
 1 

                                                       

Text body: 6, 753 words 

Abstract: 315 words 

Tables 4 

Figures: 4  

Supplementary Data: Figures1, Appendix1 

 

Graph analysis of structural brain networks in Alzheimer’s Disease  

Majnu John*, 1, 2, 3, Toshikazu Ikuta*4, and Janina Ferbinteanu5,6. 

1 The Feinstein Institute for Medical Research, North Shore-LIJ Health System, 
Manhasset, NY   

2 The Zucker Hillside Hospital, Psychiatry Research, North Shore-LIJ Health Sys-
tem, Glen Oaks, NY 

3 Department of Mathematics, Hofstra University, Hempstead, NY  

4 Department of Communication Sciences and Disorders, University of Mississip-
pi 

5 Department of Physiology and Pharmacology, SUNY Health Science Center at 
Brooklyn, Brooklyn, NY  

6 Department of Neurology, SUNY Health Science Center at Brooklyn, Brooklyn, 
NY  

 

 

* These two authors contributed equally 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2016. ; https://doi.org/10.1101/050708doi: bioRxiv preprint 

https://doi.org/10.1101/050708
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Corresponding author: Janina Ferbinteanu, Department of Physiology and Phar-

macology, SUNY Health Science Center at Brooklyn, Brooklyn, NY 11203 ; Phone: +1-

718-270-1796; Fax: +1-718-270-3103; email: janina.ferbinteanu@downstate.edu; ferb-

inteanu@gmail.com 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2016. ; https://doi.org/10.1101/050708doi: bioRxiv preprint 

https://doi.org/10.1101/050708
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 

ABSTRACT 

Background 

Changes in brain connectivity in patients with early Alzheimer’s disease (AD) 

have been investigated using graph analysis.  However, these studies were based on 

small data sets, explored a limited range of network parameters, and did not focus on 

more restricted sub-networks, where neurodegenerative processes may introduce more 

prominent alterations.  

Methods 

In this study, we constructed structural brain networks out of 87 regions by using 

data from 135 healthy elders and 100 early AD patients selected from the Open Access 

Series of Imaging Studies (OASIS) database. We evaluated the graph properties of the-

se networks by investigating metrics of network efficiency, small world properties, seg-

regation, product measures of complexity, and entropy. Because degenerative process-

es take place at different rates in different brain areas, analysis restricted to sub-

networks may reveal changes otherwise undetected. Therefore, we first analyzed the 

graph properties of a network encompassing all brain areas considered together, and 

then repeated the analysis after dividing the brain areas into two sub-networks con-

structed by applying a clustering algorithm.   

Results 

At the level of large scale network, the analysis did not reveal differences be-

tween AD patients and controls. In contrast, the same analysis performed on the two 

sub-networks revealed modifications accompanying AD. Changes in small world proper-
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ties suggested that the ability to engage concomitantly in integration and segregation of 

information diminished with AD in the sub-network containing the areas of medial tem-

poral lobe known to be heaviest and earliest affected. In contrast, we found that the se-

cond network showed an increase in small world propensity, a novel metric that unbi-

asedly quantifies small world structure. Complexity and entropy measures indicated that 

the intricacy of connection patterns and structural diversity decreased in both sub-

networks.   

Conclusions 

These results show that neurodegenerative processes impact volumetric networks in a 

non-global fashion. Our findings provide new quantitative insights into topological prin-

ciples of structural brain networks and their modifications during early stages of Alz-

heimer’s disease. 

 

Keywords: degenerative processes, complex networks, clustering algorithm, 
small world properties, entropy, complexity. 
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INTRODUCTION 

Alzheimer's disease (AD) is a progressive neurodegenerative process that inter-

feres with multiple brain functions including memory, language, attention, and perceptu-

al skills. As the life span of the population is increasing, so are the prevalence of this 

illness and its costs to society. Early detection of AD is important because it can lead to 

increased efficacy of treatment.  Currently, growing amounts of evidence from neuropa-

thological, electrophysiological and neuroimaging studies support the hypothesis that 

AD includes a disconnection syndrome 1 generated by a breakdown of the organized 

structure and function of multiple brain areas even in the early stages of the disease 2. 

One useful source of information for early AD diagnosis is structural MRI, which can re-

veal abnormalities in a wide range of brain areas. Multiple studies have found structural 

MRI (sMRI) a useful diagnostic tools that can contribute to detecting AD-related modifi-

cations before the development of clinical symptoms 3-5 6 7. A different way in which 

sMRI can assist in early AD diagnosis is by providing data sets for a distinct group of 

recently developed analytical procedures involving advanced mathematical and statisti-

cal methods such as machine learning procedures 8-11 and graph theory, the formal 

study of networks 12 13 14.  

Graph theoretical methods provide a powerful approach for quantifying the or-

ganization of network connectivity using brain anatomical features including gray matter 

volume, cortical thickness, surface area, and white matter pathways between gray mat-

ter regions 14 15 16 17 18 19 20.  When applying graph theory to sMRI data, the outcome is 

a network whose nodes or vertices are represented by brain regions or voxels defined 
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by a predetermined parcellation scheme, while edges are represented by inter-

individual data associations of these regions evaluated, for example, as the strength of 

correlation between regional measurements.  (It should be mentioned that edges of 

structural networks are not always represented by correlations between 

regional measurements, but by the number or density of white matter tracts connecting 

regions; however, this was not the course our analysis took). Structural network analy-

sis can be employed to characterize the properties of large scale brain circuits 21, and 

changes in the structure of a network, such as anatomical alterations produced by the 

neurodegenerative processes in AD, modify the network’s properties, and likely its func-

tion.  Accurate evaluation of these modifications through assessment of morphometric 

correlations between brain areas may provide novel insights into the modifications in-

troduced by AD and suggest novel treatment avenues 22.   

 Several previous studies of AD from the graph theory perspective reported aber-

rations in small world properties (ability to simultaneously integrate and segregate in-

formation processing) of whole brain structural networks generated by modifications in 

cortical thickness measurements 14 15 23; decreased functional connectivity 12 13; and 

high amyloid-β deposition in the locations of cortical hubs (highly connected nodes, 

which correspond to brain areas with high input/output in this type of analysis 24. The 

latter finding is consistent with the possibility that hubs, while acting as critical way sta-

tions for information processing, may also augment the underlying pathological cascade 

in AD as neurodegeneration may progress preferentially along neural pathways (but see 

25).  Although these studies represent significant progress in the study of AD, three out 

of the four structural studies cited above were limited by low sample sizes (less than 30 
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subjects/group). Thus, we aimed to base our investigation on a large group size and. To 

this purpose, we used 235 subjects selected from the Open Access Series of Imaging 

Studies. Second, the above studies focused mainly on only one class of network pa-

rameters, the small-world property, which quantifies the ability of a network to simulta-

neously perform functional integration and segregation. However, brain modifications in 

early AD may involve other changes in network parameters beside small world proper-

ties, which may provide additional insight into pathological processes.  Therefore, in the 

current study we additionally used entropy, complexity, and efficiency to assess struc-

tural alterations of gray matter volume in AD patients. Third, in early AD neurodegenera-

tion affects distinct brain areas to various degrees and consequently, modifications in 

brain networks are not uniform.  To evaluate whether this heterogeneity can be cap-

tured by graph analysis, we investigated structural changes first in one large network, 

constituted from all the brain areas under consideration, and a second time after we 

clustered the brain areas using an algorithm that iteratively removes edges from the 

network to divide it into distinct groups 26.   
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METHODS 

Subjects 

MRI, demographic and clinical data were obtained from the Open Access Series 

of Imaging Studies (OASIS) database (http://www.oasis-brains.org). The details of data 

acquisition were previously described 27.The current analysis included two hundred and 

thirty-five subjects whose clinical data were available. In this sample, subjects with de-

mentia are only those with AD-caused dementia 27. Subjects who had a Clinical Demen-

tia Rating (CDR) score 28 29 equal to zero were classified as healthy elders (n = 135), 

and subjects who had CDR score 0.5 or above were treated as early stage AD patients 

(n= 100); 70 patients had a CDR score of 0.5, 28 a score of 1, and 2 a score of 2. The 

median age in the control group was 71 and age ranged from 33 to 94. The median age 

in the patients group was 77 with a range from 62 to 96. Mean ages for the controls and 

patients were 69.1 years and 76.8 years, respectively. 72% of the healthy controls and 

59% of the early stage AD’s were females. Median Mini Mental State Exam (MMSE) 

score 30, which measures the cognitive function, was 29 (range: 25 to 30) in controls 

and 26 (range: 14 to 30) in patients. Because age and gender influence correlation be-

tween regional volumes, we removed the effects of these two factors by regressing 

them on the structural volume of each region to obtain studentized residuals, which 

were then used for all further analyses. 
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Volumetric MRI Data Processing 

Structural T1 MRI data (256x256x160 voxels of 1mm3) were processed by Free-

Surfer (version 5.3.0) in which volumetric parcellation was processed by recon-all ver-

sion 1.379 with –all option.  From cortical aparc parcellation and subcortical aseg seg-

mentation outputs 31,32, eighty seven cortical gray matter and subcortical regions includ-

ing brain-stem and cerebellar cortex were incorporated in the analysis. All regions other 

than brain stem were separately and independently treated for left and right volumes. All 

brain regions are listed in Table 1.  

 

Brain networks as graphs 

Graphs are mathematical constructs of relationships among various objects. In 

graph models, the objects of interest are modeled as nodes (or vertices) and the rela-

tionships among the objects are modeled using edges (or lines) connecting the vertices. 

The brain can be conceived as a multitude of regions forming a complex network whose 

properties can be studied based on their graph theoretical properties. In our analysis, 

the nodes were gray matter volumes of 87 brain regions of interest. One way to model 

the relationships between the regions is by considering the correlations of the corre-

sponding regional volumes. This could, in turn, lead to two types of graph models: a 

weighted graph model or a binary graph model. In either of these models, an edge be-

tween a pair of nodes represents the relationship that we are trying to capture between 

these nodes. In a binary graph model, for a pair of nodes, an edge simply exists or not, 

depending on whether the correlation between the volumes of gray matter in the corre-
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sponding brain areas passes a certain threshold. For example, to construct a binary 

graph when the relationship between a pair of nodes is based on correlation we may 

use a threshold value of 0.5, and declare that an edge exists between the pair of nodes 

if and only if the correlation is above 0.5. If we do this for all pairs of nodes, we will ob-

tain the binary graph. In contrast, in a weighted graph, if an edge exists between a pair 

of nodes, it has also a numerical weight associated with it. In this case, if we proceed as 

above but also assign the actual correlation between the pair of nodes as the weight of 

the edge, then the result is a weighted graph. In mathematical notation, any binary 

graph with n nodes could be represented by its n x n adjacency matrix A, which consists 

of 0’s and 1’s. The (i,j)th element of A is 1 if there is an edge connecting the ith and the jth 

node (e.g. if the correlation between the ith and jth regional volumes is greater than 

0.5), and 0 otherwise. (The edges could be modeled as directed or undirected lines, but 

in this paper we focus only on undirected graphs). With the (i,j)th element of A as the 

actual correlation value if this value is greater than 0.5, and 0 otherwise, we get the ad-

jaceny matrix of a weighted graph.   

 

Graph construction in the current analysis 

Most of our analysis was done on binary graphs that modeled the statistical cor-

relational relationship between regional volumes. There were two exceptions: the graph 

clustering and the computation of small world propensity (see below); in these cases we 

used weighted graphs. We will first describe the procedures that we adopted for binary 

graph generation, then we turn to the weighted graphs.  
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The first step in our analysis was to construct a binary graph by defining its 

nodes and edges. The nodes were the 87 brain areas included in the analysis, each 

subject providing one value of gray matter volume for every one of these areas. As de-

scribed above, we removed the effects of age and gender by regressing these two fac-

tors on the structural volume of each region to obtain studentized residuals, which were 

then used for all further analyses. Next we needed to identify the edges. To do so, a 

simple procedure would be to calculate the absolute value of the Spearman’s correla-

tion coefficient, rho (ρ), between the volume of pairs of areas and declare the nodes 

connected through an edge if the ρ value is higher than a set correlation threshold. 

However, no biological or clinical factor points towards an optimal threshold value for 

the correlation in a brain network. Second, one given individual correlation value corre-

sponds to different sparsity levels (proportion of the number of edges out of total num-

ber of possible edges) in graphs obtained from patients and controls 14 19 (Supplemen-

tary Fig. 1). On the other hand, only graphs with the same sparsity level can be mean-

ingfully compared because sparsity influences graph properties. Therefore, we incre-

mented sparsity in steps of 0.5%, from 0.5% to 99.5%. We obtained 199 sparsity levels, 

and for each of them we computed the 199 corresponding correlation thresholds for the 

patient and control groups, separately. Turning to the gray matter volumes that consti-

tuted our data set, we computed for each subject group a correlation between every pair 

of nodes. This correlation value was compared against the 199 correlation thresholds 

obtained as described above and an edge was declared in each of the 199 cases if the 

value of the correlation was equal or higher to the corresponding correlation threshold. 

For each subject group, we thus obtained 199 distinct binary graphs with 199 sets of 
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parameters based on which we evaluated the AD-related alteration in brain topography. 

Because the sparsity levels ranged across the same values, this procedure ensured 

consistency in the graph comparisons across the patient-control groups. In particular, 

we would like to emphasize that in all the procedures described above the basis for 

edges in the graph construction was defined cross-sectionally, and not based on a time 

series as in fMRI data. We constructed binary graphs for control and patient groups in a 

similar manner after obtaining the sub-networks through the clustering algorithm.   

Weighted graphs were utilized in two instances – first, when we partitioned the 

nodes based on a graph clustering algorithm and secondly, when we compared the 

small-world-propensity parameter between controls and patients. The reasons for using 

weighted graphs for these two instances are given in the corresponding sections (see 

below subsections Graph clustering and Small World Propensity). For the weighted 

graphs in our analyses, edges existed between all pair of nodes, and the weight for a 

particular edge was the absolute value of the Spearman’s correlation between the cor-

responding nodes.     

 

Global and sub-network analysis  

We compared the properties of the graphs obtained from AD patients vs. normal 

controls in two different ways: globally, and after clustering the brain areas in two differ-

ent sub-networks. For the global analysis, each AD patient (n = 100) or control subject 

(n = 135) provided 87 volumetric measurements for the corresponding nodes. For the 

second analysis, we repeated the computations after we first sorted the 87 brain regions 
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in two distinct sub-networks. Our rationale was that in early AD, pathological processes 

may be more prevalent in some brain areas than in others, and focusing on more re-

stricted networks may reveal important alterations in network properties that occur at 

this stage. We identified these sub-networks by applying a clustering procedure (de-

scribed below) to a graph generated from the data belonging to 50 randomly selected 

subjects out of the 135 controls; the data from these 50 controls were then excluded 

from further analyses.  

 

 Graph clustering 

 Characteristics of the structural brain network may differ between patients and 

controls on a local basis. Therefore, analysis of sub-networks may reveal important 

changes in patient’s brains that may otherwise escape identification when all regions 

are considered at once. To identify such local networks, graph clustering techniques 

can be used on data from the control subjects to delineate sub-networks of brain re-

gions lowly connected among themselves but highly connected within. In our work, 

graph clustering was based on the divisive hierarchical clustering algorithm developed 

by Newman and Girvan 26 which utilizes edge betweenness to group the nodes.  We 

chose this clustering method because of thresholding issues. To cluster a binary graph 

we would have to first choose a threshold value (that is, one specific sparsity level). 

However, currently there is no biologically-based justification for using one sparsity 

level over the other. To avoid this problem, we applied the (widely used) partitioning 

technique for weighted graphs developed by Newman and Girvan to our analysis 26.      
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 The details of the algorithm are as follows. The betweenness score of an edge 

measures the number of shortest paths (paths between nodes with minimal number of 

vertices in between; see Supplementary Text) that include it. The intuitive idea behind 

the algorithm is that edges connecting separate clusters will have high edge between-

ness scores because all the shortest paths from one cluster to another will have to trav-

erse through them.  Hence, deleting such edges will reveal the communities within the 

network. After deleting such edges in a first step, the edge betweeness scores are re-

calculated, and another deletion process occurs. Iteratively, the algorithm works as fol-

lows: 

1. Calculate betweenness scores for all edges in the network. 

2. Find the edge with the highest score and remove it from the network. 

3. Recalculate betweenness for all remaining edges. 

4. Repeat step 2. 

 

 The algorithm’s output is a dendrogram which represents an entire nested hier-

archy of possible community divisions for the network. The point at which the dendro-

gram is cut is determined based on a modularity measure defined as the fraction of 

edges in the network that connect vertices of the same type minus the the expected 

value of the same quantity in a network with the same community divisions but random 

connections between the vertices. Values where this quantity is maximized indicate 

strong community structure, and it is at such values that the dendrogram is cut to ob-

tain the graph clusters. 
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Graph parameters 

The graph parameters we used can be grouped under the following five large 

umbrellas: A) metrics of network efficiency; B) measures related to small worldness; C) 

measures of segregation; D) product measures of complexity; and E) entropy. Techni-

cally, measures in A) may be considered as small world properties or even measures of 

complexity; however, here we treated them separately because they have been conven-

tionally considered as distinct measures. Mathematical descriptions of these parameters 

can be found in Supplementary Text. 

A. Metrics of network efficiency, which measure the economical performance of 

the networks, were first defined in Latora and Marchiori, 33 34 and further explored in 

brain network analysis by Achard and Bullmore 35.  Certain small world properties such 

as the average shortest path length can be calculated only for connected graphs, 

whereas the efficiency metrics can be calculated for disconnected graphs as well. Thus, 

these measures are especially useful at the low sparsity levels, where a graph could be 

disconnected.  

• Global efficiency is a measure of how efficiently the structure of a network 

can support parallel information processing when all the nodes concurrently exchange 

packets of information 35. Since there is strong prior evidence that brain supports mas-

sively parallel information processing, global efficiency is a biologically highly relevant 

measure for comparing patients and controls.  
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• Cost efficiency, the difference between global efficiency and sparsity level, 

is a measure that assesses the efficiency in relation to the sparsity of the network 35. 

Since it has been shown previously that efficiency of a complex network increases as a 

function of its sparsity, it makes sense to account for sparsity, a measure of how inter-

connected the nodes are, when assessing the effect of neurodegeneration in brain net-

works.  

        

B. Measures related to small worldness. Small world networks are formally de-

fined as networks in which the nodes are significantly more locally clustered, yet have 

approximately the same characteristic path length as random networks (networks where 

the nodes are connected at random) 36. Each node of a small world network is highly 

likely to be connected to its nearest neighbors by a single edge (that is, high local clus-

tering), but to get from one node to another node on the opposite side of the network, 

one need not traverse a large number of connections 15.  In other words, small-world 

networks are simultaneously highly segregated (compatible with modular/specific pro-

cessing), yet highly integrated (compatible with distributed processing). Normal anatom-

ical brain connectivity is thought to concurrently reconcile the opposing demands of 

functional integration and segregation, and hence is considered to have small-world de-

sign 37, 15. 

• Clustering Coefficient measures the connectivity among adjacent nodes. 

For any node, it is calculated as the number of edges that exist between its nearest 

neighbors 38. It is a measure of the extent of ‘cliquishness' or the local clustering of the 

network 14. For a brain network, this is a measure of segregated or modular processing. 
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• Characteristic path length (or average shortest path length) between any 

pair of nodes is the minimal number of edges that have to be traversed to reach from 

one node to the other. Averaged across all nodes, it is a measure of the extent of aver-

age connectivity or overall routing efficiency of the network 14. For a brain network, this 

is a measure of integrated processing.  

• Sigma, the ratio between the clustering coefficient and the shortest path 

length, is considered to be a summarized measure of small worldness. A network with 

small world property has  large clustering coefficient and small characteristic path 

length, and hence the ratio, sigma will be large. 

• Small world propensity (SWP) is a recently developed metric of small 

world property of a network 39. The rationale for the new parameter was the heavy de-

pendence of both characteristic path length and clustering coefficient on the sparsity 

level of the network. The main advantage of SWP over Sigma is that it is relatively inde-

pendent of the sparsity level of the network and thus it is a more robust measure of 

small world property. Roughly speaking, SWP indicates how much the clustering coeffi-

cient and characteristic path length of a given network differ from the corresponding 

values in both lattice and random networks, constructed with the same number of nodes 

and the same degree distribution. SWP ranges between 0 and 1, with larger values in-

dicating more small-world-ness; networks with values below a reference value of 0.6 

were considered to be exhibiting only weak evidence of small world property. Although 

a binary version and a weighted version of SWP were presented in Muldoon et al. 

(2015), we used the weighted SWP in our analysis, since the main rationale behind 

SWP is to avoid dependence on sparsity levels. 
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C. Measures of segregation 

• Betweenness centrality is defined as the number of shortest paths that run 

through a given node 40. Averaged across all nodes, it is a measure that captures the 

influence of a node over information flow between other nodes in the network.   

 

D. Product measures of complexity are based on the idea that networks with in-

tricate structural patterns of connections have a medium number of edges; that is, they 

are neither very sparse nor highly connected. It has been established that both minimal-

ly connected networks and fully connected networks have complexity values approxi-

mately zero 41. The two product measures described below are products of two factors: 

F1 x F2. F1 assigns values near zero for sparsely connected networks and large values 

for highly connected networks. In contrast, F2 assigns values near zero for highly con-

nected networks and large values for sparse networks. Therefore, the product F1 x F2 

will always have small values for both sparse and highly connected networks and large 

values for networks with medium number of edges. In the context of this analysis, a 

smaller value for either of these two parameters corresponds to a decrease in the com-

plexity of connectivity between brain areas.  

• Medium Articulation for graphs is the product of two factors: Redundancy, 

R and mutual information I. R is zero for the sparse graph, but maximum for the fully 

connected graph; I varies in the opposite way 41.  
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• Graph Index Complexity is proportional to the product between the nor-

malized index, cr, of the largest eigenvalue of the adjacency matrix of a graph, and its 

difference from unity, 1-cr. cr values ranges from 0 to 1; it is 0 for a minimally connected 

graph and 1 for maximally connected graph, so that the product measure cr(1-cr) is 

largest for graphs with medium number of edges, a characteristic of a complex graph 41.  

 

E. Entropy in thermodynamics is defined as the amount of disorder; that is, the 

number of specific ways in which a thermodynamic system may be arranged. In a simi-

lar vein, the entropy of a complex network quantifies its structural diversity and is re-

ferred to as the information content of a graph. The entropy parameters considered in 

this paper are described below. 

• Topological Information Content (TIC): The information content of a net-

work largely depends on the arrangement of the nodes and edges of the network. The 

TIC measure considered in our analysis is small for graphs in which each node has the 

same number of neighbors, and it attains maximum for asymmetric graphs 42 43.  

• Bertz Index (BI): Reasoning that complexity should increase with the 

number of nodes regardless of whether they are all equivalent, Bertz introduced a 

measure of entropy as a function of the number of nodes and edges 44. 

• Vertex Degree Information-Equality Based Information Index is an entropy 

measure calculated based on partitioning the nodes of a network based on their de-

grees (number of adjacent nodes). A graph with an approximately uniform degree distri-

bution will have smaller values for this index compared to graphs with non-uniform de-

gree distributions 45 46.  
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• Graph Vertex Complexity Index measures the average heterogeneity of 

the distances associated with each node in a network. A distance is a quantification of 

the number of edges that link a pair of nodes. For example, adjacent nodes have a dis-

tance of 1. Higher values of this parameter indicate a more complex network 47. 

• Mean Information content on the Edge Equality quantifies the heterogenei-

ty of all the distances in a network. This parameter is thus very similar to the graph ver-

tex complexity index, except that rather than looking at individual nodes, it considers the 

network as a whole 46.  

• Mean Information Content on the Edge Magnitude quantifies the hetero-

geneity of the magnitudes of these distances. Higher values of this parameter indicate a 

more complex network 46. 

• Off Diagonal Complexity: It has been suggested that a complex graph has 

many different entries in its so-called node-node link correlation matrix cij, where cij de-

notes the number of all neighbors with degree j ≥ I of all nodes with degree i. Off diago-

nal complexity measures this diversity. More specifically, off diagonal complexity is high 

for a graph where the nodes of a given degree have no preference for the degree of 

their neighbors 41.    

 

Statistical Analysis 

Comparison between groups were performed using a t-test as well as a permuta-

tion test. By varying the sparsity levels (see above), we obtained a range of values for 

each graph parameter. This procedure was run separately for controls and patient 
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groups, resulting in the same number of graph parameter values for each of the two 

cases. The two data sets were compared by using a simple t-test. We also used a per-

mutation test with 10,000 iterations, as suggested by Bassett and collaborators 48. For 

each graph parameter, with the range of values for each parameter obtained for various 

sparsity levels on the y-axis, and the corresponding sparsity level on the x-axis, one ob-

tains two curves, one for the patient group and another for the control group. The abso-

lute difference between the two curves (that is, the area between the two curves) was 

the statistic used in the permutation test. In order to conduct the permutation test, at 

each iteration, the labels indicating patients and controls were randomly permuted, and 

the area between the curves was calculated for two pseudo-groups of ‘patients’ and 

‘controls’. P-value for the permutation test was the proportion among these 10,000 area 

values that was greater than the area value obtained for the original patients and con-

trols. Adjustments for multiple comparisons used Benjamini-Hochberg’s procedure to 

control the False Discovery Rate (FDR) 49. We considered a parameter to be significant-

ly different between patients and controls only if the FDR-adjusted p-values for both the 

t-test and the permutation test were significant at a 0.05 level. 
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RESULTS 

 

Overall network analysis 

The graphs of the overall networks were similar in AD patients and control 

groups, and the analysis did not reveal significant differences between any of their pa-

rameters (Fig. 1A, Table 2). Thus, this analysis suggested that in the early stages of 

AD, the graph properties of large structural networks do not change even as degenera-

tive processes may already have caused significant neural damage. However, since 

neurodegeneration occurs at different rates in different areas, an overall analysis may 

miss modifications taking place in more localized networks. Our subsequent graph 

analysis, applied after clustering the brain areas, was in agreement with this idea.  

 

Sub-network analysis 

Clusters 

 We first identified the brain sub-networks based on data from 50 randomly cho-

sen normal subjects. As clustering algorithm, we used a divisive algorithm  that estimat-

ed the number of clusters in our dataset as being equal to two 26. The two clusters were 

constituted of 44 and 43 regions, respectively (Table 1, Figs. 1B, and 2). Each sub-

network included areas whose gray matter volumes decreased in AD patient group (Fig. 

3, Table 3), but notably, areas of the medial temporal lobe known to be among the most 

affected in early stages of AD (hippocampus, amygdala, entorhinal cortex, parahippo-

campal cortex) were grouped in the first sub-network.  
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Changes in the sub-networks  

The results we obtained in the analysis of the large brain network may be due to 

the fact that at the early AD stage, neurodegenerative processes do not have a suffi-

ciently marked effect to introduce modifications in network topography, but this was un-

likely because shrinkage of gray matter volumes was quite prominent in our data set 

(Fig. 3, Table 3). Alternatively, neurodegeneration may affect the gray matter volumes, 

but preserve the topography of the network. This hypothesis is equally unlikely because 

particularly in early AD, different brain areas are altered heterogeneously – some more, 

such as in the medial temporal cortex, and some less, such as in the prefrontal areas. 

The more likely scenario is that assembling all areas in one large network may mask 

real and important changes in the structure of more circumscribed brain networks. Sup-

porting this idea, a different pattern of results emerged when we applied the graph anal-

ysis to the two sub-networks identified through the clustering procedure. We compared 

the mean value and the entire curve of each graph parameter (obtained across sparsity 

levels), after we adjusted the p-values to correct for multiple comparisons. The means, 

standard deviations, p-values, and adjusted p-values are presented in Table 4. We con-

sidered a significant change in the parameter only if both the mean and the curve com-

parison indicated statistical significance after adjustment for multiple comparisons. Fig. 

4 graphically illustrates the variation of these parameters between control and patient 

groups in the two sub-networks with statistically significant differences highlighted in 

gray. As opposed to the results of the large network analysis, which did not suggest 

changes, in this case we found that compared to control condition, AD was associated 
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with alterations in each of the two sub-networks, and surprisingly, there was in fact 

some indication that the two sub-networks were affected differently. The properties of 

the sub-network that included medial temporal lobe areas were modified in a direction 

consistent with a deterioration of network small-world properties and loss of network di-

versity and complexity in AD patients. In contrast, changes in the second sub-network, 

while also reflecting a decrease network diversity and complexity, revealed modifica-

tions suggesting an increase in small world properties.  

In the first sub-network there was no significant change in efficiency measures 

with AD (Fig. 4A).  In contrast, both the clustering coefficient and sigma declined with 

AD while the characteristic path length did not change significantly (Fig. 4B). Sigma, 

considered a summary of small world properties of a network, is calculated as the ratio 

between the clustering coefficient and the characteristic path length. Therefore, these 

results suggested that AD altered the normal balance between segregation and integra-

tion of information processing by diminishing the former (a decrease of connectivity 

among adjacent nodes is a sign of smaller node clustering and hence ability to segre-

gate information processing).  The nodes’ ability to modulate information flow (between-

ness centrality, Fig. 4C) did not change, and neither did the complexity of connectivity 

between brain areas (product measures, Fig. 4D). There was however an indication that 

the structural diversity of the sub-network decreased (significant diminishing of vertex 

degree information, Fig. 4E). Overall, the results suggested that in the first sub-network, 

AD-related changes uniformly pointed towards deterioration of network properties.  

In the second sub-network, AD seemed to also alter the network properties, but 

in this case the pattern was different. As in the first sub-network, there were no changes 
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in network efficiency, segregation or product measures of complexity (Fig. 4A,C, D), and 

the diversity of the network decreased with AD (lower topological information content 

and Bertz index, Fig. 4E).  However, the small world property of this sub-network 

seemed to be altered differently: while clustering coefficient, average pathlength, or 

sigma did not vary significantly, the SWP parameter suggested an increase in small 

world properties (Fig. 4, B). Overall the results suggested that the AD-induced altera-

tions had multifaceted consequences, and that perhaps, at these incipient stages, dete-

rioration of some brain areas triggers modifications aimed at recovering normal func-

tional balance in some other brain areas. 
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DISCUSSION 

We applied complex network analysis to investigate the structural modifications 

that accompany early AD in 87 brain volumes obtained from FreeSurfer automatic seg-

mentation.  When all the brain areas under consideration were used to form one large 

network, the analysis did not identify differences in the network properties between con-

trol and AD patients. However, because in early AD neurodegenerative processes affect 

individual brain areas to different degrees 50, we also focused our investigation on more 

restricted networks by partitioning the 87 brain regions into two sub-networks. In con-

trast to the results of the global network analysis which did not signal any changes, the 

graph analysis applied to these sub-networks revealed marked differences between 

control and AD patient groups. In the first sub-network, which encompassed medial 

temporal lobe areas such as hippocampus, entorhinal cortex, and parahippocampal cor-

tex, data from AD patients showed small world parameters consistent with a reduced 

ability to concomitantly engage in segregated and integrated information processing. 

Extending the analysis to entropy, we additionally found evidence of reduced structural 

diversity (smaller vertex degree information-equality based entropy in AD group). The 

second sub-network also showed deterioration of complexity/diversity, although for dif-

ferent entropy parameters (TCI and Bertz index). Because TCI, Bertz index, and vertex 

degree information-equality based index are all closely related, and because differences 

and similarities among entropy parameters are not clear 51, the most likely interpretation 

of these results is that in both sub-networks, AD effects are similar, namely a decrease 

in complexity and diversity. This conclusion is supported by the trend in the rest of the 

parameters of the entropy group, although these changes were not statistically signifi-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2016. ; https://doi.org/10.1101/050708doi: bioRxiv preprint 

https://doi.org/10.1101/050708
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

cant. In the second sub-network however, we found no AD-related reduction in small 

world properties. In fact, a recently developed parameter, SWP, suggested an increase 

in small world properties with AD, revealing opposing trends in the two sub-networks. 

Our analysis therefore suggests that in early AD, neurodegenerative processes modify 

the topology of brain networks in complex ways.   

 

Neurodegeneration has heterogenous effects on network properties 

Both sub-networks considered for this analysis included areas that showed di-

minished gray matter volume in AD, and yet the properties of these sub-networks were 

not affected homogenously: the complexity and diversity of the two sub-networks de-

creased, but the effects on the small world properties seemed to evolve in opposite di-

rections. To the best of our knowledge, this is the first study associating AD with struc-

tural connectivity modifications that alter the diversity and complexity within brain net-

works. Second, our findings indicate that one single process – neurodegeneration – can 

have distinct effects in different networks. Here, we cannot establish whether these ef-

fects were due to the intrinsic topology of each of the two sub-networks, to specificities 

of neurodegeneration in the individual areas that constituted these two sub-networks, or 

to a combination of these two possibilities. What our results highlight is that encompass-

ing multiple measures to quantify changes in brain networks reveals important infor-

mation regarding the nature of the alterations. Many of the large, sparse biological net-

works found in nature, including brain networks, are small world networks 36, whose 

characteristic is an optimal balance between local specialization (specialized processing 
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in distinct regions) and global integration (rapid combination of processing across dis-

tributed regions). Small world networks achieve this equilibrium by combining high clus-

tering of the nodes with short path lengths between them. Evaluating the small world 

properties of a network can thus provide important information about the functionality of 

that network. However, small world properties provide only one window into the proper-

ties of the intricate entities that brain networks are. Other important aspects of a network 

are its diversity, quantified by entropy (the higher the entropy, the higher the diversity) 

and its complexity. Both these parameters rank high in functional large structural net-

works. The results of our analysis suggested that in early AD the ubiquitous deteriora-

tion of complexity/diversity of the networks is nonetheless coupled with a heterogenous 

effect on the small world properties. Neural circuits are plastic, and thus in early AD, 

modifications in the areas first affected may trigger reorganization processes in other 

areas, possibly the ones with still intact structure and function. Do empirical data sup-

port this hypothesis? If so, what is the nature of the reorganization processes? Does 

this remain true in advanced AD, where neurodegeneration is profound and encom-

passes vast portions of the brain? Further investigations extended to include multiple 

parameters and patients with stages of AD ranging from mild to advanced would pro-

vide valuable insights into the dynamics of this disorder. 
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Brain areas included in network construction influence assessment of 

modifications in network properties  

Our results show that in early AD, modifications in the properties of brain net-

works are prominent in delimited sub-networks. We grouped the gray matter volumes of 

the 87 brain regions of our data set by using a graph clustering method based on the 

divisive hierarchical clustering algorithm with modularity maximization. The advantage 

of this clustering procedure is that it can be applied to weighted graphs. Other ap-

proaches for generating the sub-networks could also be used, for example ones that 

focus on sub-networks of areas a priori known to be anatomically or functionally inter-

connected. The point we want to emphasize here is that investigating the properties of a 

structural network constructed from a large number of brain areas may not reveal im-

portant alterations in properties of more local sub-networks. This may be particularly 

important for early AD, when degenerative processes are not very advanced and have 

not uniformly affected all brain regions. The general conclusion is that when applying 

graph analysis, the brain areas included in graph construction is a factor that should be 

taken into account in evaluating the results.  

 

Early AD is associated with modifications in measures related to small 

world properties 

In our analysis, both sub-networks showed significant alterations in parameters 

related to small world properties. We found that AD processes modified the first sub-

network so as to diminish their small world properties, consistent with other previous 
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studies reporting altered small world properties 12,13 (but see 52). However, the analysis 

of the second sub-network suggested that the modifications in the patient group went in 

quite the opposite direction: AD was associated with an increase in the SWP parameter, 

considered to be a sensitive indicator of small world properties 39. This parameter also 

suggested a non-significant trend towards reduction of small world properties with AD in 

the first sub-network. Thus, at least in early AD, aside of the negative effects of the neu-

rodegeneration on small world properties of brain networks, there may be some other 

changes taking place concomitantly which do not necessarily result in negative effects 

on the network parameters.  While our analysis indicates that AD indeed reduces the 

small world properties of at least some structural brain networks, understanding the 

precise processes causing this phenomenon requires more extensive investigations.   

 

Functional implications of network modifications in AD 

Our analysis was not focused on the default mode network (DMN), a collection of 

brain areas whose function has been linked to performance in tasks that require cogni-

tive demand 53 and whose activity is reduced in AD 54. The functional role of DMN is 

presently not fully understood, but its constituent areas are known to be involved in epi-

sodic memory, which is the type of memory that declines early in AD.  Because DMN’s 

functional connectivity is linked to the network’s structural connectivity 55 and because 

AD seems to spread along brain networks 56 57 52, structural modifications of DMN in AD 

are likely to have functional implications. In our analysis, DMN areas (medial temporal 

lobe, posterior cingulate cortex, medial prefrontal cortex, inferior parietal cortex) were 
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spread across the two sub-networks we identified. One possibility that can be further 

investigated is suggested by the fact that hippocampus, amygdala, and parahippocam-

pal cortex are found in the first sub-network,  while inferior parietal cortex and right me-

dial orbitofrontal cortex are found in the second sub-network. One may speculate that 

as the medial temporal lobe areas deteriorate in the early stages of AD, changes also 

take place concomitantly in the rest of the areas, which are affected at later points of the 

disease 57 50,58,59. Further studies of the dynamics of modifications taking place during 

the long course of AD would promote our understanding of pathological processes in 

AD and inform the design of approaches in AD treatment. 

 

CONCLUSION 

In this study, we quantitatively analyzed the small-world properties, efficiency, 

complexity and diversity of structural brain networks in Alzheimer’s patients and healthy 

elders using data provided by structural MRI. Our results indicated that AD-related mod-

ifications that remain undetected at the level of global brain network emerge when the 

analysis focuses on restricted brain sub-networks. In line with previous findings, we 

found that AD impacted small world properties of the two brain sub-networks we identi-

fied, but closer investigation suggested that these modifications pointed in different di-

rections: for one sub-network we found deterioration, for the other we found the possibil-

ity of improvement. Extending our analysis to other network parameters further revealed 

that complexity and diversity deteriorated in both networks. This new result enhances 

our understanding of the underlying pathology of AD in the human brain and suggests 
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that in early AD, deterioration of brain networks may be accompanied by other types of 

changes.  
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CAPTIONS  

FIGURE 1: Graphs constructed from volumes of gray matter data. Graphs in 

blue represent the networks for controls and graphs in red represent networks for pa-

tients. Sparsity level for all graphs is 50%. A. Graphs of all brain areas. These graphs 

include all 87 regions included in this analysis. The properties of the two graphs were 

similar. B and C. Graphs after grouping the brain areas in two sub-networks. Each 

cluster contained areas whose volume diminished, but hippocampus and entorhinal cor-

tex, areas known to be markedly affected even in early stages of Alzheimer’s, were in-

cluded in the first sub-network. The two sets of graphs showed significant differences in 

their properties when comparing control and AD patient groups; and the pattern of the 

changes was different in sub-network 1 (B) vs. sub-network 2 (C). 

  

FIGURE 2: FreeSurfer 5.3.0 based brain mapping of the structural regions’ 

clusters. The two clusters of brain areas and their hubs are shown in distinct colors on 

successive horizontal sections (Z = z axis) from the ventral (top left) to the dorsal (bot-

tom right) through a human brain. Starting from the left, the bottom of the figure shows 

the areas of the two clusters from lateral (left-right), medial (left-right), anterior-posterior, 

and dorsal-ventral views of the brain, respectively. The network properties of these clus-

ters were significantly different in AD patients when compared to healthy elders.  
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FIGURE 3. Boxplots of gray matter volumes in control (blue) and patient 

(red) groups for the two clusters. A = Sub-network1; B = Sub-network 2.  For each 

cluster, data are organized based on the values of the control group sorted in descend-

ing order from top to bottom. Data from the AD patients are shown in a box plot located 

immediately above the corresponding control group. To reveal the volumetric changes 

in brain areas, dark vertical lines indicate the medians of the brain regions for the con-

trol and patient groups, respectively. Values located to the left of the zero mark indicate 

a smaller volume. The plots reveal that both sub-networks contained brain areas affect-

ed by neurodegeneration.  

 

FIGURE 4. Changes in graph properties for the two sub-networks. The data 

shown in each plot correspond to values presented in Table 4. The gray highlights mark 

effect sizes with associated probabilities smaller than 0.5 in both t-test and permutation 

test. Overall, in the first sub-network (red), which included the hippocampus and ento-

rhinal cortex, the variation in parameter values indicated deterioration of small world 

characteristics and diminished complexity and diversity in the patient group when com-

pared to control. In the second sub-network (blue), small world properties were not af-

fected negatively but rather there was an improvement as measured by SWP. As in the 

first cluster, complexity and diversity also diminished.  

 

SUPPLEMENTARY FIGURE 1: Sparsity levels  differ in AD patients and con-

trol groups for the same correlational thresholds. Data of AD group are shown in 

red, data of control group are in blue. The two curves were obtained  based on AD pa-
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tient and control data, respectively, by computing sparsity (proportion of edges out of 

the total number of possible edges) of graphs constructed by using as correlation 

threshold all correlation values between 0 and 1 in steps of 0.001. One sparsity level 

corresponds to two different correlation coefficients for patient and control groups, and 

conversely, one correlation coefficient value corresponds to two different sparsity levels 

(dashed lines). Sparsity level of 5% corresponded to a correlational threshold of 0.5715 

in patients and 0.5225 in controls; sparsity level of 34% corresponded to a correlational 

threshold of 0.3765 in patients and 0.3515 in controls.  
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Table 1. Clustering of the brain regions. 

 

Cluster 1 Cluster 2  
R. supramarginal gyrus L. caudate 
L. and R. transverse temporal gyrus R. thalamus  
L. and R. paracentral gyrus L. caudal middle frontal cortex 
R. cuneus L. cuneus 
L. thalamus L. and R. fusiform gyrus 
brain stem L. and R. middle temporal cortex 
L. and R. pericalcarine cortex R. medial orbitofrontal cortex 
L. rostral anterior cingulate cortex L. and R. rostral middle frontal 

cortex 
L. and R. pars triangularis L. and R. precuneus 
L. and R. entorhinal cortex L. precentral gyrus 
L. and R. ventral diencephalon L and R. superior temporal cortex 
L. and R. pallidum R. posterior cingulate cortex 
L. and R. caudal anterior cingulate 
cortex 

R. insula 

L. and R. putamen R. pars opercularis 
L. and R. hippocampus R. banks of superior temporal 

sulcus 
L. and R. cerebellar cortex L. and R. inferior temporal cortex 
L. and R. amygdala L. and R. lateral occipital cortex 
L. and R. accumbens area L and R. postcentral gyrus 
L. posterior cingulate cortex L. and R. superior parietal cortex 
L. and R. lingual gyrus R. rostral anterior cingulate cortex 
L. insula R. caudal middle frontal cortex 
L. and R. pars orbitalis L. and R. superior frontal cortex 
L. and R. isthmus cingulate cortex L. and R. lateral orbitofrontal 
L. and R.  parahippocampal cortex L. and R. inferior parietal cortex 
L. banks of  superior temporal sulcus L. supramarginal gyrus 
L. pars opercularis  
L. and R. frontal pole  
L. and R. temporal pole  
R. caudate  
L. medial orbitofrontal cortex  
R. precentral gyrus  
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Table 2: Results of the graph analysis applied to all brain areas considered as a single large 
network. Data are reported as mean and (standard deviations).  AD = Alzheimer’s  

	

	

 Parameter                            Overall 
  Controls 

Mean 
(stdev) 

AD’s 
Mean 
(stdev) 

p-value(s) 
1) t-test 
2) permutation 
based 

p-value 
adjusted 
for FDR 
1) t-test 
2) 
permutati
on based 

Metrics of 
network 
efficiency 

Global Efficiency  
 

   0.640 
  (0.321) 

0.643 
(0.317) 

1) 0.9392 
2) 0.5060 

1) 0.9625 
2) 0.8385 

Cost Efficiency  
 

  0.150  
(0.518) 

0.153 
(0.517) 

1) 0.9625 
2) 0.5060 

1) 0.9625 
2) 0.8385 

 
 
 
Measures 
related to 
small 
worldness 

Clustering coefficient  0.713 (0.157) 0.695 
(0.159) 

1) 0.2602 
2) 0.3468 

1) 0.9625 
2) 0.8385 

Average shortest pathlength 
 

1.709 (0.594) 1.716 
(0.634) 

1) 0.9165 
2) 0.8675 

1) 0.9625 
2) 0.9295 

Sigma 
 

0.487 (0.226) 0.476 
(0.226) 

1) 0.6471 
2) 0.5119 

1) 0.9625 
2) 0.8385 

Measure of 
segregation 

Betweeness centrality  
 

25.53 (18.98) 25.77 
(19.08) 

1) 0.9033 
2) 0.9655 

1) 0.9625 
2) 0.9655 

Product 
Measures 

Medium Articulation  
 

0.333 (0.317) 0.342 
(0.321) 

1) 0.7773 
2) 0.4682 

1) 0.9625 
2) 0.8385 

Graph Index Complexity 
 

0.713 (0.279) 0.718 
(0.272) 

1) 0.8498 
2) 0.5535 

1) 0.9625 
2) 0.8385 

 
 
Entropy 

Topological Info Content  
 

6.196 (0.628) 6.192 
(0.638) 

1) 0.9544 
2) 0.7169 

1) 0.9625 
2) 0.8670 

Bertz Index  
 

1099.6 (54.6) 1099.3 
(55.5) 

1) 0.9544 
2) 0.7169 

1) 0.9625 
2) 0.8670 

Vertex Degree Information-
Equality Based Information 
Index 

4.808 (0.801) 4.833 
(0.775) 

1) 0.7635 
2) 0.7514 

1) 0.9625 
2) 0.8670 

Graph Vertex Complexity 
Index 

1.099 (0.508) 1.056 
(0.456) 

1) 0.3901 
2) 0.5517 

1) 0.9625 
2) 0.8385 

Mean Information content 
on the Edge Equality 

8.000 (1.360) 8.123 
(1.328) 

1) 0.3663 
2) 0.5590 

1) 0.9625 
2) 0.8385 

Mean Information content 
on the Edge magnitude 

10.36 (1.31) 10.40 
(1.31) 

1) 0.7666 
2) 0.2867 

1) 0.9625 
2) 0.8385 

 
Off Diagonal Complexity 

0.738 (0.142) 0.754 
(0.144) 

1) 0.2747 
2) 0.3394 

1) 0.9625 
2) 0.8385 

      

New sensitive measure for small world properties based on weighted graph 
 SWP 0.1154 

(0.0943) 
0.1918 
(0.1081) 

0.5211  
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Table 3. Areas with significant shrinkage of gray matter volume. Raw p values 
obtained from the Bayesian analysis as well as the two-sample comparison of the 
residual volume of regions between the two clusters were adjusted for multiple testing 
using the ‘multtest’ package in R. Because Bayesian analysis involved comparing 15 
graph parameters between patients and controls, and latter analyses involved 
comparing 87 regions between the two clusters, multiple testing adjustments were done 
using the Benjamini-Hochberg (BH) method controlling for the false discovery rate 
(FDR). 
 

 

Cluster 1 

p value 
adjusted for 
FDR  

Cluster 2 p value 
adjusted for 
FDR 

R. entorhinal cortex <0.0001 L. inferior temporal cortex <0.0001 
R. accumbens <0.0001 R. middle temporal cortex 0.0080 
L. amygdala <0.0001 L. middle temporal cortex 0.0013 
L. hippocampus <0.0001 R. lateral occipital cortex 0.0015 
R. hippocampus <0.0001 R. inferior temporal cortex 0.0031 
R. amygdala <0.0001 L. inferior parietal cortex 0.0033 

L. accumbens <0.0001 
R. superior temporal 
cortex 0.0074 

L. entorhinal cortex <0.0001 R. precuneus 0.0080 
R. parahippocampal cortex 0.0031 L. fusiform gyrus 0.0091 
R. isthmus cingulate cortex 0.0120 L. precuneus 0.0105 

R. supramarginal gyrus 0.0235 
R. banks of superior 
temporal sulcus 0.0200 

L. parahippocampal cortex 0.0235 L. superior parietal cortex 0.0207 
L. banks of superior temporal 
sulcus 0.0253 R. fusiform gyrus 0.0235 
  R. inferior parietal cortex 0.0235 

  
R. rostral middle frontal 
cortex 0.0313 

  
L. superior temporal 
cortex 0.0400 
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Table 4: Results of the graph analysis applied to the two sub-networks.  Data are reported as 
mean and (standard deviations).  AD = Alzheimer’s Disease       *, **, and *** = statistically significant 

 

 

 Parameter                        Cluster 1 Cluster 2 

  Controls 

Mean 

(stdev) 

AD’s 

Mean 

(stdev) 

p-
value(s) 

1) t-test 

2) 
permuta-
tion 
based 

p-value 
adjusted 
for FDR 

1) t-test 

2) 
permuta-
tion based 

Controls 

Mean 

(stdev) 

AD’s 

Mean 

(stdev) 

p-
value(s) 

1) t-test 

2) 
permuta-
tion 
based 

p-value 
adjusted 
for FDR 

1) t-test 

2) 
permuta-
tion based 

Metrics of 
network 
efficiency 

Global 
Efficiency  

 

0.6362 

(0.3951) 

0.5820 

(0.4913) 

0.2306 

<0.0001 

0.2705 

<0.0001* 

0.5022 

(0.3292) 

0.4600 

(0.3481) 

0.2187 

0.2420 

0.6756 

0.3633 

Cost Efficiency  

 

0.1462 

(0.4689) 

0.0920 

(0.4773) 

0.2585 

<0.0001 

0.2705 

<0.0001* 

0.0123 

(0.5800) 

-0.0300 

(0.5899) 

0.4759 

0.2422 

0.7915 

0.3633 

 

Measures 
related to 
small 
worldness 

Clustering 
coefficient  

0.6519 

(0.1644) 

0.5742 

(0.1725) 

<0.0001 

<0.0001 

0.0001*** 

<0.0001*** 

0.8197 

(0.1335) 

0.8081 

(0.1651) 

0.4472 

0.7719 

0.7915 

0.8906 

Average 
shortest 
pathlength  

1.7864 

(0.6180) 

1.8703 

(0.6155) 

0.1797 

<0.0001 

0.2572 

<0.0001*** 

1.3890 

(0.3905) 

1.3808 

(0.4403) 

0.8464 

0.9845 

0.9069 

0.9845 

Sigma 0.4259 

(0.2116) 

0.3628 

(0.2088) 

0.0032 

<0.0001 

0.0161* 

<0.0001*** 

0.6478 

(0.2191) 

0.6538 

(0.2449) 

0.7998 

0.4047 

0.9069 

0.5519 

Measure of 
segregation 

Betweeness 
centrality  

13.51 

(8.71) 

14.60 

(10.80) 

0.2702 

0.0047 

0.2705 

0.0055** 

7.6067 

(7.0972) 

6.8102 

(6.5110) 

0.2489 

0.6451 

0.6756 

0.8064 

Product 
Measures 

Medium 
Articulation  

0.4421 

(0.3432) 

0.4807 

(0.3490) 

0.2705 

<0.0001 

0.2705 

<0.0001* 

0.1985 

(0.2684) 

0.1998 

(0.2807) 

0.9622 

0.1504 

0.9622 

0.3020 

Graph Index 
Complexity 

0.7169 

(0.2488) 

0.6609 

(0.2782) 

0.0366 

<0.0001 

0.1097 

<0.0001* 

0.5538 

(0.3310) 

0.5056 

(0.3571) 

0.1678 

0.0082 

0.6756 

0.0409* 

 

 

Entropy 

Topological 
Info Content  

5.1788 

(0.6390) 

5.0828 

(0.7933) 

0.1886 

0.0036 

0.2572 

0.0044** 

4.8453 

(0.9217) 

4.4341 

(1.2324) 

0.0002 

0.0033 

0.0017** 

0.0245* 

Bertz Index  468.08 

(28.12) 

463.86  

(34.90) 

0.1886 

0.0485 

0.2572 

0.0485* 

441.67 

(39.63) 

423.99 

(52.99) 

0.0002 

<0.0001 

0.0017** 

<0.0001*** 
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Vertex Degree 
Information-
Equality Based 
Information 
Index 

3.8720 

(0.6533) 

3.6288 

(0.7486) 

0.0007 

<0.0001 

0.0052** 

<0.0001*** 

3.5937 

(0.7643) 

3.4940 

(1.0042) 

 

0.2702 

0.0164 

0.6756 

0.0540 

Graph Vertex 
Complexity 
Index 

1.2584 

(0.4964) 

1.1921 

(0.4745) 

0.1782 

0.0083 

0.2572 

0.0089* 

0.8761 
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