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 19 

Abstract  20 

Perceptual decisions depend on coordinated patterns of neural activity cascading across 21 

the brain, running in time from stimulus to response and in space from primary sensory 22 

regions to the frontal lobe. Measuring this cascade and how it flows through the brain is 23 

key to developing an understanding of how our brains function. However observing, let 24 

alone understanding, this cascade, particularly in humans, is challenging. Here, we report 25 

a significant methodological advance allowing this observation in humans at 26 

unprecedented spatiotemporal resolution. We use a novel encoding model to link 27 

simultaneously measured electroencephalography (EEG) and functional magnetic 28 

resonance imaging (fMRI) signals to infer the high-resolution spatiotemporal brain 29 

dynamics taking place during rapid visual perceptual decision-making. After 30 

demonstrating the methodology replicates past results, we show that it uncovers a 31 

previously unobserved sequential reactivation of a substantial fraction of the pre-response 32 

network whose magnitude correlates with decision confidence. Our results illustrate that 33 

a temporally coordinated and spatially distributed neural cascade underlies perceptual 34 

decision-making, with our methodology illuminating complex brain dynamics that would 35 

otherwise be unobservable using conventional fMRI or EEG separately. We expect this 36 

methodology to be useful in observing brain dynamics in a wide range of other mental 37 

processes.  38 

 39 

 40 
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Introduction 41 

The detailed spatiotemporal brain dynamics that underlie human decision-making are 42 

difficult to measure. Invasive techniques with sufficient temporal or spatial resolution, 43 

such as depth electrodes or cortical arrays used with epilepsy patients, are only feasible in 44 

rare cases and, in addition, do not capture activity from the entire brain.  In comparison, 45 

non-invasive measures such as electroencephalography (EEG) and 46 

magnetoencephalography (MEG) suffer from poor spatial resolution, and blood oxygen 47 

level dependent functional MRI (BOLD fMRI) from poor temporal resolution and 48 

indirect coupling to neural activity (e.g. fMRI)1.  In spite of this, EEG, MEG, and fMRI 49 

have been used individually to study perceptual decision-making in the human brain, 50 

although, by themselves they provide a limited view of the underlying brain dynamics 2.   51 

Recently, methods enabling simultaneous acquisition of EEG and fMRI 52 

(EEG/fMRI) have led to varied analytic approaches aimed at integrating the 53 

electrophysiological and hemodynamic information contained in the joint measurements.  54 

Such approaches offer the potential to provide a comprehensive picture of global brain 55 

dynamics, and will likely offer new insights into how the brain makes rapid decisions 3,4. 56 

Some of the techniques that have been proposed for combining multi-modal brain signals 57 

have separately analyzed the EEG and fMRI data and subsequently juxtaposed the 58 

results5,6, while others attempt for a truly integrated approach in order to fully exploit the 59 

joint information contained in the data sets 7. In general, simultaneous EEG/fMRI and the 60 

associated analysis techniques have been used to identify neuronal sources of EEG trial-61 

to-trial variability, linking them to cognitive processes such as attention 8 and inhibition 9.  62 
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Many previous studies have used known EEG markers (P1, N2, N170, P300, α-63 

rhythm) or data driven approaches such as Independent Component Analysis (ICA) to 64 

combine EEG with fMRI data 4,8-16. One promising approach has been to use supervised 65 

machine-learning techniques (e.g. classifiers) to find relevant projections of the EEG 66 

data, where single-trial variability of the electrophysiological response along these 67 

projections can be correlated in the fMRI space. Goldman, et al. 17,  Walz, et al. 18 and 68 

Fouragnan, et al. 19 have demonstrated this technique on visual and auditory paradigms. 69 

This methodology has been shown to localize cortical regions that modulate with the task 70 

while preserving the temporal progression of task-relevant neural activity. 71 

Here we combine a classification methodology with an encoding model that 72 

relates the trial-to-trial variability in the EEG to what is observed in the simultaneously 73 

acquired fMRI. Encoding models have become an important machine learning tool for 74 

analysis of neuroimaging data, specifically fMRI 20. In most cases encoding models have 75 

been used to learn brain activity that encodes or represents features of a stimulus, such as 76 

visual orientation energy in an image/video 21-23, acoustic spectral power in sound/speech 77 

24, or visual imagery during sleep 25. In the method presented here, we employ an 78 

encoding model to directly relate the simultaneously collected data from the two 79 

neuroimaging modalities—instead of features derived from the stimulus, they are derived 80 

from EEG component trial-to-trial variability. Specifically, we learn an encoding in the 81 

spatially precise fMRI data from the temporally precise trial-to-trial variability of EEG 82 

activity predictive of the level of stimulus evidence. This approach leverages the fact that 83 

the level of stimulus evidence, as measured via EEG, persists across the trial 26,27, and 84 
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that by discriminating this information in a time-localized way, one can temporally “tag” 85 

specific cortical areas by their trial-to-trial variability.  86 

Using our framework for learning the BOLD signal encoding of task-relevant and 87 

temporally precise EEG component variability, we unravel the cascade of activity from 88 

the representation of sensory input to decision formation, decision action, and decision 89 

monitoring.  A particularly novel finding is that after the activation of decision 90 

monitoring regions (i.e. ACC), we see a reactivation of pre-response networks, where the 91 

strength of this reactivation correlates with measures of decision confidence. This 92 

specific reactivation, as well as the entire spatio-temporal cascade, is completely 93 

unobservable using conventional fMRI-only or EEG-only methodologies. 94 

 95 

Results 96 

In this study, we used a visual alternative forced choice (AFC) task where 97 

subjects were shown brief presentations of pictures corrupted by noise and instructed to 98 

rapidly discriminate between object categories. On any given trial, the level of noise, or 99 

stimulus evidence, was varied randomly. The task itself, as well as similar visual 100 

decision-making tasks 28, is believed to engage an extensive set of cortical areas in a 101 

coordinated fashion, including regions that are responsible for sensory encoding, 102 

evidence accumulation, decision formation, and response and decision monitoring.  103 

However, the dynamic interplay of these regions has never been observed in humans. 104 

Here we exploit previously reported findings regarding the sensitivity of the EEG and 105 

fMRI signals to the level of stimulus evidence during a perceptual decision-making task.  106 

Specifically, previous work has shown differential neural responses to high vs. low 107 
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stimulus evidence in trial averaged EEG event-related potentials (ERPs), where this 108 

difference persists across the trial26,27. Similarly, fMRI studies have shown that for 109 

perceptual decision making tasks a number of spatially-distributed cortical areas 110 

significantly correlate with the level of stimulus evidence29,30. We leverage the fact that 111 

the level of stimulus evidence is expressed temporally in the EEG and spatially in the 112 

fMRI to “tag” voxels with a time. Specifically, using a classification methodology (i.e. 113 

discriminative components) we identify temporally precise expressions of the level of 114 

stimulus evidence that then can be spatially localized through an encoding model of the 115 

fMRI BOLD data.  116 

We collected simultaneous EEG/fMRI data from 21 subjects as they performed a 117 

3-AFC task discriminating between faces, cars, and houses (Fig. 1A). Subjects were 118 

instructed to discriminate the object class after briefly viewing an image corrupted by 119 

varying levels of noise (Fig. 1B) and respond by pressing one of three buttons.  Overall, 120 

subjects responded with accuracies of 94 ± 5% and 58 ± 12% and with response times of 121 

634 ± 82ms and 770 ± 99ms for high and low stimulus evidence trials, respectively (Fig. 122 

1 C, D). Subject accuracies and response times across stimulus types (faces, cars, houses) 123 

for low stimulus evidence trials were similar; however, for high stimulus-evidence trials 124 

subject accuracies were higher and response times were shorter for faces than for cars or 125 

houses (See Supplemental Information Fig. S1).  126 

 127 

GLM based analysis of BOLD fMRI shows superposition of cortical areas correlated 128 

with stimulus evidence  129 
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A traditional general linear model (GLM) analysis of the fMRI (see Methods) 130 

revealed differences in BOLD activation between the two stimulus evidence conditions 131 

(Fig. 1F, SI Table 1). Brain regions showing greater BOLD activation to high vs. low 132 

stimulus evidence trials included areas associated with early visual perception and the 133 

default mode network26, such as fusiform gyrus, parahippocampal gyrus, lateral occipital 134 

cortex, superior frontal gyrus, and posterior cingulate cortex. Regions with greater BOLD 135 

activation to low vs. high stimulus evidence trials included areas in the executive control 136 

and difficulty networks, such as dorsal lateral prefrontal cortex, anterior cingulate cortex, 137 

intraparietal sulcus, and insula. Overall, these GLM results for the BOLD data 138 

reproduced previous results in the literature where similar stimuli and paradigms were 139 

used 29(Fig. S2A).  140 

 141 

Extracting temporally localized EEG signatures of stimulus evidence variability 142 

The traditional fMRI results showed multiple brain regions correlated with the 143 

difficulty, or stimulus evidence, of the trial; however, this traditional approach does not 144 

enable one to infer the relative timing of these fMRI activations. To infer timing at a 145 

scale of tens of milliseconds, we used linear classification31,32 of the EEG to extract trial-146 

to-trial variability related to stimulus evidence at specified post-stimulus time points.   147 

The basic idea is illustrated in Figure 2, where hypothetical neural activity is 148 

shown for two different regions that are constituents of the perceptual decision-making 149 

network.  Averaging over trials would clearly reveal a difference in the mean neural 150 

activity between high and low stimulus evidence. However, the two regions contribute 151 

differentially to the network, with one region encoding the stimulus evidence (Region 1) 152 
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and the other integrating it over time (Region 2); both are sensitive to the level of 153 

stimulus evidence, though varyingly so at different times in the trial.  By taking 154 

advantage of this sensitivity to the stimulus evidence, we can learn EEG discriminant 155 

components, i.e. spatial filters, that best classify trials at different time windows given the 156 

neural data.  We used the trial-to-trial variability along these component directions as 157 

features to uniquely tag fMRI voxels with the specific time window of the component. 158 

This tagging is done by building an encoding model of the features, given the BOLD 159 

signal, details of which are described in the following section.  160 

We constructed EEG components by learning linear classifiers at 25ms steps, 161 

starting from stimulus onset to 50ms past the average low stimulus evidence response 162 

time. We chose a time step of 25ms due to an empirical analysis showing a half width of 163 

50ms in the temporal autocorrelation of the EEG data, though in principle this 164 

methodology allows for temporal resolution up to the EEG sampling rate. Each classifier 165 

was associated with a set of discriminant values, which can be represented as a vector yτ; 166 

each element of the vector is the distance of a given trial to the discrimination boundary 167 

for the classifier at time step τ (Fig. 2). This distance can be interpreted as a measure of 168 

the EEG classifier's estimate of the level of stimulus evidence for that trial17,18,31-34.   169 

Results of the EEG analysis show discriminating information for stimulus 170 

evidence spanning the trial (see Fig. 4A), beginning roughly 175ms post-stimulus to past 171 

the average response times.  A dip occurs around 300ms, indicating stimulus evidence is 172 

less discriminative at this time and serves to demarcate early and late cognitive processes. 173 

The early process corresponded to the time of the D220 ERP component, which has been 174 

shown to modulate with the degree of task difficulty, whether via stimulus noise or task 175 
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demands35. The later and more prolonged component is likely related to more complex 176 

cognitive and motor preparatory processes that differ between high and low stimulus 177 

evidence trials.  Importantly, although the early and late EEG components were both 178 

discriminative, we found their trial-to-trial variability to be uncorrelated (Figs. 4B and 179 

S3E), indicating that while the discriminating information (level of stimulus evidence) 180 

persists across the trial, it couples differently to processes across time.  181 

 182 

An encoding model links fMRI activations with temporally distinct EEG trial-to-trial 183 

variability 184 

After extracting the trial-to-trial variability from the EEG discriminant 185 

components, feature vectors yτ are collected across time steps, τ, along with a response 186 

time vector to construct a matrix Y. This matrix is the temporally precise representation 187 

of the trial-to-trial EEG variability that reflects high vs. low stimulus evidence. An 188 

encoding model is then fit, namely a model in which weights are estimated for each time-189 

localized EEG window, to predict the trial-to-trial variability of the BOLD response for 190 

each fMRI voxel. Figure 3 shows a schematic of the encoding model framework we used 191 

and compares it to a traditional encoding model constructed by using features derived 192 

directly from the stimulus. Rather than constructing a map that directly relates each voxel 193 

to a type of stimulus feature, such as whether it encodes edges, motion or some semantic 194 

concept such as “animal” 21-23,36-38, our model is used to construct maps that label voxels 195 

by the time window of the variability they encode – i.e. it “tags” each voxel with a 196 

“time”, or set of times, when it encodes the variability in the given EEG discriminant 197 

component(s). 198 
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It is important to note that this approach does not attempt to improve source 199 

localization typically done for EEG/MEG studies. Our approach instead provides the 200 

temporal resolution of EEG (ms) and the spatial resolution of fMRI (mm) without the 201 

need to solve the ill-posed inverse solution and make the many associated assumptions 202 

required for reliable source-localization results39.  203 

An example of the quality of the encoding model is shown in Fig. 4C (see also 204 

Fig. S2B) where significant voxels from the encoding model are shown in yellow. Fig. 205 

4D shows the trial-to-trial variability of BOLD signal at a specific voxel, comparing it to 206 

the variability predicted by the encoding model. Additional validity of the encoding 207 

model and single subject results are presented in the Supplemental Information (Fig. 208 

S4A/B). The encoding model was also evaluated as a decoding model (see Methods) with 209 

the BOLD activity used to predict the trial-to-trial variability in the EEG for unseen 210 

data—data on which the encoding model was not trained. Fig. 4E shows these results, 211 

expressed as the correlation between the measured and predicted EEG trial-to-trial 212 

variability across the 800ms epoch. The shape of the curve is highly consistent with that 213 

observed for the EEG data itself (comparing Fig. 4A and Fig. 4E) (additional analysis of 214 

the fidelity of the model is provided in the SI, Fig. S3). 215 

Given the encoding model, we unwrap the BOLD activity across time by 216 

identifying weights that are consistent across subjects in space and time (see Methods). 217 

Fig. 5 shows these results for a group level analysis. We observe a progression of activity 218 

(see Movie S1), at 25ms resolution, which proceeds simultaneously down the dorsal and 219 

ventral streams of visual processing for the first 250ms. After that the cascade becomes 220 

more complex with activation in the IPS at 425ms and 750ms (see Fig. 6A), reactivation 221 
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of the SPL at 675ms and activation of ACC at 600ms along with other regions found in 222 

the traditional fMRI results. (see Fig. S5, Tables S2 and an additional analysis using 223 

dynamic causal modeling 40). The reactivation pattern is particularly significant since it 224 

would not be observable via a traditional fMRI general linear model (GLM) analysis, 225 

which integrates over time and thus superimposes these activities. For example, the 226 

changing sign of the middle temporal gyrus (MT) encoding weights in Fig. 6A 227 

manifested as no activity in the MT for the traditional fMRI GLM analysis—the change 228 

in sign canceled the effective correlation in the GLM (see Fig. 1F and Fig. S1). The areas 229 

of activation we find are consistent with previous reports in the literature for human 230 

subjects29,30; however, here we are able to link activations across time in a way that was 231 

previously only possible with invasive techniques.  232 

 233 

Cortical reactivation correlates with decision confidence 234 

Further analysis of the spatiotemporal dynamics (see Fig. 6B), shows that the 235 

reactivation pattern in the network occurs after decision-monitoring areas become 236 

engaged (i.e. after ACC).  Spontaneous reactivation, or “replay”, of neural activity in the 237 

human brain has been observed and believed to be important for memory consolidation41 238 

and more recently has been hypothesized to play a role in perceptual decision-making by 239 

enabling the formation of decision confidence42. To test the hypothesis that the 240 

reactivation activity we see is in fact related to decision confidence, we used a 241 

hierarchical drift diffusion model (DDM)43,44 to fit the behavioral data for high and low 242 

stimulus evidence conditions (see Methods).  Specifically, our model enables us to define 243 

a proxy for decision confidence based on the DDM fits to the behavior45,46.  Correlating 244 
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the reactivation level to this confidence proxy shows a strong and significant monotonic 245 

relationship between confidence and the level of reactivation (high stimulus evidence-246 

slope=0.037±0.008, t=4.657, p=3.2x10-6; low stimulus evidence-slope=0.062±0.008, 247 

t=7.754, p=8.88x10-15), with low stimulus evidence trials reactivated more strongly than 248 

high stimulus evidence trials (difference in slopes=-0.025±0.011, t=2.189, p=0.029)(see 249 

Fig. 7 and Fig. S7). Additionally, reactivation amplitude correlates with behavioral 250 

accuracy (Fig. S8) (high stimulus evidence, slope=0.0115±0.0047, t=2.41, p=0.016; low 251 

stimulus evidence, slope=0.0104±0.0047, t=2.19, p=0.028). Recursive feature elimination 252 

showed that the IPS/SPL and dorsal lateral prefrontal cortex (DLPFC) clusters 253 

contributed the most to reactivation/confidence proxy correlation (Fig. 7C).   254 

 255 

 256 

Discussion 257 

We have shown that linking simultaneously acquired EEG and fMRI using a novel 258 

encoding model enables imaging of high-resolution spatiotemporal dynamics that 259 

underlie rapid perceptual decision-making — decisions made in less than a second. This 260 

method, which resolves whole-brain activity with EEG-like temporal resolution, was 261 

shown to uncover reactivation processes that would otherwise be masked by the temporal 262 

averaging and slow dynamics of traditional fMRI. More broadly, our results 263 

demonstrated a general non-invasive data-driven methodology for measuring high 264 

spatiotemporal latent neural processes underlying human behavior.   265 

 This approach temporally “tags” the BOLD fMRI data by encoding the trial-to-266 

trial variability of the temporally precise task relevant components in simultaneously 267 
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acquired EEG. In effect, the EEG discrimination indexes the activity of interest at high 268 

temporal resolution, defining a feature space, and the trial-to-trial variability of these 269 

discriminant components becomes the specific feature values used in the encoding model. 270 

For the case presented here, this variability was used to tease apart the cascade of activity 271 

modulated by stimulus evidence across the trial, and this allowed us to observe, as never 272 

seen before, the spatiotemporal brain dynamics underlying a perceptual decision.  273 

 Previous studies have sought to generalize the timing diagram of a perceptual 274 

decision through multi-unit recordings in non-human primates47,48 or more broadly in 275 

humans29,30 using fMRI. Our results confirmed the general temporal ordering of 276 

activations found previously (early visual processing, decision formation, decision 277 

monitoring). However, there was a possibility the temporal order we observed using our 278 

technique was an artifact of our methodology. To assess this possibility, we performed 279 

additional analyses using dynamic causal modeling (DCM) to further validate the 280 

temporal activation sequence (see Fig. S6) and show, using a different set of assumptions 281 

and method, that the temporal sequence we observe is highly likely under a set of 282 

alternative sequences. We found that the most likely model is the one consistent with the 283 

time course inferred from our encoding model. The DCM results provide additional 284 

evidence that the temporal profile uncovered by the encoding model is a likely temporal 285 

decomposition of the superimposed fMRI activations. 286 

The approach we present requires that EEG and BOLD data be collected 287 

simultaneously and not in separate sessions in order to exploit the correlations in trial-to-288 

trial variability to “tag” the BOLD data. To show the importance of collecting the data 289 

simultaneously, we ran a control analysis that randomly permuted the trials within their 290 
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stimulus evidence class, thus effectively simulating an EEG and BOLD dataset collected 291 

separately. By destroying the link between the EEG and BOLD trials, the encoding 292 

model failed to find any consistent activation (Fig. S11/12), indicating the necessity of 293 

simultaneous acquisition.  294 

Alternative techniques for fusing simultaneous EEG-fMRI typically do not 295 

exploit EEG across the trial and instead only analyze specific ERP components or time 296 

windows of interest 4,8,10,12-19,49,50. Results from these techniques identify regions that 297 

modulate with the specific components, but yield limited information about the timing of 298 

other task-relevant regions seen in traditional fMRI contrasts. The methodology 299 

developed here extends the work of Goldman, et al. 17 and Walz, et al. 18  by combining 300 

their EEG data reduction techniques with techniques developed for encoding stimulus 301 

features onto BOLD data20-23,36,38 , ultimately providing a framework for labeling voxels 302 

in task-relevant fMRI contrasts with their timing information (Fig. S2C/E/F).  303 

Clearly, other EEG components that are task-related can be isolated and could 304 

potentially be used to “tag” BOLD data. The sliding window linear classification used 305 

here acts to reduce the EEG data along a dimension that categorizes stimulus evidence; 306 

however, this could be replaced by any other data reduction technique, such as 307 

temporally windowed ICA or PCA. Variability along these component directions could 308 

then be used in the encoding model to link with the simultaneously collected BOLD data.  309 

The choice of data reduction technique (i.e. feature space) would be highly dependent on 310 

the nature of the inferences. 311 

Our methodology enabled us to observe reactivation of the pre-response network, 312 

spatiotemporal dynamics that would be masked using traditional fMRI analysis. 313 
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Interestingly, the reactivation terminated in a network that included the MFG, SPL, and 314 

IPS, similar areas previously reported to be reactivated in metacognitive judgments of 315 

confidence in perceptual decisions42,51,52. In addition, these areas contributed the most to 316 

the correlation to confidence proxy (Fig. 7C). Gherman and Philiastides 53 observed this 317 

network using a multivariate single-trial EEG approach, coupled with a distributed source 318 

reconstruction technique. Fleming, et al. 42 and Heereman, et al. 54 used BOLD fMRI to 319 

show that areas in this network negatively correlate with subjective certainty ratings.  320 

Unique to our findings, we saw this reactivation on a single-trial basis after engagement 321 

of the ACC, which has been shown to be involved in decision monitoring53,55, and also 322 

observed the dynamic sequence leading up to this network reactivation. Our results 323 

showed that reactivation/replay occurred on a trial-to-trial basis after a decision, was 324 

stronger for difficult decisions, and correlated with decision confidence.  325 

A potential confound in our analysis is that the timing of the reactivation overlaps 326 

with some of the response times. To check if the reactivation was pre or post response, 327 

we implemented a response-locked encoding model analysis (Fig. S9). The response-328 

locked results showed significant activation pre-response that overlaps with the 329 

reactivation network from the stimulus locked analysis. In addition, trial-to-trial 330 

reactivation taken from pre-response clusters correlates with confidence proxy similarly 331 

to the stimulus locked results (Fig. S10). This provides further evidence that the 332 

reactivation is occurring pre-response.    333 

The encoding model we developed was able to decompose traditional fMRI 334 

activation maps into their temporal order with significant voxel overlap between the 335 

encoding model results and traditional results. The encoding model was also able to show 336 
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regions that were activated at multiple time points throughout the decision, indicating 337 

temporal dynamics that were hidden previously. The regions of activation we found are 338 

consistent with earlier findings; however, the work here provided the precise temporal 339 

decomposition of these previously reported, temporally superimposed regions of 340 

activation. In general, we have shown that simultaneously acquired EEG/fMRI data 341 

enables a novel non-invasive approach to visualize high resolution spatial and temporal 342 

processing in the human brain with the potential for providing a more comprehensive 343 

understanding of the neural basis of complex behaviors. 344 

 345 

Methods 346 

Subjects 347 

21 subjects (12 male, 9 female; age range 20-35 years) participated in the study. The 348 

Columbia University Institutional Review Board (IRB) approved all experiments and 349 

informed consent was obtained before the start of each experiment. All subjects had 350 

normal or corrected-to-normal vision. 351 

Stimuli 352 

 We used a set of 30 face (from the Max Planck Institute face database), 30 car, and 30 353 

house (obtained from the web) gray scale images (image size 512x512 pixels, 8 354 

bits/pixel). They were all equated for spatial frequency, luminance, and contrast. The 355 

stimulus evidence (high or low) of the task was modulated by systematically modifying 356 

the salience of the image via randomization of image phase (35% (low) and 50% (high) 357 

coherence)56. 358 

Experimental task 359 
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 The stimuli were used in an event-related three-alternative forced choice (3-AFC) visual 360 

discrimination task. On each trial, an image -- either a face, car, or house -- was presented 361 

and subjects were instructed to respond with the category of the image by pressing one of 362 

three buttons on an MR compatible button controller. Stimuli were presented to subjects 363 

using E-Prime software (Psychology Software Tools) and a VisuaStim Digital System 364 

(Resonance Technology) with 600x800 goggle display. Over four runs, a total of 720 365 

trials were acquired (240 of each category with 120 high coherence trials) with a random 366 

inter-trial interval (ITI) sampled uniformly between 2-2.5s. Each run lasted for 560 367 

seconds.  368 

fMRI acquisition 369 

Blood-oxygenation-level-dependent (BOLD) T2*-weighted functional images were 370 

acquired on a 3T Philips Achieva scanner using a gradient-echo echo-planar imaging 371 

(EPI) pulse sequence with the following parameters: Repetition time (TR) 2000ms, echo 372 

time (TE) 25ms, flip angle 90°, slice thickness 3mm, interslice gap 1mm, in-plane 373 

resolution 3x3mm, 27 slices per volume, 280 volumes. For all of the participants, we also 374 

acquired a standard T1-weighted structural MRI scan (SPGR, resolution 1x1x1mm).  375 

EEG acquisition 376 

We simultaneously and continuously recorded EEG using a custom-built MR-compatible 377 

EEG system57,58, with differential amplifiers and bipolar EEG montage. The caps were 378 

configured with 36 Ag/AgCl electrodes including left and right mastoids, arranged as 43 379 

bipolar pairs. Bipolar pair leads were twisted to minimize inductive pickup from the 380 

magnetic gradient pulses and subject head motion in the main magnetic field. This 381 

oversampling of electrodes ensured data from a complete set of electrodes even in 382 
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instances when discarding noisy channels was necessary. To enable removal of gradient 383 

artifacts in our offline preprocessing, we synchronized the EEG with the scanner clock by 384 

sending a transistor– transistor logic pulse at the start of each image volume. All 385 

electrode impedances were kept below 20 kΩ, which included 10 kΩ resistors built into 386 

each electrode for subject safety. 387 

Functional image pre-processing. 388 

Image preprocessing was performed with FSL (www.fmrib.ox.ac.uk/fsl/). Functional 389 

images were spatially realigned to the middle image in the times series (motion-390 

correction), corrected for slice time acquisition, spatially smoothed with a 6mm FWHM 391 

Gaussian kernel, and high pass filtered (100s). The structural images were segmented 392 

(into grey matter, white matter and cerebro-spinal fluid), bias corrected and spatially 393 

normalized to the MNI template using ‘FAST’ 59. Functional images were registered into 394 

MNI space using boundary based registration (BBR)60. 395 

 396 

EEG data preprocessing. 397 

 We performed standard EEG preprocessing offline using MATLAB (MathWorks) with 398 

the following digital Butterworth filters: 0.5 Hz high pass to remove direct current drift, 399 

60 and 120 Hz notches to remove electrical line noise and its first harmonic, and 100 Hz 400 

low pass to remove high-frequency artifacts not associated with neurophysiological 401 

processes. These filters were applied together in the form of a zero-phase finite impulse 402 

response filter to avoid distortions caused by phase delays. We extracted stimulus-locked 403 

1500 ms epochs (-500:1000) and subtracted the mean baseline –  -200 ms to stimulus 404 

onset – from the rest of the epoch. Through visual inspection, we discarded trials 405 
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containing motion and/or blink artifacts, evidenced by sudden high-amplitude 406 

deflections. 407 

Sliding window logistic regression. 408 

 We used linear discrimination to associate each trial with the level of stimulus evidence 409 

represented in the EEG. We considered high stimulus and low stimulus evidence trials 410 

irrespective of behavioral accuracy. Regularized logistic regression was used as a 411 

classifier to find an optimal projection for discriminating between high and low stimulus 412 

evidence trials over a specific temporal window. A sweep of the regularization 413 

parameters was implemented using FaSTGLZ61. This approach has been previously 414 

applied to identify neural components underlying rapid perceptual decision-making 415 

17,18,31,33,34,45,50,62.  416 

Specifically, we defined 50ms duration training windows centered at time, τ, 417 

ranging from stimulus onset to 800ms following the stimulus in 25ms steps. We used 418 

logistic regression to estimate a spatial weighting, on N EEG channels, vector (wτ which 419 

is N x 1) that maximally discriminated between EEG sensor array signals E for each class 420 

(e.g., high vs. low stimulus evidence trials):  421 

      (1) 422 

In eqn. 1, Eτ is an N x p vector (N sensors per time window τ by p trials). For our 423 

experiments, the center of the window (τ) was varied across the trial in 25ms time-steps. 424 

We quantified the performance of the linear discriminator by the area under the receiver 425 

operator characteristic (ROC) curve, referred to here as AUC, using a leave-one-out 426 

procedure. We used the ROC AUC metric to characterize the discrimination performance 427 

as a function of sliding our training window (i.e., varying τ). For each subject, this 428 

yτ = wτ
TEτ
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produced a matrix Y where the rows corresponded to trials and the columns to training 429 

windows, i.e. Y is the combination of the calculated yτ for each time window. 430 

Traditional fMRI analysis. 431 

 We first ran a traditional general linear model (GLM) fMRI analysis in FSL, using 432 

event-related (high and low stimulus evidence) and response time (RT) variability 433 

regressors. The event-related regressors comprised boxcar functions with unit amplitude 434 

and onset and offset matching that of the stimuli. RT variability was modeled using the z-435 

scored RT as the amplitude of the boxcars with onset and offset matching that of the 436 

stimulus, and these were orthogonalized to the event-related regressors. 437 

Orthogonalization was implemented using the Gram-Schmidt procedure63 to decorrelate 438 

the RT regressor from all other event-related regressors. All regressors were convolved 439 

with the canonical hemodynamic response function (HRF), and temporal derivatives 440 

were included as confounds of no interest. An event-related high versus low stimulus 441 

evidence contrast was also constructed. A fixed-effects model was used to model 442 

activations across runs, and a mixed-effects approach was used to compute the contrasts 443 

across subjects. Activated regions that passed a family-wise error (FWE) 64 corrected 444 

cluster threshold of p < 0.01 at a z-score threshold of 2.57 were considered significant. 445 

fMRI deconvolution. 446 

 Associating fMRI data to each trial is challenging for two main reasons: (a) the temporal 447 

dynamics of the hemodynamic response function (HRF) evolve over a longer time-scale 448 

than the mean ITI of the event-related design, resulting in overlapping responses between 449 

adjacent trials; and (b) the ITI was random for each trial so that the fMRI data was not 450 

acquired at a common lag relative to stimulus onset. To overcome these issues, we 451 
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employed the `least squares - separate' (LS-S) deconvolution65 method to estimate the 452 

voxel activations for each trial. For every trial, the time series of each voxel was 453 

regressed against a “signal" regressor and a “noise" regressor. The “signal" regressor was 454 

the modeled HRF response due to that trial (a delta function centered at stimulus onset 455 

convolved with a canonical HRF), while the “noise" regressor was the modeled HRF 456 

response due to all other trials (superimposed linearly). The resulting regression 457 

coefficients of the “signal" regressor represented the estimated voxel activations due to 458 

that trial. These voxel activations were then organized into a single brain volume per trial. 459 

We extracted 58697 voxels from a common gray matter group mask at 3 mm3 spatial 460 

resolution that excluded white matter and CSF and assembled the resulting voxel 461 

activations into rows of the data matrix F. 462 

Single subject encoding model. 463 

 All encoding model analyses were performed in MATLAB. To relate the EEG data with 464 

the fMRI, we devised a subject-wise spatio-temporal decomposition using singular value 465 

decomposition (SVD). Let F be an m x p matrix denoting m-voxels and p-trials that is the 466 

deconvolved high and low stimulus evidence fMRI data for each trial. Let Y be the r x p 467 

matrix denoting r-windows (33 EEGτ windows and response time (RT)) and p-trials. For 468 

each trial, the first row of Y is the response times while subsequent rows are the y values 469 

at each window time. Let W be an m x r matrix that is the weights on Y that solve for F. 470 

      (2) 471 

 Normally, if we solve for W using the least squares approach, we get: 472 

W=(FYT)(YYT)-1      (3) 473 

F =WY
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However, each time point might be highly correlated with its neighbors, which reduces 474 

the stability of the least-squares regression. We can use SVD to reduce the feature space 475 

and improve our estimation of W (the weights on each window). Then for a leave-one-476 

out cross validation, we hold out a single trial from the EEG Y matrix and the 477 

corresponding volume from the fMRI data F and train on the remaining trials. We 478 

repeated this for all trials.  479 

YTrain=UΣVT      (4) 480 

Where U is an r x r orthonormal matrix, Σ is a r x p diagonal matrix and V is a p x p 481 

orthonormal matrix. After SVD on YTrain, we reduced the feature dimensions on YTrain  to 482 

retain 75% of the variance by only keeping v components. To do this, we selected the 483 

first v rows of Σ and zeroed the other rows. We now have  as our reduced spaced 484 

matrix. If we now recalculate our least squares solution where we have replaced Y by its 485 

reduced form  in equation 3: 486 

      (5) 487 

So for each leave one out fold, we first calculated the SVD of the training set. We then 488 

calculated the number of components to keep and then solve for , the weight estimate 489 

per fold. To test, we then applied the weights to the left-out test data YTest to estimate the 490 

encoded fMRI data  for the encoding part: 491 

      (6) 492 

While for the decoding model using the left out test data FTest: 493 

       (7) 494 

 Here,   is not invertible, and so we used the pseudo-inverse. 495 

Σ

U ΣVT

Ŵ = (FTrainV ΣT )(ΣΣT )−1UT

Ŵ

F̂

F̂ = ŴY Test

Ŷ = Ŵ TFTest (Ŵ TŴ )+

Ŵ TŴ
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At this point, we have , a m x p matrix with m voxels by p trials. For each voxel 496 

j, we calculated the correlation of  with Fj, resulting in the matrices RfMRI (Pearson 497 

Correlation Map) and PfMRI  (p-value map of the Pearson Correlation) that are m x 1. The 498 

PfMRI was then converted to a z-score map. We constructed the m x r weight matrix W by 499 

taking the average of all the trained Ŵ matrices. To test which time windows were 500 

significant, we also calculated, , the correlation between Ŷτ and Yτ. 501 

Group level spatio-temporal analysis. 502 

For group level statistics, we first analyzed the vectors across all subjects. The  503 

vectors were converted into their p-values, and for each time window (τ), used to 504 

compute combined Stouffer p-values 66. These group level results were then false 505 

discovery rate corrected (FDR) for multiple comparisons67. To identify group level 506 

voxels where our model predictions were significant, each subject's p-value maps for the 507 

leave-one-out correlation were converted into their respective z-values, and voxel-wise 508 

significance was calculated using threshold-free cluster enhancement (TFCE) using a 509 

non-parametric randomization procedure implemented in FSL68. Voxels were considered 510 

significant if they passed a conservative false discovery rate threshold of p<0.01.  511 

These significant voxels were then used as a mask to temporally localize 512 

activations by computing the voxels that were consistent in their direction ( positive (high 513 

stimulus evidence) or negative (low stimulus evidence) ) and timing (τ window). To this 514 

end, we implemented a spatio-temporal TFCE (stTFCE) in both space (neighboring 515 

voxels) and time (neighboring time windows - response time window not included) and 516 

computed significance through a randomization procedure. 33000 permutations (1000 517 

permutations per window) were run by randomly altering the sign of each subject and the 518 

F̂

F̂j

Rτ
EEG

Rτ
EEG Rτ

EEG
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temporal ordering of the windows, as we were testing whether the weights were 519 

consistent in sign, voxel space, and temporal window. P-values were calculated by 520 

comparing the true stTFCE value with the distribution of permuted values. Again, voxels 521 

were considered significant if they passed FDR correction at p<0.05 (high stimulus 522 

evidence: FDR-Corrected p<0.0019, low stimulus evidence: FDR-Corrected p<0.00036). 523 

Note, that now our number of multiple comparisons was the number of voxels in the 524 

FDR-mask (20256) times the number of time windows (33). We analyzed the response 525 

time separately with a standard TFCE randomization procedure implemented in FSL 526 

(Fig. S2D). 527 

Dynamic causal modeling. 528 

To validate the encoding model timing, we implemented single-state linear 529 

dynamic causal modeling (DCM) using DCM10 in SPM8 69, and applied this to the 530 

BOLD data to test the hypothesis that the temporal sequence of BOLD activations we 531 

found in our EEG-fMRI encoding method was most likely, relative to other possible 532 

sequences of these same activations, given only the BOLD data. We used the results of 533 

the encoding model to select seven regions of interest that spanned the entire trial. For the 534 

first region (labeled 175 in our figures), we computed the union of activations during the 535 

175ms and 200ms windows. Activations of the 225ms (225) and 250ms combined with 536 

275ms (250) windows become the second and third regions. We computed the union of 537 

activations during the 325ms and 350ms windows to create the fourth (325). For the fifth 538 

region (400), we computed the union of the activations during the 400ms-450ms 539 

windows. For the sixth region (650), we computed the union of the activations during the 540 

650ms and 675ms windows. Finally, the union of the activations during the 725-800ms 541 
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windows was computed to create the seventh region (725). We removed any overlapping 542 

voxels between any of the regions and then extracted time series from individual 543 

subjects’ preprocessed functional data in MNI space by estimation of the first principal 544 

component within each region.  545 

We constructed 11 models (Figure S6) to investigate the directed connectivity of 546 

these regions and validate the temporal ordering found by the encoding model. Each 547 

model was feed-forward with first node in each model as the input region. The first 548 

model was the temporal ordering of the regions inferred from our EEG-fMRI encoding 549 

model analysis. For five of the models, we randomized the temporal ordering of the early 550 

regions (175, 225, 250) and the late regions (325, 400, 650, 725) separately. For the other 551 

five models, we fully randomized the temporal ordering of all the regions.  552 

We used fixed-effects Bayesian model selection (BMS) to compare these 11 553 

models both on a single-subject level and at the group level. BMS balances model fit and 554 

complexity, thereby selecting the most generalizable model. It estimates the relative 555 

model evidence and provides a distribution of posterior probabilities for all of the models 556 

considered. We also compared families of similar models70; the model space was divided 557 

into two families (early/late or fully randomized).  558 

 559 

Drift Diffusion Model (DDM) and Confidence Proxy. 560 

The DDM models decision-making in two-choice tasks. Here, we treated the decision 561 

(correct vs. incorrect) as our two choices. A drift-process accumulates evidence over time 562 

until it crosses one of two boundaries (upper or lower) and initiates the corresponding 563 

response68. The speed with which the accumulation process approaches one of the two 564 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


26	  

boundaries (a) is called drift-rate (v) and represents the relative evidence for or against a 565 

particular response. Recently, Philiastides, et al. 45 showed that for conditions in which 566 

the boundary (a) does not change, a proxy for decision confidence for each trial (i) can be 567 

computed by  . 568 

 We used Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python 569 

(HDDM) to calculate the drift rate (v), decision boundary (a) and non-decision time Tnon 570 

for each subject 43. Specifically, we modeled high and low stimulus evidence response 571 

time data separately. This was to ensure our confidence proxies were consistent within 572 

trial types. We included the response time and whether the subject got the trial correct. 573 

HDDM obtains a sequence of samples (i.e., a Markov chain Monte Carlo; MCMC) from 574 

the posterior of each parameter in the DDM. In our model, we generated 5000 samples 575 

from the posteriors, the first 1000 (burn-in) samples were discarded, and the remaining 576 

samples were thinned by 5%.  577 

 After modeling the DDM process, each trial's (i) confidence proxy (CP) for each 578 

subject (j) was computed by  and then z-scored across trials where 579 

Tnon,j was varied for high or low stimulus evidence trials, separately. Therefore, CP was a 580 

measure of relative trial confidence within difficulty levels.  581 

 582 

Confidence Proxy and Decision Replay. 583 

 Trial to trial reactivation amplitude was defined as  for each 584 

subject (j) and trial (i), where WpostACC is the weight matrix from the encoding model 585 

thresholded by voxels that were significant in the group results from the 600-800ms 586 

1/ RTi −Tnon

CPi, j =1/ RTi −Tnon, j

Yj,i
R =Wj,PostACC

T Fj,i
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windows. The mean of the  across time becomes a measure of  “decision replay” 587 

strength for that trial (more negative y's indicate more replay activation, more positive y's 588 

indicate less replay activation).   was quintiled for high and low stimulus evidence 589 

and the average confidence proxy was calculated within each quintile (Fig. 7). A linear 590 

mixed effects model71 was used to test if the slope of confidences across quintile 591 

grouping, , were significantly different from 0 while including stimulus evidence as a 592 

condition. Separate similar analyses with non-replay windows (175-250ms) and testing 593 

for behavioral accuracy were also performed (Fig. S7-8). To test the contribution of each 594 

cluster to the correlation with confidence, we implemented recursive feature elimination, 595 

where our features were clusters of significant voxels (> 48 voxels) during the 600-596 

800ms time window. This procedure removed clusters from the ‘replay’ network before 597 

calculating trial-to-trial reactivation. We then calculated the percent change in slope 598 

(reactivation x confidence proxy) when the cluster was removed compared to the total 599 

network. This procedure ranks cluster importance by sorting which clusters, when 600 

removed, had the strongest negative effect on slope height.   601 
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 840 
Figure Captions 841 

Figure 1. Paradigm and traditional EEG and fMRI results 842 

A, 3-AFC task where stimulus evidence for each category is modulated by varying the 843 

phase coherence in the images. B, Example of face images with high stimulus evidence 844 

(high  coherence: 50%) and low stimulus evidence (low coherence: 35%). C, Behavioral 845 

performance shows significant differences, as a function of stimulus evidence, in 846 

accuracy (p< 10-12, paired t-test) and D, response time (p< 10-8, paired t-test) across the 847 

group. E, Grand average stimulus-locked event related potentials (ERPs) for electrode Pz 848 

show that differences in stimulus evidence span the time from stimulus to response. F, 849 

fMRI analysis showing cortical areas correlated with high (red) vs. low (blue) stimulus 850 

evidence across the entire trial (Z> 2.57 with  p< 0.01 Family-Wise Error cluster 851 

corrected). 852 

Figure 2. Temporally precise trial-to-trial EEG variability tags brain regions during 853 

decision-making 854 

A, Illustration of how trial-to-trial variability of neural activity in spatially distinct 855 

cortical areas can be used to tag brain regions. In this hypothetical example Region 1 is 856 

involved in sensory encoding while Region 2 integrates sensory evidence to form a 857 

decision (in NHP literature, Region 1 might represent MT, while Region 2 LIP). Neural 858 

activity across the trial is shown for two stimulus types, one with high sensory evidence 859 

for the choice (red curves) and one with low sensory evidence (blue curves).    Also 860 

shown are two temporal windows (τ1 and τ2) that represent different times during the 861 

trial. B, Linear classifiers are trained to separate trials based on the two levels of stimulus 862 

evidence at specific temporal windows.  Shown are classifiers (parameterized by weight 863 
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vectors w1 and w2) for two temporal windows (τ1 and τ2) with respect to two EEG sensors 864 

(for simplicity only two dimensions of the full N=43 sensor space are shown.  Though 865 

the component hyperplane is optimal for the full 43 dimensions, when projected to a line 866 

in two dimensions for illustration, it may appear that the separation is sub-optimal). This 867 

yields an EEG discriminant component for each temporal window. Variability along 868 

these components serves as a unique feature vector for temporally tagging the BOLD 869 

data—e.g. variability along an EEG component trained with data from τ1 tags BOLD 870 

voxels with time τ1 while variability along an EEG component trained with data from τ2 871 

tags them with τ2.    872 

 873 

Figure 3. Encoding models based on stimulus derived features versus EEG 874 

variability 875 

 A, A traditional encoding model used in fMRI analysis extracts a set of features from the 876 

stimulus that are potentially representative of low level structure and high level semantics 877 

(green box).  Weights are learned to model how these stimulus features are encoded in 878 

the fMRI BOLD signal.  The resulting encoding model is used to make predictions based 879 

on how well different voxels predict the features from novel stimuli.  For example, one 880 

can create maps of the brain that are labeled based on the stimulus features that each 881 

voxel represents. B, The same encoding model concept applied to EEG variability (EEG 882 

encoding model).  Instead of features being estimated from the stimulus, they are derived 883 

from EEG component trial-to-trial variability (as in Fig 2a) with each temporal window 884 

representing a different feature (green box).   Weights are learned so as to model how the 885 

EEG variability at a given time window is encoded in the fMRI BOLD.  As in the 886 
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traditional encoding model, predictions on novel stimuli can be done to test the model 887 

and results can be used to construct a map —in this case a map of the brain that shows 888 

the timing of the EEG component variability that each voxels represents. 889 

 890 

Figure 4. EEG discrimination and encoding model results 891 

 A, Group average area under the receiver operating curve (AUC) for the sliding window 892 

logistic regression EEG discrimination analysis, comparing high versus low stimulus 893 

evidence trials; standard error across subjects is shown with shading. B, A single subject's 894 

discriminating y-value distributions for high (red) and low stimulus evidence (blue) trials 895 

for two EEG time points (225ms and 600ms). C, Significant fMRI voxels resulting from 896 

the group level analysis for the encoding model (p< 0.01 TFCE-False Discovery Rate 897 

(FDR) corrected). Activity is seen encompassing early visual processing regions, 898 

attention networks, and the task positive network. D, A random subset of 100 (50 for 899 

each stimulus evidence condition) from 700 total trials of the actual (circle) and predicted 900 

(diamond) BOLD responses from the encoding model, for an example subject at a single 901 

voxel (MNI X/Y/Zmm: -27/-54/-15, r=0.206, p<10-6). High and low stimulus evidence 902 

trials are shown separately for clarity. E, The averaged correlation of the predicted y-903 

values with the true y-values across the trial duration. Blue shading represents the 904 

standard error across subjects. Grey shading indicates significant time windows (p< 0.05 905 

FDR-corrected). 906 

 907 

Figure 5. Group-level encoding model weights results show neural activation cascade  908 
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 Subset of thresholded (p< 0.05 FDR-Corrected, k=10) group level statistical parametric 909 

maps created by stTFCE randomization procedure on the encoding model weight 910 

matrices show the progression of spatial activity across the trial. Activation can be seen 911 

early in the trial in the occipital regions while progressing more anteriorly later in the trial 912 

to executive control areas. Activations in red indicate areas where high stimulus evidence 913 

trials had larger activations than low stimulus evidence trials, and blue the inverse.  914 

 915 

Figure 6. Spatial-temporal event-related activations show coordinated reactivations. 916 

A, Union across time windows of significant voxels for high (red) and low (blue) 917 

stimulus evidence activations. Voxels with activations for both high and low conditions 918 

(at different time windows) are displayed in green. Also shown are the encoding model 919 

weights for specific voxels, including fusiform gyrus (FG-R):36/-51/-18, (FG-L):-42/-920 

42/-18, superior lateral occipital cortex (sLOC):24/-63/36, superior parietal lobule 921 

(SPL):27/-51/54, anterior cingulate cortex (ACC):-6/24/30, intraparietal sulcus (IPS):-922 

30/-60/39, middle frontal gyrus (MFG):-45/27/30, middle temporal gyrus (MT):-57/-923 

60/0. Asterisks indicate significant windows. B, Sequence of significant weights showing 924 

a “replay” of the network after the onset of ACC activation (shaded ellipse). “Replay” is 925 

faster than the initial stimulus driven sequence and strongest for low evidence trials.  926 

 927 

Figure 7. Trial-to-trial reactivation correlates with decision confidence.  928 

 Trial-to-trial reactivation amplitude ( – see Methods) of “replay” correlates with 929 

confidence proxy for both high (A) and low (B) stimulus evidence conditions. Error bars 930 

represent standard errors across subjects. (C), Stimulus-locked replay activation clusters 931 

Yj,i
R
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and feature importance. (inset) Regions of interest used in computing the reactivation 932 

values for computing confidence proxy correlations. These regions were taken from 933 

significant group activations from 600-800ms post stimulus.  Regions were then clustered 934 

(> 48 voxels) and a secondary analysis for feature importance was performed. Here, we 935 

removed each cluster before computing trial-to-trial reactivations and compared the slope 936 

of reactivation x confidence proxy when all clusters were present.  Panel C shows the 937 

ranking of feature importance for each cluster (more negative % change = more 938 

importance). Negative changes in slopes show that by removing that cluster the slope of 939 

the correlation between reactivation and confidence decreases, indicating the importance 940 

of that cluster. Increases in slope indicate that the correlation is higher with that region 941 

removed.  942 
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  963 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


41	  

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

Figure 3.  972 

 973 

  974 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


42	  

 975 

 976 

 977 

 978 

 979 

 980 

Figure 4.  981 

 982 

  983 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


43	  

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

Figure 5. 992 

 993 

  994 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


44	  

 995 

 996 

 997 

 998 

 999 
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Figure 7. 1011 
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