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Abstract. Sequencing of RNA provides the possibility to study an individual’s
transcriptome landscape and determine allelic expression ratios. Single-molecule
protocols generate multi-kilobase reads longer than most transcripts allowing se-
quencing of complete haplotype isoforms. This allows partitioning the reads into
two parental haplotypes. While the read length of the single-molecule protocols
is long, the relatively high error rate limits the ability to accurately detect the
genetic variants and assemble them into the haplotype-specific isoforms. In this
paper, we present HapIso (Haplotype-specific Isoform Reconstruction), a method
able to tolerate the relatively high error-rate of the single-molecule platform and
partition the isoform reads into the parental alleles. Phasing the reads according
to the allele of origin allows our method to efficiently distinguish between the
read errors and the true biological mutations. HapIso uses a k-means clustering
algorithm aiming to group the reads into two meaningful clusters maximizing
the similarity of the reads within cluster and minimizing the similarity of the
reads from different clusters. Each cluster corresponds to a parental haplotype.
We use family pedigree information to evaluate our approach. Experimental val-
idation suggests that HapIso is able to tolerate the relatively high error-rate and
accurately partition the reads into the parental alleles of the isoform transcripts.
Furthermore, our method is the first method able to reconstruct the haplotype-
specific isoforms from long single-molecule reads.
The open source Python implementation of HapIso is freely available for down-
load at https://github.com/smangul1/HapIso/

1 Introduction

Advances in the RNA sequencing technologies and the ability to generate deep cover-
age data in the form of millions of reads provide an exceptional opportunity to study
the functional implications of the genetic variability [4], [16], [17]. RNA-Seq has be-
come a technology of choice for gene expression studies, rapidly replacing microarray
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approaches [20]. RNA-Seq provides sequence information, which aids in the discovery
of genetic variants and alternatively spliced isoforms within the transcripts. RNA-Seq
has the potential to quantify the relative expression of two alleles in the same individ-
ual and determine the genes subject to differential expression between the two alleles.
Comparison of the relative expression of two alleles in the same individual as a pheno-
type influenced by the cis-acting genetic variants helps determine the cis-acting nature
of the individual polymorphism [23].

There are three major difficulties in current approaches to identify allele specific
expression using RNA-Seq data. First, short read protocols [15] cut genetic material
into small fragments and destroy the linkage between genetic variants. Short reads ob-
tained from the fragments are well suited to access the allele-specific expression on the
single variant level. However, complexity of the higher eukaryotic genomes makes it
hard to phase the individual variants into the full-length parental haplotypes (haplotype-
specific isoforms). A common technique to assess the allele-specific expression (ASE)
is to count the number of reads with the reference allele and the number of reads with
alternate allele. However, this approach works on individual variant level and is not
well suited to determine the allele-specific expression on the isoform level. Second,
mapping the short reads onto the reference genome introduces a significant bias toward
higher mapping rates of the reference allele at the heterozygous loci. Masking known
loci in the genome does not completely remove the inherent bias [6]. Aside from the
allele-specific expression, mapping biases may affect the QTL mapping and the discov-
ery of new sequence variants. Third, the high sequence similarity between alternatively
spliced variants of the same gene results in a significant number of short reads to align
in multiple places of the reference transcriptome [9].

Multi-kilobase reads generated by single-molecule protocols [8] are within the size
distribution of most transcripts and allow the sequencing of full-length haplotype iso-
forms in a single pass [14]. The reads cover multiple genomic variants across the gene,
eliminating the necessity to phase the individual variants into the isoform haplotypes.
Additionally, the extended length of the reads makes it simple to map the reads uniquely
and eliminate the read-mapping biases. However, the relatively high error rates of the
single-molecule protocols limit the application of the long single-molecule protocol to
studies of the allele specific variants. There are currently no methods able to accurately
detect the genetic variants from the long single-molecule RNA-Seq data and connect
them to haplotype-specific isoforms.

In this paper, we present HapIso (Haplotype-specific Isoform Reconstruction), a
comprehensive method for the accurate reconstruction of the haplotype-specific iso-
forms of a diploid cell that uses the splice mapping of the long single-molecule reads
and partitions the reads into parental haplotypes. The single molecule reads entirely
span the RNA transcripts and bridge the single nucleotide variation (SNV) loci across
a single gene. Our method starts with mapping the reads onto the reference genome.
Aligned reads are partitioned into the genes as a clusters of overlapping reads. To over-
come gapped coverage and splicing structures of the gene, the haplotype reconstruc-
tion procedure is applied independently for regions of contiguous coverage defined as
transcribed segments. Restricted reads from the transcribed regions are partitioned into
two local clusters using the 2-mean clustering. Using the linkage provided by the long
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single-molecule reads, we connect the local clusters into two global clusters. An error-
correction protocol is applied for the reads from the same cluster. To our knowledge,
our method is the first method able to reconstruct the haplotype-specific isoforms from
long single-molecule reads. We applied HapIso to publicly available single-molecule
RNA-Seq data from the GM12878 cell line [18]. Circular-consensus (CCS) single-
molecule reads were generated by Pacific Biosciences platform [8]. Parental informa-
tion (GM12891 and GM12892 cell lines) is used to validate the accuracy of the isoform
haplotype reconstruction (i.e. assignment of RNA molecules to the allele of origin). We
use short read RNA-Seq data for the GM12878 sample to validate the detected SNVs
using a different sequencing platform (short reads). Our method discovered novel SNVs
in the regions that were previously unreachable by the short read protocols.

Discriminating the long reads into the parental haplotypes allows to accurately cal-
culate allele-specific gene expression and determine imprinted genes [7], [19]. Addi-
tionally it has a potential to improve detection of the effect of cis- and trans-regulatory
changes on the gene expression regulation [5], [21]. Long reads allow to access the
genetic variation in the regions previously unreachable by the short read protocols pro-
viding new insights into the disease sustainability.

2 Methods

2.1 Overview

Very similarly to the genome-wide haplotype assembly problem, the problem of haplotype-
specific isoform assembly aims to infer two parental haplotypes given the collection of
the reads [1], [12]. While those problems are related, the allele expression ratio between
RNA haplotypes is a priori unknown and may be significantly different from 1:1. An
additional difference is due to the RNA-Seq gapped alignment profile and alternative
splice structures of the gene. Overall, the problem of reconstruction of the haplotype-
specific isoforms of a diploid transcriptome represents a separate problem requiring
novel computational approaches.

We apply a single-molecule read protocol to study the allele-specific differences in
the haploid transcriptome (Figure 1). The single molecule protocol skips the amplifica-
tion step and directly sequences the poly (A) selected RNA molecules. The reads gen-
erated by the protocol entirely span the RNA transcripts bridging the single nucleotide
variation (SNV) loci across a single gene.

We introduce a method able to reconstruct the haploid transcriptome of a diploid or-
ganism from long single-molecule reads (Figure 2). This method is able to tolerate the
relatively high error-rate of the single-molecule sequencing and to partition the reads
into the parental alleles of the isoform transcript. The errors in the long single-molecule
reads typically are predominantly one-base deletions and insertions [3]. Both insertions
and deletions are corrected through the alignment with the reference genome. The re-
maining mismatch errors are further passed to the downstream analysis.

Our method starts with mapping the reads onto the reference genome (Figure 2.A).
Long reads allow us to identify the unique placement of the read (99.9% of the reads
from GM12878 sample are mapped to a single location in the genome). The reads are
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Fig. 1. Overview of long single-molecule protocol. (A) Unamplified, polyA-selected RNA
molecules are sequenced by the single-molecule protocol able to entirely span the RNA tran-
scripts to produce long single-molecule reads. The fragmentation-based protocols shred the am-
plified and poly( A) selected RNA into short fragments appropriately sized for sequencing. Short
reads destroys the linkage between the SNVs. (B) Reads are mapped onto the reference genome.
(C) SNVs are assembled into the two parental haplotype isoforms.
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Fig. 2. Overview of HapIso. (A) The algorithm takes long single-molecule reads that have been
mapped to the reference genome as an input. (B) The transcribed segments are identified as
contiguous regions of equivalently covered positions. (C) Aligned nucleotides of the transcribed
segment are condensed into the binary matrix whose width equals the number of variable posi-
tions. The entry ”1” corresponds to the position with the observed mismatch, the entry is encoded
as ”0” if it matches the reference allele. (D) Reads restricted to the transcribed segment (rows of
the binary matrix) are partitioned into two clusters, using the 2-means clustering algorithm. Each
cluster corresponds to a local haplotype. (E) The segment graph is constructed to incorporate the
linkage between the alleles. The edges of the graph connect the local haplotypes. The minimum
number of corrections to the graph is applied to partition the graph into two independent com-
ponents corresponding to full-length parental gene haplotypes. (F) An error-correction protocol
is applied for the reads from the same cluster. The protocol corrects the sequencing errors and
produce corrected haplotype-specific isoforms.
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partitioned into the genes as clusters of overlapping reads. The haplotype reconstruction
procedure is applied independently for every gene. First, we identify the transcribed
segments corresponding to contiguous regions of equivalently covered positions. Two
positions are equivalently covered if any read covering one position also covers the
other one.

To account for gapped coverage and splicing structures of the gene, we cluster the
reads into two parental haplotypes for every transcribed segments independently (Fig-
ure 2.C). The clustering procedure first condenses the aligned nucleotides of the tran-
scribed segment into a binary matrix with a width equal to the number of variable
positions. The entry ”1” corresponds to the position which mismatches the reference
allele, while the entry is encoded as ”0” if it matches the reference allele. We parti-
tion the rows (reads restricted to the transcribed segment) into two clusters, using the
2-means clustering algorithm (Figure 2.D). The result from the 2-means clustering par-
titions the restricted reads into local parental haplotypes. Using the linkage provided
by the long single-molecule reads, we reconstruct the full-length gene haplotypes. We
build the segment graph encoding the linkage between the alleles in form of edges (Fig-
ure 2.E). The minimum number of corrections to the graph is applied to partition the
graph into two independent components corresponding to two parental haplotypes. The
transcript reads are then grouped according to the allele of origin (Figure 2.F). An error-
correction protocol is applied for the reads from the same cluster. The protocol corrects
the sequencing errors and produces corrected haplotype-specific isoforms.

2.2 Single-Molecule RNA-Seq

We use publicly available single-molecule RNA-Seq data generated from the peripheral
blood lymphocyte receptors for B-lymphoblastoid cell lines (GM12878 cell line) [18].
Additionally, we use parental long read RNA-Seq data from GM12891 and GM12892
cell lines to validate the accuracy of the proposed approach. Libraries were sequenced
using the Pacific Bioscience platform [8] able to produce long single-molecule reads for
all three samples in the trio. Unamplified, polyA-selected RNA was sequenced by the
circular molecules. Circular-consensus (CCS) single-molecule read represent a multi-
pass consensus sequence, where each base pair is covered on both strands at least once
and the multiple low-quality base calls can be used to derive a high-quality calls.

2.3 Read Mapping

The first step of the analysis is to place sequencing reads onto the reference genome.
Long read length provided by the single molecule protocol provides enough confidence
to find unique position in the genome where the reads were generated from without
using the existing gene structure annotation. The 715,902 CCS reads were aligned
to the human reference genome (hg19) using the GMAP aligner, which maps cDNA
sequences to a genome [22]. GMAP was originally designed to map both messenger
RNAs (mRNAs) and expressed sequence tags (ESTs) onto to genome. The tool is able
to tolerate high number of sequence errors in long cDNA sequences which makes it
perfect fit for Pac Bio single-molecule platform.
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GMAP is able to identify up to two placements in the genome for 99.6% reads. Only
a small portion of those are mapped to two locations of the genome (1.6%). However in
many case two placement in the genome have a evident differences thus making it easy
to select the most preferable placement. In this way, vast majority of the CCS reads have
single high-confidence mapping covering the entire exon-intron structure of an isoform
transcript.

2.4 Haplotype-Specific Isoform Reconstruction

Having the reads spanning the full-length isoform transcripts, the problem of the haplotype-
specific isoform reconstruction aims to discriminate the transcript reads into two parental
haplotypes. The problem is equivalent to the read error-correction problem. If all the er-
rors are corrected, the long reads provide the answer to the reconstruction problem, i.e.
each non redundant read is the haplotype-specific isoform. Since the long reads are er-
ror prone, it is required to fix the errors or equivalently call single nucleotide variants
(SNVs). Rather than phasing each isoform separately, it is preferable to agglomerate all
the isoforms from a single gene and cluster the reads by haplotype of origin. All the
reads from a single haplotype contain the same alleles of shared SNVs, thus all the dif-
ferences between reads in shared transcribed segments should be corrected. We propose
the following optimization formulation minimizing the number of errors.

Phasing Problem. Given a set of the long reads R corresponding to the transcripts
from the same gene g. Partition the reads into two haplotype clusters such that the
number of sequencing errors in the reads is minimized.

Typically, the errors in the long single-molecule reads are dominated by one-base
insertions and deletions. Both are corrected through the alignment to the reference
genome – insertions are deleted and deletions are imputed from the reference. The re-
maining mismatch errors are further passed to the downstream analysis.

Since long reads are uniquely aligned, the aligned reads are uniquely partitioned
into clusters corresponding to the genes. Further, the haplotype are independently re-
constructed for every gene. First we split the genes into transcribed segments corre-
sponding to contiguous regions of equivalently covered positions. Two positions are
equivalently covered if any read covering one position also covers the other one. To
overcome gapped coverage and splicing structure of the gene, we cluster the reads into
two parental haplotype for every transcribed segments independently. The clustering
procedure first condenses the aligned nucleotides of the transcribed segment into the
binary matrix whose width equals the number of polymorphic positions. The entry ”1”
corresponds to each position whose allele mismatches the reference and the entry is
encoded as ”0” if it matches the reference allele. We partition the rows (reads restricted
to the transcribed segment) into two clusters, using the 2-means clustering algorithm .
The clustering algorithm returns a set of centroids, one for each of the two clusters. An
observation vector is classified with the cluster number or centroid index of the centroid
closest to it. A vector r belongs to cluster i if it is closer to centroid i than any other
centroids. If r belongs to i, centroid i is refereed as dominating centroid of r.

Given a set of observations ( r1, r2, , rn), where each observation is a binary read
vector, k-means clustering aims to partition the n reads into two sets S = S1, S2 so as
to minimize the distortion defined as
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D =
2∑

i=0

∑
x∈Si

‖x− µi‖2 where µi is the dominating centroid in Si. (1)

Each step of the k-means algorithm refines the choices of centroids to minimize
distortion. The clustering algorithm uses change in distortion as stopping condition.

Haplotypes for each transcribed segment obtained by local read clustering are fur-
ther linked using the long single-molecule reads as follows.

First, we build a graphG in which each vertex corresponds to a transcribed segment
and two vertices are adjacent if they belong to the same read. Two transcribed segments
A and B with pairs of haplotypes (A1, A2) and (B1, B2), respectively, can be either
linked in parallel A1B1 and A2B2 or in cross A1B2 and A2B1. If among reads con-
taining A and B there are more reads consistent with the parallel linkage than the reads
consisting with the cross linkage, then the parallel linkage is more likely and vice versa.
The larger skew between number of parallel and cross reads gives the higher confidence
in the corresponding linkage. Therefore the weight of an edge between A and B in the
graph G is set to

w(A,B) =

∣∣∣∣log(#parallel (A−B)− reads
#cross (A−B)− reads

)∣∣∣∣ (2)

Then we find the maximum-weight spanning tree T of the graph G consisting of
links with the highest confidence in the chosen (cross or parallel) linkage [2]. The tree
T is split into two trees T1 and T2 uniquely identifying two global haplotypes for the
corresponding gene as follows. Each vertex A of T is split into two vertices A1 and
A2 corresponding to two haplotypes of the transcribed segment A. Each edge (A,B)
of T with the positive weight w(A,B) is split into two edges (A1, B1) and (A2, B2)
and each edge (A,B) with the negative weight is split into (A1, B2) and (A2, B1).
Starting with A1 we traverse the tree T1 concatenating all haplotypes corresponding
to its vertices into a single global haplotype. Similarly, starting with A2, we traverse
the complementary tree T2 concatenating its haplotypes into the complimentary global
haplotype.

Long reads are grouped according to the haplotype of origin. An error-correction
protocol is applied for the reads from the same cluster. The protocol corrects the se-
quencing errors and produce corrected haplotype-specific isoforms.

Finally, the resulting two haplotypes are different in heterozygous loci allowing our
method to determine the SNVs. Long reads provide one to one mapping between the re-
constructed haplotypes and the isoform haplotypes. Reads counts are used to determine
allelic expression of each haplotype copy of the isoform.

The absence of the systematic errors allows us to successfully correct the ran-
domly distributed errors and accurately reconstruct the isoform haplotypes. Compar-
ing to other approaches requiring trio family data, we are able to correct the error and
reconstruct the parental haplotypes from sequencing data.
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3 Results

3.1 HapIso Is Able To Accurately Reconstruct Haplotype-Specific Isoforms

We used trio family long single-molecule RNA-seq data to validate the reconstructed
haplotype-specific isoforms. Single molecule RNA-Seq data was generated from the
peripheral blood lymphocyte receptors for B-lymphoblastoid cell lines from a com-
plete family trio composed of a father, a mother and a daughter. We reconstructed the
haplotype-specific isoforms of each individual independently using HapIso method.
Family pedigree information makes it possible for us to detect Mendelian inconsis-
tencies in the data. We use reconstructed haplotypes to infer the heterozygous SNVs
determined as position with non-identical alleles with at least 10x coverage.

Fig. 3. Allele inheritance model. (A) Mendelian consistency; Each parent provides one copy of
the allele to a child; child inherits red allele from mother and a green allele from father. (B)
Mendelian inconsistency; Child does not inherit green allele from any of the parents. (C) Ambi-
guity: Green allele is not expressed or covered in the right parent due to to lack of sequencing
coverage. Mendelian (in)consistency can not be verified.

According to Mendelian inheritance, one allele in the child should be inherited from
one parent and another allele from the other parent. (Figure 3.A). Mendelian inconsis-
tencies correspond to loci from the child with at least one allele not confirmed by par-
ents (Figure 3.B). We also separately account for the missing alleles from the parental
haplotypes due to insufficient expression or coverage of the alternative allele (Figure
3.C). Such loci are ambiguous since Mendelian consistency or inconsistency cannot be
verified.

HapIso was able to detect 921 genes with both haplotypes expressed among 9,000
expressed genes. We observed 4,140 heterozygous loci corresponding to position with
non-identical alleles among inferred haplotypes. 53% of detected SNVs follow Mendelian
inheritance. The number of variants with Mendelian inconsistencies accounts for 10%
of the heterozygous SNVs. The remaining SNVs are ambiguous and the Mendelian
consistency cannot be verified.

Additionally we check the number of recombinations in the inferred haplotypes.
Our approach can theoretically identify recombinations in the transmitted haplotypes.
Crossovers between the parental haplotypes result in recombination events in the child’s
haplotypes (Figure 4.B). Since recombination events are rare, most of the time they
manifest switching errors in phasing. Single-molecule reads are long enough to avoid
switching errors, which are confirmed by lack of recombination events, observed in the
reconstructed haplotypes.
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Fig. 4. Gene inheritance model . (A) Each parent provides one copy of the gene to a child; child
inherits blue haplotype from mother and a green haplotype from father. (B) Haplotypes of mother
pair up with each other and exchange the segments of their genetic material to form recombinant
haplotype (recombination of orange and blue haplotypes). The child inherits the recombined
haplotype. Haplotype from father is inherited with no recombination.

3.2 SNV Discovery and Cross Platform Validation

The single-molecule RNA-Seq was complemented by 101-bp paired-end RNA-Seq data
of the child. Short RNA-seq reads are used for cross-platform validation of the detected
SNVs. The haplotypes assembled by the HapIso were scanned with the 10x coverage
threshold to detect the heterozygous loci passed for the validation. The short RNA-
Seq reads were mapped onto the hg19 reference genome complemented by the gene
annotations (tophat 2.0.13, GRCh37 ENSEMBL). GATK [11] variant caller was used
to call the SNVs from the short RNA-seq reads following the publicly available best
practices. Additionally, the public catalogue of variant sites (dbSNP), which contains
approximately 11 million SNVs, was used to validate genomic position identified as
SNVs by single-molecule and short read protocols.

We compared genomic positions identified as SNVs from long single-molecule
reads and short reads (Figure 5). First, we compared the positions identified as SNVs by
both platforms. 279 genomic positions were reported as SNV by both platforms. Those
positions were also confirmed by dbSNP. Of those SNVs, 94% are concordant between
the platform i.e. contain identical alleles. Among the detected SNVs by the single-
molecule protocols, 23 positions are identified as SNVs only by the single-molecule
protocol. We investigated the coverage of those SNVs by the short reads. Those SNVs
are covered by the short reads with the alternative allele expression under the SNV
calling threshold, while the remaining SNVs are not covered by short reads.

We compared haplotypes assembled from long and short RNA-Seq reads (child
sample, GM12878). We use HapCUT [1] to assemble the haplotypes from the short
RNA-Seq reads. HapCUT is a max-cut based algorithm for haplotype assembly from
the two chromosomes of an individual. GATK is used to generate vcf file with genomic
variants required by HapCUT. HapCUT produces multiple contigs per gene shorter
than the transcript isoforms, thus limiting the possibility to access haplotype-specific
isoforms.
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Fig. 5. Venn diagram showing the numbers of genomic position identified as SNVs from long
single-molecule reads (green) and short reads (orange). SNVs calls from both platforms were
match against the dbSNP catalogue of variant sites (blue).

Unfortunately we could not compare our method with HapCUT for the long single-
molecule reads. HapCUT is originally designed for the short reads. We are not able
to generate the genomic variants (vcf format) required by HapCUT. The GATK tool
doesn’t have the best practice pipeline for the Pac Bio RNA-Seq reads.

4 Discussion

RNA molecules represent an essential piece of the cell identity, playing an important
role as a messenger and regulatory molecule [13]. Long single-molecule protocols pro-
vide an unprecedented allele-specific view of the haploid transcriptome. Partitioning the
long reads into the parental haplotypes allows us to accurately calculate allele-specific
transcript and gene expression and determine imprinted genes [7], [19]. Additionally, it
has the potential to improve detection of the effect of cis- and trans-regulatory changes
on the gene expression regulation [5], [21]. Long reads allow us to access the genetic
variation in the regions previously unreachable by the short read protocols provid-
ing new insights into the disease sustainability. Availability of full-length haplotype-
specific isoforms opens a wide avenue for the accurate assessment of allelic imbalance
to study molecular mechanisms regulating genetic or epigenetic causative variants, and
associate expression polymorphisms with the disease susceptibility.

We have presented HapIso, an accurate method for the reconstruction of the haplotype-
specific isoforms of a diploid cell. Our method uses the splice mapping and partitions
the reads into parental haplotypes. The proposed method is able to tolerate the rela-
tively high error-rate of the single-molecule sequencing and discriminate the reads into
the paternal alleles of the isoform transcript. Phasing the reads according to the allele
of origin allows efficiently distinguish between the read errors and the true biologi-
cal mutations. HapIso uses the 2-means clustering algorithm aiming to group the reads
into two meaningful clusters maximizing the similarity of the reads within cluster, and
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minimizing the similarity of the reads from different clusters. Clustering is applied lo-
cally for the transcribed regions, which are further reconnected in the segment graph.
Each cluster corresponds to the parental haplotype. An error-correction protocol is ap-
plied for the reads from the same cluster allowing to correct the errors and reconstruct
haplotype-specific isoforms.

Traditional haplotype assembly [1], [12] approaches are designed for whole-genome
sequencing and are not well suited for gapped alignment profile offed by the RNA se-
quencing. Genome-wide haplotype assembly aims to assemble two haplotypes for a
chromosome given the collection of sequencing fragments. In contrast, RNA haplo-
type reconstruction requires to assemble multiple haplotypes of a gene, which each iso-
form having two parental haplotype copies. ASE detection methods [10] are well suited
to determine the allele-specific expression on the on individual variant level further
aggregated into gene-level estimates. However, those methods are originally designed
for SNV-level read counts and are not applicable to reconstruct full-length haplotype-
specific isoforms of a gene.

To our knowledge, our method is the first method able to reconstruct the haplotype-
specific isoforms from long single-molecule RNA-seq data. Other approaches [18]
quantify the allele-specific expression of the genes using trio family data, while only
being able to provide the ratio between allele expression of the genes. Such approaches
are not suited to reconstruct the haplotype-specific isoforms and correct sequencing er-
rors. Experimental validation based on the trio family data and orthogonal short read
protocol suggests that HapIso is able to tolerate the relatively high error-rate and accu-
rately reconstruct the haplotype-specific isoforms for genes with at least 10x coverage.
Deeper sequencing is required to assemble haplotype-specific isoforms of genes with
low expression level.
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