized followed by its dynamical analysis in Section 3. The new valid-
w7 ity condition is derived in Section 4, and an analysis of the errors observed
s with the PFO kinetics is presented in Section 5. This is followed by a brief
e discussion (Section 6).

mo 2. The governing equations of the ligand-receptor dynamics with
m no ligand depletion

112 In ligand-receptor dynamics with 1:1 stochiometry and no ligand deple-
us  tion, the second-order ligand-receptor interaction in reaction (1) is neglected
s when condition (12) holds; the reaction effectively becomes first order since
us the concentration of the reactant in excess is negligibly affected. This is
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us equivalent to assuming that
[Lo] = [C] =~ [Lo] - (14)

uz  The alternative case, in which the depletion of the receptor is assumed to be
us negligible, is shown to be symmetric in Appendix A. By substituting (14)
ue into (7), the equation can be simplified as follows:

d[C]

S =k ([Rol o) — (K5 + [Lo))C]) (15)

120 Note that this equation can also be obtained by applying the law of mass
121 action to reaction scheme (13). The solution for (15) with the conservation
122 laws (4) and (5) can be obtained by direct integration [23]:

1) = gl (1 exp (0 + 0 ) (16)

123 Note that expressions for [R](t) and [L](t) can again be obtained by substi-
12 tuting (16) into (3) and (4), respectively.
125 Experimentally, the clear advantage of applying the pseudo-first-order
16 Kinetics to the ligand-receptor reaction is that, as shown by equation (16),
127 it provides solutions that can be linearized by using a logarithmic scale to fit
128 progress curves of the interacting species and thus it could lead to complete
129 reaction characterization, namely the rate constants k; and k_;.
130 As we have previously pointed out, it has been assumed that the condition
131 [Lo] > [RO] implies

€]

L)1) = [Lo] - [C)0) ~ [Lo] = ‘m

<1. (17)

max

12 Up to this point, most of the scientists using the PFO kinetics assume that
133 it is reasonable to overestimate the maximum complex concentration when
14 there is a ligand excess, because all receptor molecules could instantaneously
135 combine with ligand molecules, i.e. [Clmax = [Ro]. However, this simplifi-
s cation is unrealistic from the biophysical chemistry point of view as it will
137 assume that in the conservation law (4) all ligand molecules are only in one
133 form: the free ligand [see, equation (17)]. In the next section, we obtain a
130 more a reliable estimate of [Cyax by studying the geometry of the phase
1o plane of system (2). This will permit us to make a better estimate of the
11 conditions for the validity of the PFO ligand-receptor dynamics (1).
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12 3. Phase-plane analysis leads to conditions for the validity of the

143 pseudo-first-order kinetics
144 The phase-plane trajectories of system (2) are determined by the ratio of
145 d[C]/dt to d[L]/dt

d[C]

—=—1. 1

us This expression is integrated to obtain the family of solution curves:
[CU[L]) = =[L] +m, (19)

where

m:{[co1 for ([C], [Z]) = (0, [Lo]) at t = 0
(L] for ([C], [L]) = ([Co],0) at ¢t = 0.

w7 The use of [Lg] as the constant in (19) for initial conditions on the horizontal

s axis follows from the relation d[C]/dt = —d[L]/d¢t.
149 The phase plane is divided into two regions by the nullcline
[Ro][L]

Cl([L)) = o 20
O = 125 T (20)
150 obtained by setting d[C]/dt = 0 or d[L]/dt = 0in (2). Note that for [L] = K¢
151 (equilibrium constant), [C] = [Ro]/2. The nullcline converges at large ligand
12 concentrations because

lim [C]([L]) = [Ro] - (21)

[L]—o0

153 The phase plane trajectories (19) and its nullcline (20) are show in Fig. 1.
1ss The trajectory flow is attracted by a unique curve, which is a stable manifold
155 and is equivalent to the nullcline for this case. All trajectories tend to this
155 manifold as they approach the steady state as t — oo [24].

157 Binding of ligand to cell surface receptors has been amenable to in vitro
158 experimental investigation for the past four decades [25]. In the typical exper-
150 imental approach, isolated membranes possessing free receptors are studied
0 using ligands as pharmaceutical agents [26]. The reaction mixture is free
11 of ligand-receptor complex at the beginning of the experiment, that is the
12 initial conditions are like those stated in (5). It is important to note that
13 for a ligand-receptor interaction with trajectories departing from the positive
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L]

Figure 1: Phase-plane behavior of the ligand-receptor reaction (1). The solid
curves with arrows are the trajectories in the phase planes, which are described by (19).
The trajectories tend to a stable manifold as they approach to the steady-state. In this
case, the manifold is the nullcline (20) of the system, which converges to [Rp] for large
ligand concentrations.

16« horizontal axis, i.e. with initial conditions (5), the trajectories are bounded

165 by
o<[olL) <[] for ([LL[C](E=0)=([Lo],0),  (22)

16 where [C]* is the ligand-receptor complex concentration at the steady-state,
17 and is equivalent to the maximum ligand-receptor complex concentration
168 ([Clmax) that the trajectories can reach if they depart from the positive hor-
160 izontal axis. [C]* can be estimated from the intersection of (19) and (20) or
o by estimating the steady-state value of the ligand—receptor complex concen-
i tration in (10), that is

(C]* = lim[C](#) = lim | A c — A, (23)

t—00 t—00 1— _; exp(—%)

w2 where A_ is given by (9).
173 It suffices therefore to investigate the behavior of the ratio of the solu-
7+ tion (10) at steady-state to [Lg|, which we do in the next section.
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s 4. Derivation of a new sufficient condition for the validity of the
176 pseudo-first-order kinetics

177 To derive a mathematical expression in terms of the kinetic parameters
s for condition (17), we will use the fact that, for initial conditions given by
19 (22), [Cmaz is the concentration given by allowing the reaction described
10 by (10) to go to steady-state. We can now formulate (17) as follows:

(Ks 4 [Ro] + [Lo]) — /(K5 + [Ro] + [Lo])? — 4[Ro][Lo]

i <1. (24

181 This can be rewritten as

Cmﬂw+m%0_ﬁfa<h (25)

2[ Ly
with
_ A[Ro][Lo]
(Ks + [Ro] + [Lo])?
182 At this point it is convenient to nondimensionalize the above expression

183 by using reduced concentrations. Scaling with respect to Kg, equation (25)

1 becomes ((1 + [12%[% J [LB])) (1 _ m) <1, (26)

185 where

AR (R L
PRy VRIS el = D

s Quadratic expressions similar to (26) are common in chemical kinetics. For
17 practical use in the analysis of chemical kinetics experiments, quadratic ex-
188 pressions are generally replaced with simpler expressions. Noting that

: 4[Ro][Lo]

B TR AR (28)

1o for any value of [Rp] and [L{] (for more details, see Appendix B), we can then
o calculate a Taylor series expansion of (26) to obtain right-hand factor of

1 1 1
<1 —V1- r’) = 57“' + g?ﬁ + 0" =~ 57“’ , (29)
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101 which simplifies (26) to
[y
1+ [Rol + [Ly]

12 This is a simple analytical expression for the condition for the validity of
103 PFO kinetics. Note that condition (30) is valid for

(a)  [Lol > [Rg] , or
(b)  [Lo) < [Ro] , if [Ro] < 1.

<1. (30)

(31)

104 Interestingly, we have a new condition for the use of the PFO approx-
105 imation in ligand-receptor binding with 1:1 stoichiometry. Equation (31a)
s is the constraint (12) already in widespread use. However, equation (31b)
17 extends the range of conditions under which PFO dynamics may be applied.
18 The regions of validity of the PFO approximation are illustrated graphically
1w in Fig. 2 by plotting conditions (30) and (31) in the space of initial ligand
200 concentrations, [Lg], and equilibrium constant, Kg, normalized by [Ry]. Typ-
21 ically, PFO kinetics are assumed valid when the ratio of [Lo]:[Ry] is greater
20 than 10:1 [20, 3, 27] Applying this same “rule of thumb”, we set the left-hand
203 side of (30) equal to 0.1 to separate valid from non-valid regions in Fig. 2.
24 Note that the plane is divided into three regions by lines corresponding to
205 condition (30) and the generally used condition (12). Region B comprises
26 a portion of the space where PFO kinetics were previously assumed to be
207 invalid, but in fact the errors introduced by the approximation in this region
208 are expected to be small, even for initial conditions such that [Lo] =~ [Ry].

200 5. There are two types of errors observed with the application of
210 approximations in reaction kinetics

211 In reaction kinetics, there are two type of errors that can be committed
212 when applying an approximation to the governing equations of a complex
213 reaction. Research in mathematical chemistry and biology primarily focuses
a1 on estimates of errors in the concentrations of reacting and product species.
a5 This error — which we name concentration error — is commonly evaluated
216 by calculating the difference between the solution of the approximate equa-
27 tion (16) with that of the exact equation (10) (see, for example, [28]). The
218 concentration error provides a measure of how closely the approximate solu-
219 tion matches the exact solution. However, experimentally, PFO approxima-
20 tions are often used to derive expressions that facilitate estimating kinetic

10
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Figure 2: Validity regions in the [Lo]/[Ro]—Ks/[Ro] log-log plane for the use of
pseudo-first-order kinetics to model ligand-receptor reaction (1). The dashed
line indicates 10[Ro] = [Lo], the lower line is 9[Rg] = [Lo] + Ks. In region A, [Ro] > [Lo],
where PFO kinetics has here been shown to be valid, as previously thought. In region B,
[Ro] does not greatly exceed [Lo], but Kg > [Ro|. Here we have shown that PFO kinetics
holds, even for [Lo] =~ [Rp]. In region C, where [Rg] does not greatly exceed [Lg] and
Ks/[Ryp] is not much greater than 1, PFO kinetics is not valid.

21 constants using nonlinear regression methods. Therefore, of particular utility
22 are error estimates from fitting kinetic parameters using the mathematical
223 expression derived with the PFO approximation. We called these estimation
24 ETTOTS.

25 Naively, it would seem that if the difference between the complex concen-
26 tration, C (1), is small between the PFO approximation and exact solution,
27 then the PFO equation should provide accurate estimates of the rate con-
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stants when used to model experimental data. This, however, is not neces-
sarily true in general. To better understand why the concentration and esti-
mation errors are not the same, and to show where they diverge, we compare
errors based on the numerical difference between the exact and PFO models
with those based on estimating rates constants using the PFO model.

(a) (b) (c)

1.0 0.04 05— s
08 003} essssssemes oar
S0.6 e =03F
[ &~ < Py
= = 0.02 S ’
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Figure 3: Time course of species concentrations and concentration errors of
pseudo-first-order approximation for the ligand-receptor reaction (1). Panels
(a)-(c) show the concentration of the complex as a function of time for the cases: (a)
[Lo] = 10[Ro] and Ks = [Ro], (b) [Lo] = [Ro] and Kg = 30[Ro], (c) [Lo] = [Ro] and Ks =
[Ro]. The dashed lines correspond to calculations assuming pseudo-first-order kinetics,
while solid lines are exact solutions. (d)-(f) show the errors induced by assuming pseudo-
first-order kinetics for case (a)-(c), respectively.

5.1. Analysis of the concentration error

Theoretically we define a concentration error measure as

[C] exact ( ) [C] PFO ( )
exact (t)

For the bimolecular ligand-receptor binding (1), we can calculate analytically
the above expression by replacing [Clexact(t) with (10), and [Clpro(t) with
(16). However, this expression is too cumbersome, and hence we present a

CE(t) =

(32)

12
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233 numerical analysis of the concentration error. Fig. 3 presents the time course
20 of the exact and approximate complex concentration [Fig. 3(a)—(c)], and a
20 calculation of the percentage concentration error (100 x CE) [Fig. 3(d)—(f)]
21 introduced by the PFO approximation for initial conditions lying in region
22 A, B and C of Fig. 2, respectively. The error remains less than 3% over the
23 course of the reaction for the cases satisfying condition (30), and approaches
s 30% for the point in region C.

(a) . (b)
103 Maximum Error 103 Steady-State Error
‘ ‘ ‘ 0.25 ‘ ‘ ‘ 0.25
102} {®o0.20 102} { #§0.20
£ 015 &£ | 0.15
= 10 = 10'L
= 0.10 = 0.10
10° | 10° |
0.05 0.05
107 0.00 107 0.00
107t 10° 10' 102 103 107 10° 10' 10% 103
Kg/[Ro] Kg/[Ry]

Figure 4: Maximum and steady-state concentration errors for the ligand—
receptor reaction (1). Panel (a) shows a heat map of the maximum concentration
error incurred by assuming pseudo-first-order approximation for different initial condi-
tions. Coloring corresponds to the error as defined in (32). Similarly, Panel (b) shows the
steady-state concentration error between the exact and pseudo-first-order solutions. The
black lines correspond to condition (30) when the left-hand side is equal to 10.

245 It is useful to define a scalar measure based on (32). For this there
26 are many options, yet in order to remain as conservative as possible, we
27 choose the maximum value of concentration error over the time course of
28  the reaction, which we call the mazimum concentration error. Additionally,
20 we calculate the steady-state concentration error, defined as lim; ., CE ().
0 Fig. 4 shows the maximum and steady-state concentration error contours
251 for initial conditions in the [Lo]-Kg plane. In general, the maximum con-
2 centration error is well-described by the newly-derived condition. The error
3 contours allow for a quantification of what is meant by “much less than”.
2s¢ The commonly used requirement that [Lg] > 10[R,] produces errors always
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255 less than 5%. In fact, when Ky is less than [Rg], a ratio of ligand to receptor
6 of approximately 4:1 is enough to constrain the error to below 5%. Although
257 the condition for the validity is symmetric in [Lg] and [Kg], the errors are
253 not. The ratio of Kg:[Ro] must be approximately 20:1 for the error to remain
0 below 5%. This is not surprising since the exact solution is not symmetric in
20 [Lo| and Kg, so we should expect that the two quantities would have different
s1  effects. Nevertheless, the notion that PFO kinetics can rightly be assumed
2 even when the ligand is not present in excess holds true.

w3 5.2. Analysis of the estimation error

264 Next, we calculate the error in estimated rate constants by generating
x5 sample data using the exact solution. The frequency of the sampling, wgps,
6 and the time span of the sampling window, t.,,, are varied. Values of wgps
7 range from t;' to 4¢;'. Higher sampling frequencies were also tested, but
xs results are not presented as they did not show appreciable difference from
0 the case of weps = 4t;'. The sampling windows tested begin at ¢ = 0 and
o0 continue for t,s = 3t., 10t., 100t.. An “experimental protocol” for a nu-
on merical experiment then consists of choosing specific wyps and 4, and using
22 (10) to calculate [C] (nw,.) for integers n € [0, topswors]. For each simu-
o3 lated data set (for which there is no experimental error), the rate constants
ek and k_; are estimated by fitting the data with equation (16) using the
o5 Levenberg-Marquardt algorithm as implemented in SciPy (version 0.17.0,
26 http://www.scipy.org) with initial estimates for k; and k_; equal to the val-
o7 ues used to generate the data. We then define the estimation error of a
s parameter k; as

ki — kf

k;

29 where £k is the estimate of k; calculated from fitting the PFO solution to
0 the generated data. Additionally, for the ligand-receptor interaction, we
281 calculate the mean estimation error as an aggregate measure of the parameter
22 estimation

EE (k;) = : (33)

MEE = mean {EE (k) ,EE (k_1)} . (34)

283 Concentration error measures, such as the maximum or steady-state con-
s centration errors, that compare exact and approximate solutions to the ligand—
285 Teceptor complex concentration, are fundamentally different from those in-
286 curred by using an approximate model to fit experimental data. To illustrate
27 this point, Fig. 5 shows contours for the mean estimation error when different
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Figure 5: Mean estimation error in the rate constants when applying the
pseudo-first-order approximation to the ligand-receptor reaction (1). Heat
maps of the mean estimation error of the rate constants are shown for different experimen-
tal protocols. Columns, from left to right, correspond to increasing length of observation
time. Rows, from top to bottom, correspond to increasing frequency of sampling. For short
observation windows, large errors occur even when [Lo] > [Ro]. Also, counter-intuitively,
the error at some initial conditions increases as the sampling frequency increases (e.g.
down column 1). The black lines correspond to condition (30) when the left-hand side is
equal to 10.

s “‘experimental protocols” are used to generate data. For a given sampling fre-
280 quency, the mean estimation error contours increasing conform to the contour
200 derived from condition (30) as t. increases. However, for initial conditions
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21 with [Lg] > 10[Ro] and Kg < [Ry], significant estimation errors can occur if
202 the observation time is not sufficiently long. Even after 10¢. of observation,
203 at which point [C](¢) > 0.999[C]*, the mean error in the estimated param-
204 eters can exceed 10% when Ky is small. Only after nearly 100¢. the mean
205 estimation error contours closely mimic the theoretical condition for the va-
206 lidity of the PFO kinetics. This highlights the difference between the errors
207 calculated by comparing the exact and approximate solutions of the concen-
208 tration equations, and those errors due to fitting an approximate model to
200 data. Additionally, it should caution experimentalists from applying PFO
0 approximations whenever one species is in excess. The values of the rate
;1 constants must be considered as well.

302 Interestingly, increasing the frequency of sampling does not necessarily
53 improve the estimation of the rate constants. In fact, the first column in
sa Fig. 5 shows, that the mean estimation error actually increases as more sam-
w05 ple points are used. This effect saturates quickly as the frequency is increased,
w6 but nevertheless, using fewer ezact data points can lead to improved predic-
so7 tions. One major benefit of numerous data points is that it reduces error
w8 due to measurement noise, and this likely will outweigh the gains from using
w00 fewer data points when fitting. Yet, in cases where accurate measurements
si0 - are possible, fitting more data to an approximate model can have deleterious
an  effects on the accuracy of parameter estimates made from such a fit. It may
sz be possible to take advantage of both of these effects by recording data at
a3 a high frequency, say using an optical assay [29], then performing a number
s of fits on subsets of the data sampled at lower frequency, thereby reducing
a5 both the experimental noise and the estimation error incurred by fitting to
316 an approximate model.

sir 5.8, The error in the estimated parameters for high ligand concentration is
318 due to inaccuracies in k_;

Greater understanding of the estimation errors found at high ligand con-
centrations and low Kg can be gained by comparing the estimation errors
of k1 and k_; individually. Fig. 6 shows contours of EE (k;) [panel (a)]
and EE (k_;) [panel (b)] for numerical data generated with w,,, = 2¢;! and
tops = 3t.. From this, it is clear that the inaccuracies lie in predictions of the
dissociation rate constant k_;. The reason k_; errors are large for cases in
which [Lg] > [Ro] and Kg < [Ro] can be understood by examining the PFO
solution (16) in the limit Kg/[Lo] — 0. Keeping terms up to linear order in
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Figure 6: Comparison of estimation errors for k; and k_;. Heat maps of the
EE (k1) and EE (k_1) are presented in (a) and (b), respectively. The sampling frequency
used to generate data was wyps = 2t(j1, and the observation window was t,,s = 3t.. The
black lines correspond to condition (30) when the left-hand side is equal to 10. The error
contour for k_; estimation shows clear deviations from the analytical conditions, whereas
k1 estimations are accurate where PFO kinetics is shown to be theoretically valid.

Kg/[Ly|, we obtain

(€] (8) ~ [Ro] (1 — exp (—ku[Lo]t)) {1 - [ﬁ <1 - — (Zﬁﬁ; - 1)} .
(35)

s10 The zeroth-order term has no dependence on k_;. Hence, in this limit there
20 18 no unique mapping between the parameters ([Ryl, [Lol, k1,k_1) and time
21 onto the concentration [C], since [C] is completely described by the parame-
22 ters ([Ro], [Lo], k1) and time. This implies that estimates of k_; from progress
s23 curve experiments performed under conditions of high ligand concentration
24 and low disassociation constant are unreliable. However, estimates of the
w5  association rate constant k; from such experiments should be valid. Unfor-
w6 tunately, since Kg is not generally known a priori, a different measurement,
37 such as an equilibrium binding assay, is required to estimate its value. Then,
s with knowledge of Kg, k_;1 can be calculated.
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Figure 7: Comparison of approximate model with exact and fitted parameters
for the ligand—receptor reaction (1). The blue line represents the exact solution and
blue squares are simulated data points. The green dashed line is the pseudo-first-order
approximation using the same rate constants used to in the exact solution. The red dot-
dashed line is the pseudo-first-order approximation using rate constants found by fitting
the pseudo-first-order model to the data generated using the exact solution.

»9  5.4. The pseudo-first-order kinetics can lead to significant estimation errors
330 when the conditions of the pseudo-first-order approximation are valid

331 Taken together, Fig. 4 and Fig. 5 illustrate an important, yet often over-
s looked, distinction between methods by which to assess the validity of an ap-
;33 proximation in chemical kinetics. The first method, popular among theorist,
14 attempts to answer the following question: Given a set of known parameters,
s how well does the approximate model represent the exact model? This com-
16 parison can be made by calculating a maximum or steady-state concentration
;7 error, as we do here, or through other measures such as a mean-squared dif-
18 ference over the time course. The second method, which is of greatest impor-
139 tance to experimentalists, answers a subtly different question: Given data,
s how well do parameters estimated by fitting the data with an approximate
;1 model represent the actual parameters? This distinction, between a forward
s and an inverse problem, is not generally considered when deriving conditions
.3 for the validity of reduced kinetic models [30]. To illustrate this, Fig. 7 shows
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sa  data points generated with exact solution to the governing equations of the
1s ligand-receptor reaction (1), the PFO solution using the same rate constants
us  as those used to generate the exact data points, and the PFO solution us-
w7 ing rate constants calculated through nonlinear regression of the simulated
us data. The PFO solution using the exact rate constants captures the kinetics
s much more closely than the PFO solution using estimated rate constants,
0 especially as steady-state is approached. Often, it is the former case that is
351 used by theorists to determine valid ranges for an approximation, while the
32 latter case is where the approximation is actually used to interpret data. As
13 we have shown, these two cases are distinct. Hence, when providing ranges
4 for the validity of a simplifying approximations to theory, it is crucial that
55 the application of that theory be kept in mind.

6 6. Discussion

357 We have investigated the application of the PFO approximation to ligand—
s receptor binding dynamics. PFO kinetics are used to linearize the solutions to
19 the differential equations that describe the concentration of ligand, receptor
w0 and ligand-receptor complex over time, allowing them to be fit by a single
30 exponential [16, 15]. This approximation is known to introduce errors that
w2 are acceptably small under certain conditions, which have generally been
33 described by [Lg] > [Ro]. In this paper, we show that this condition is
;¢ somewhat more stringent than necessary, specifically when [Rg] < K. In
s fact the condition [Ry] < K provides another sufficient condition under
36 which one may safely use the PFO approximation, with little regard to the
37 concentration [Ly).

368 Although it is possible to derive closed-form solutions that describe the
30 kinetics of simple ligand-receptor binding [see, equation (10)], this equation
w0 is cumbersome. The PFO approximation gives a much simpler solution [see,
s equation (16)], which can be linearized by use of logarithmic plots to facilitate
s data fitting [17]. With this simpler form a linear fit suffices to determine
sz all of the relevant rate constants leading to a complete description of the
s reaction kinetics. The new condition developed here extends the validity
srs  of this method into new territory, increasing its usefulness. Specifically, in
ss  cases where reagents are either expensive or difficult to isolate in significant
w7 quantities, the new condition suggests far more economical usage (in some
ws  cases, orders of magnitude lower concentration) of reagents is possible.
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379 Additionally, we have shown that there is often an inconsistency between
;0 the derivation of conditions for validity of an approximation, and the relevant
;21 measure of error for applications of that approximation. Approximations to a
;2 theory are generally taken as valid if, using identical input parameters, exact
;3 and approximate solutions for species concentration are sufficiently similar.
3« This requires minimizing the concentration error introduced in equation (32).
s However, approximate models are often used to estimate kinetic parameters
;6 through fitting to experimental data. We have demonstrated that estimation
;7 errors may be significant, even for conditions in which the approximate and
s exact models are nearly identical. This effect is particularly apparent when
;0 one reactant is in excess, the disassociation constant is small, and the length
s0 of the observation is not sufficiently long.

301 Commonly, experimental protocols for kinetic binding assays call for mea-
32 surements to be made until concentrations “platean” [27]. However, the def-
53 inition of “plateau” is often left to the judgment of the investigator. Our
s analysis shows that stopping measurement prematurely can lead to signif-
35 icant errors in the rate constants estimated by such experiments. A more
36 rigorous definition of the necessary experimental time to reach plateau should
57 involve the inherent timescale, t.. The error contours in Fig. 5 show that for
38 many initial conditions, specifically for those with large enough Kg, mea-
;0 surements over 3t. are sufficient. It should be possible, however, to test if
wo the experimental conditions are problematic without prior knowledge of K,
w1 80 long as the initial concentrations of receptor is known. If, at steady-state,
w2 [C] is very near [Ry], then the affinity of the ligand for the receptor is high
w3 enough (and Kg will be small enough) to make the value of k_; from regres-
w04 sion analysis unreliable. Since affinities between ligands and receptors are
w5  typically quite high, this will often be the case. Hence this suggest that it is
w6 Tnecessary to estimate the equilibrium constant using a separate assay. Then,
w7 with knowledge of Kg, the rate constants can be unambiguously estimated
ws from kinetic data.

409 Lastly, we emphasize that the difference between the concentration error
a0 and estimation error are not specific to the case of ligand-receptor binding.
an The problem of estimating parameter values for models is well known in the
sz model calibration field [31], and has also received attention from mathemat-
a3 ical and systems biologists [30, 32]. The essential questions are whether or
as not a parameter in a model actually corresponds to the underlying physical
a5 property it is meant to represent, and whether the value of the parameter can
a6 be uniquely determined from data. Frequently, the value of the parameter
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a7 that provides the best fit to data differs from the most accurate assessment
as  of the underlying physical property, estimated through some other means. In
a0 the case of ligand-receptor binding, the rate constants estimated using PFO
20 Kinetics correspond to a best-fit of experimental data to an approximate
21 model. In many cases, these estimates will not coincide with the actual rate
a2 constants for the second-order reaction. In fact, this difference is quite general
23 and future studies should investigate how the validity of approximations in,
w24 for example, Michaelis-Menten kinetics, or inhibited ligand-receptor binding
»s  might change when their ability to accurately predict parameters from data
a6 is considered.
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27 Appendix A. Symmetry of case with no receptor depletion

428 The second case referred to in the text (Section 2) applies when the
no concentration of the receptor [Rg| is much greater than that of the ligand
0 [Lo], which implies that

[Ro] = [C] = [Ro] . (A1)
s Substituting (A.1) into equation (7) gives
S = (1Ralza) - (s + [RaDICT) (A2
s [Compare with (15)]. Solving this equation yields
1) = ot (1= exp(—{h, + h-a)0) (A3)

a3 This solution is symmetrical with (16). Condition (A.1) gives us the following
s¢ implication parallel with (17)

C
mo =R - ~r] = [ < @
435 Similar to the case with no ligand depletion, the maximum concentration

a6 18 equal to A_. Hence, following the same procedure as in Section 4, a
s condition, symmetric to (30), for the case with negligible receptor depletion
a3 is found to be
L]
1+ [Lo] + [Ro]

<1. (A.5)

10 Appendix B. Validity of approximation (28)

440 The derivation of the conditions given by (30) requires that equation (28)
w1 be satisfied, which we reiterate as

ro< 1 (B.1)
A[Ro][Ly]
(1 + [Fo] + [Ly])?

< 1. (B.2)

w2 The above inequality can be written as

1 1

ERAEST AW ATl (B:3)
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a3 Since the denominators are both positive, we can rearrange this as
— (1re] — 2/ RG] + [24]) < 1 (B.4)

ss and factoring the left side then gives

- (VI - VI) <1 (B.5)

as In the above inequalities, the left side is always negative and the right side
ws is clearly positive. Therefore, it is appropriate to assume that r’ < 1.
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