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Abstract

Mathematical modeling of brain evolution is scarce, possibly due in part to the difficulty
of describing how brain relates to fitness. Yet such modeling is needed to formalize
verbal arguments and deepen our understanding of brain evolution. To address this
issue, we combine elements of life history and metabolic theories to formulate a
metabolically explicit mathematical model for brain life history evolution. We assume
that some of the brain’s energetic expense is due to production (learning) and
maintenance (memory) of skills (or cognitive abilities, knowledge, information, etc.). We
also assume that individuals use skills to extract energy from the environment, and can
allocate this energy to grow and maintain the body, including brain and reproductive
tissues. Our model can be used to ask what fraction of growth energy should be
allocated to the growth of brain and other tissues at each age under various biological
settings as a result of natural selection. We apply the model to find uninvadable
allocation strategies under a “me-against-nature” setting, namely when overcoming
environmentally determined energy-extraction challenges does not involve any
interactions with other individuals (possibly except caregivers), and using parameter
values for modern humans. The uninvadable strategies yield predictions for brain and
body mass throughout ontogeny, as well as for the ages at maturity, adulthood, and
brain growth arrest. We find that (1) a me-against-nature setting is enough to generate
adult brain and body mass of ancient human scale, (2) large brains are favored by
intermediately challenging environments, moderately effective skills, and metabolically
expensive memory, and (3) adult skill number is proportional to brain mass when
metabolic costs of memory saturate the brain metabolic rate allocated to skills. Overall,
our model is a step towards a quantitative theory of brain life history evolution yielding
testable quantitative predictions as ecological, demographic, and social factors vary.

Author Summary

Understanding what promotes the evolution of a given feature is often helped by
mathematical modeling. However, mathematical modeling of brain evolution has
remained scarce, possibly because of difficulties describing mathematically how the
brain relates to reproductive success, which is the currency of evolution. Here we
combine elements of two research fields that have previously been successful at detailing
how a feature impacts reproductive success (life history theory) and at predicting the
individual’s body mass throughout its life without the need to describe in detail the
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inner workings of the body (metabolic theory). We apply the model to a setting where
individuals must extract energy from the environment without interacting with other
individuals except caregivers (“me-against-nature”) and parameterize the model with
data from humans. In this setting, the model can correctly predict a variety of human
features, including large brain sizes. Our model can be used to obtain testable
quantitative predictions in terms of brain mass throughout an individual’s life from
assumed hypotheses promoting brain evolution, such as harsh environments or plentiful
social interactions.

Introduction 1

Empirical brain evolution research makes extensive use of correlational analyses seeking 2

to test verbal hypotheses. For instance, correlations between diet quality or group size 3

with cognitive ability or proxies thereof are routinely used to assess verbal hypotheses 4

for whether ecological and social factors favor enhanced cognition or relatively large 5

brains [1–8]. Functional studies have also been used to gain insight regarding brain 6

evolution. For example, behavioral experiments report refined cognitive skills for social 7

rather than general function [9, 10], and brain imaging has identified various brain 8

regions specialized for social interaction [11,12]. More recently, studies have addressed 9

more directly the causes of large-brain evolution via phylogenetic analyses, artificial 10

selection experiments, and genomic patterns of selection [13–17]. However, in contrast 11

to other areas of evolutionary research, mathematical theory offering causal 12

understanding and yielding testable hypotheses for brain evolution is still rare [18–20]. 13

Mathematical modeling of brain evolution faces the trade-off between describing how 14

brain impacts fitness without being overwhelmed by brain mechanistic details and at 15

the same time considering enough mechanistic details to be able to make testable 16

predictions. Existing models have described brain’s impact on fitness as facilitating 17

energy acquisition from the environment allowing this energy to be used to increase 18

survival [21], as facilitating energy production and/or decreasing the probability of 19

being scrounged by others [22], as increasing offspring survival via parental care despite 20

increasing mortality at birth [23], as increasing collaborative efficiency [24], as increasing 21

mating ability [25], and as increasing the complexity of decision making regarding 22

cooperation [26]. While these models have contributed to the qualitative understanding 23

of brain evolution, evolutionary mathematical models yielding quantitative predictions, 24

such as ontogenetic patterns for brain and body size, are still lacking. 25

Life history theory has been successful at making predictions about trait evolution 26

by describing trait’s effects on fitness through explicit consideration of how an organism 27

allocates its energy throughout ontogeny [27–31]. In turn, metabolic theory has been 28

successful at making quantitative predictions about ontogenetic body mass and its focus 29

on metabolism allows using a top-down perspective without the need to describe the 30

inner functioning of the system [32–36]. Here, we combine elements of these two 31

approaches to derive a model for brain life history evolution. This merging allows 32

determining an individual’s optimal strategies regarding its ontogenetic energy 33

allocation to the growth of its different tissues while obtaining quantitative predictions 34

for body and brain size under different biological settings. 35

In linking brain to fitness, our model builds on previous models considering brain as 36

embodied capital invested in fitness [21]. We consider separately the physical and 37

functional embodied capital, the former being brain itself and the latter being skills (or 38

cognitive abilities, knowledge, information, etc.) generated by the brain during ontogeny. 39

Our consideration of ontogenetic skill accounts for the notion that information gained 40

and maintained by the brain during ontogeny should be explicitly considered when 41

attempting to understand brain evolution [21,37–40]. Thus, a defining feature of our 42
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model is that it assumes that some of the brain’s energetic consumption is due to 43

acquisition and maintenance of skills (or cognitive abilities, knowledge, information, 44

etc.). In turn, we consider skills that allow overcoming energy extraction challenges the 45

individual faces at each age, and in so doing the individual obtains some energetic 46

reward. The model is general in that various biological settings can be studied 47

depending on the type of challenge individuals face at each age and on who engages in 48

overcoming the challenge: the challenge can be ecological if it is posed by the non-social 49

environment, or it can be social if it is posed by social partners; also, the individual can 50

engage in overcoming the challenge either alone or in concert with social partners [these 51

settings can be thought of as me (or us) against nature (or them)] [21,24,38,40–42]. 52

We apply our model to analyze the baseline setting where individuals face 53

exclusively ecological (non-social) challenges which are overcome by the individual alone 54

(“me-against-nature” [24]). Then, given that the brain consumes some of its energy to 55

gain and maintain skills and given the various types of challenges that the individual 56

faces at each age, the model allows to predict how much an individual should grow its 57

brain to obtain the energetic returns from skills. By feeding the model with parameter 58

values for modern humans, we show how the model can yield predictions for life history 59

stages as well as ontogenetic body and brain mass. 60

Model 61

Biological scenario 62

We consider a randomly mating population of large and constant size, where the 63

environment is constant, generations are overlapping, individuals’ age is measured in 64

continuous time, and the focus is on female survival and reproduction (i.e., standard 65

demographic assumptions for life history evolution [28,31,43–46]). We partition the 66

body of each female into three types of tissues (or cells): reproductive tissue, brain 67

tissue, and the remainder tissue, which we refer to as somatic. To have energy at each 68

age for body growth, body maintenance, and reproduction, each female extracts energy 69

from its environment (e.g., by locating food, or by making resources usable through 70

cracking or cooking), possibly with the help of her parents or caregivers (parental or 71

alloparental care) and/or by interacting with other individuals in the population (e.g., 72

through cooperative gathering or social competition for resources). To extract energy, 73

each individual is assumed to use a number of relevant energy-extraction skills, which 74

are produced and maintained by the brain. 75

We aim to determine the optimal allocation strategy of an individual’s energy 76

budget to the growth of the different tissues throughout its lifespan, which is a form of 77

the central life history question [28,31, 43–46]. An allocation strategy is here a vector of 78

evolving traits that is a function of the individual’s age, and that determines the 79

individual’s energy allocation to the growth of its different tissues throughout the 80

individual’s lifespan. To analyze how selection affects the evolution of the allocation 81

strategy, we carry out an evolutionary invasion analysis (e.g., [31, 47–49]), and thus 82

consider that only two strategies can occur in the population, a mutant u and a resident 83

(wild-type) v allocation strategies. We thus seek to establish which strategy is resistant 84

to invasion by any alternative strategy taken from the set U of feasible allocation 85

strategies, and which thus provides a likely final point of evolution. From demographic 86

assumptions we make below, it is well established [43,50–52] that an uninvadable 87

strategy u∗ satisfies 88

u∗ ∈ arg max
u∈U

R0(u, u∗), (1)
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which implies that u∗ is a best response to itself, where 89

R0(u, v) =

∫ T

0

l(t)m(t)dt (2)

is the basic reproductive number of a single mutant in an otherwise monomorphic 90

resident population and T is an age after which the individual no longer reproduces or 91

is dead. The basic reproductive number depends on the probability l(t) that a mutant 92

individual survives from birth until age t and on its rate m(t) of offspring production at 93

age t with density dependence (“effective fecundity” [53], or the expected number of 94

offspring produced at age t per unit time with density dependence), where these two 95

vital rates may be functions of mutant and resident traits, u and v. 96

To determine the lifetime offspring production R0 and how it connects to the state 97

variables (tissues and skill) and to the evolving traits, we relate brain and skill growth 98

to vital rates, which in turn is mediated by the connection between energy extraction, 99

metabolism, and tissue growth. We thus formally derive our model by making these 100

connections. 101

Tracking resting metabolic rate 102

Standard life history models refer to complete components of the energy budget (e.g., 103

assimilated energy; [54]). In practice, it is easier to measure heat release (metabolic 104

rates; [55]). Hence, to facilitate empirical parameter estimation, we follow the approach 105

of [34] and formulate our life history model in terms of resting metabolic rate allocation, 106

rather than energy budget allocation. Thus, we track how resting metabolic rate is due 107

to growth and maintenance of different tissues, in particular the brain. 108

We start from the partition of the individual’s energy budget used by [35], which 109

divides the energy budget (assimilation rate) into heat released at rest (resting 110

metabolic rate) and the remainder (Fig. 1; see [55] for details into why this partition is 111

correct). The amount of energy used per unit time by an individual is its assimilation 112

rate. Part of this energy per unit time is stored in the body (S) and the rest is the total 113

metabolic rate, which is the energy released as heat per unit time after use. Part of the 114

total metabolic rate is the resting metabolic rate Brest and the remainder is the energy 115

released as heat per unit time due to activity Bact. In turn, part of the resting 116

metabolic rate is due to maintenance of existing biomass Bmaint, and the remainder is 117

due to production of new biomass Bsyn. We refer to Bsyn as the growth metabolic rate 118

(Fig. 1). We formulate our model in terms of allocation of growth metabolic rate Bsyn 119

to the growth of the different tissues. 120

Energy partitioning 125

Denote by Ni(t) the number of cells of type i of a focal mutant female of age t, where 126

i ∈ {b, r, s} corresponds to brain, reproductive, and the remainder cells which we refer 127

to as somatic, respectively. Assume that an average cell of type i in the resting body 128

releases an amount of heat Bci per unit time. Hence, the total amount of heat released 129

per unit time by existing cells in the resting individual is 130

Bmaint(t) = Nb(t)Bcb +Nr(t)Bcr +Ns(t)Bcs, (3)

which gives the part of resting metabolic rate due to body mass maintenance [35]. 131

Denote by Ṅi(t) the time derivative of Ni(t). Assume that producing a new average 132

cell of type i releases an amount of heat Eci. Hence, the total amount of heat released 133

per unit time by the resting individual due to production of new cells is 134

Bsyn(t) = Ṅb(t)Ecb + Ṅr(t)Ecr + Ṅs(t)Ecs, (4)
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Fig 1. Partition of energy budget. Note the relation of resting metabolic rate to
assimilation rate. Modified from [35].

122

123124

which gives the rate of heat release in biosynthesis [35], and we call it the growth 135

metabolic rate. From (4), we have that 136

Ṅi(t)Eci = ui(t)Bsyn(t), (5)

for i ∈ {b, r, s}, where ui(t) is the fraction of the growth metabolic rate due to 137

production of new type-i cells at time t [summing over all cell types in (5) returns (4)]. 138

The resulting time sequence u = {u(t)}Tt=0 ∈ U, where u(t) = (ub(t), ur(t), us(t)), of 139

allocations from birth to (reproductive) death is the evolving multidimensional trait in 140

our model and U is the set of all feasible allocations strategies. 141

From our partitioning in Fig. 1, the total amount of heat released by the resting 142

individual per unit time at age t 143

Brest(t) = Bmaint(t) +Bsyn(t), (6)

which is the individual’s resting metabolic rate at age t. 144

Tissue growth rate 145

Let the mass of an average cell of type i be mci for i ∈ {b, r, s}. Then, the mass of 146

tissue i at age t is 147

xi(t) = mciNi(t), (7)

and hence, using (5), we have that the growth rate in mass of tissue i is 148

ẋi(t) = mciṄi(t)

=
mci

Eci
ui(t)Bsyn(t). (8)

Denoting the heat released for producing a mass unit of tissue i as Ei = Eci/mci, this 149

gives 150

ẋi(t) = ui(t)
Bsyn(t)

Ei
. (9)

Using (6) in (9), we obtain the model’s first key equation specifying the growth rate of 151

tissue i: 152

ẋi(t) = ui(t)

(
Brest(t)−Bmaint(t)

Ei

)
, (10)
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where from (3), we have that 153

Bmaint(t) = xb(t)Bb + xr(t)Br + xs(t)Bs (11)

and the mass-specific cost of tissue maintenance is Bi = Bci/mci. 154

Skill learning rate 155

We assume that some of the brain metabolic rate is due to acquiring and maintaining 156

energy-extraction skills. We assume that the individual at age t has a number xk(t) of 157

skills that can be used to overcome challenges of energy extraction. Denote by Mbrain(t) 158

the brain metabolic rate of the individual at age t (i.e., the heat released by the brain 159

per unit time with the individual at rest). From energy conservation, the brain 160

metabolic rate must equal the heat released by the brain per unit time due to brain 161

growth and brain maintenance; that is, from (3) and (4), the brain metabolic rate must 162

satisfy 163

Mbrain(t) = xb(t)Bb + ẋb(t)Eb. (12)

Let sk be the fraction of brain metabolic rate allocated to energy extraction skills, 164

which we assume constant for simplicity. Suppose that the brain releases an amount of 165

heat Ek for acquiring an average energy-extraction skill (learning cost). Similarly, 166

assume that the brain releases an amount of heat Bk per unit time for maintaining an 167

average energy-extraction skill (memory cost). Hence, from energy conservation, the 168

rate of heat release by the brain due to skill growth and maintenance must equal the 169

brain metabolic rate due to energy-extraction skills: 170

xk(t)Bk + ẋk(t)Ek = skMbrain(t). (13)

Rearranging, we obtain the model’s second key equation specifying skill learning rate: 171

ẋk(t) =
skMbrain(t)− xk(t)Bk

Ek
. (14)

In analogy with (10), the first term in the numerator of (14) gives the heat released due 172

to energetic input for learning whereas the second term gives the heat released for 173

memory. [Note that an equation for skill growth rate can be similarly derived, not in 174

terms of allocation to skill growth and maintenance sk, but in terms of allocation to 175

skill growth uk as for (10).] 176

How skill affects energy extraction 177

We now derive an expression that specifies how brain affects energy extraction in the 178

model. We consider that energy extraction depends on the focal female’s skills but 179

possibly also on the skills of other females in the population. To make this dependence 180

explicit, we denote by E(xk(t), v) the amount of energy extracted by the focal female at 181

time t from the environment, which depends on the individual’s skill xk(t) (and possibly 182

body mass) and also on the skill or other features (state or control variables) of the 183

resident population which ultimately depend on the resident allocation strategy v (so 184

E(xk(t), v) is assimilated energy plus surplus). Let Emax(t) be the amount of energy 185

that the individual obtains from the environment per unit time at age t if it is 186

maximally successful at energy extraction (which also possibly depends on body mass). 187

We define the energy extraction efficiency e(xk(t), v) at age t as the normalized energy 188

production per unit time at age t: 189

e(xk(t), v) =
E(xk(t), v)

Emax(t)
, (15)
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which is thus a dimensionless energy extraction performance measure. 190

We also define the ratio of resting metabolic rate to energy obtained per unit time as

q(xk(t), v) =
Brest(t)

E(xk(t), v)
(16)

and, motivated by (16), we define

Brest,max(xk(t), v) = q(xk(t), v)Emax(t) (17a)

=
Brest(t)

e(xk(t), v)
. (17b)

From (17b), we have that 191

Brest(t) = e(xk(t), v)Brest,max(xk(t), v). (18)

Consequently, Brest,max(xk(t), v) gives the resting metabolic rate when the individual is 192

maximally successful at energy extraction. 193

Adult resting metabolic rate typically scales with adult body mass as a power law 194

across all living systems [56–59], and also ontogenetically in humans to a good 195

approximation (Fig. S3; but see [60]). We assume that this scaling holds for maximally 196

successful individuals at energy extraction (assuming the scaling is empirically obtained 197

from measurements in mostly well-fed individuals); that is, we assume 198

Brest,max(xk(t), v) = KxT(t)β , (19)

where β is a scaling coefficient and K is a constant independent of body mass (while 199

both possibly depend on the resident strategy; note that β need not be 3/4). We further 200

assume that energy extraction efficiency e(xk(t), v) is independent of body mass, 201

whereby Eqs. (18) and (19) yield the model’s third key equation specifying resting 202

metabolic rate as: 203

Brest(t) = Ke(xk(t), v)xT(t)β . (20)

Substituting it in (10), Eq. (20) captures the notion that energy extraction gives the 204

individual energy that it can use to grow or maintain its different tissues. 205

Closing the model 206

The expression for the resting metabolic rate [Eq. (20)] closes the model from a 207

metabolic point of view, since after substituting Eq. (20) in Eq. (10) [and using 208

Eqs. (11) and (12)], the ontogenetic dynamics of the brain, reproductive, and somatic 209

tissue mass, xb(t), xr(t), and xs(t), and of the number of skills, xk(t), are expressed in 210

terms of such state variables, of empirically estimable parameters, and on the evolving 211

traits (mutant u and resident v). To close the model from an evolutionary perspective 212

and compute an optimal allocation strategy, we need expressions for how the state 213

variables relate to the vital rates [l(t) and m(t)] in Eq. (2) and expressions for the 214

energy extraction efficiency [e(xk(t), v)]. A large number of different settings can be 215

conceived with the model so far, both for the vital rates and energy extraction efficiency. 216

We focus on an application aiming at modeling human brain evolution from the baseline 217

setting “me-against-nature” to be compared with future elaborations of the model. 218

Vital rates 219

For simplicity, we consider that the mortality rate µ of an individual is independent of 220

age and of the evolving traits, and so 221

l(t) = exp(−µt). (21)
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We also assume that density-dependent regulation acts on fecundity (e.g., through 222

lottery competition) so that the effective fecundity m(t) is proportional to fecundity 223

f(t), defined as the rate of offspring production at age t without density dependence 224

(e.g., [50, 53,61]). That is, we let 225

m(t) = C(v)f(t) (22)

where C(v) is a proportionality factor that depends on population size which ultimately 226

depends on the resident strategy v. 227

We obtain a measure of fecundity f(t) with an analogous reasoning to that used for 228

the learning rate of skills. In particular, we assume that some of the metabolic rate of 229

the reproductive tissue is due to offspring production and maintenance. Denote by 230

Mrepr(t) the metabolic rate of the reproductive tissue at age t (i.e., the heat released by 231

the reproductive tissue per unit time with the individual at rest). From energy 232

conservation and Eqs. (3) and (4), the reproductive metabolic rate must satisfy 233

Mrepr(t) = xr(t)Br + ẋr(t)Er. (23)

Let sr be the fraction of the reproductive metabolic rate allocated to offspring 234

production and maintenance, which we assume constant for simplicity. Let xo(t) be the 235

number of offspring the individual has at age t. Suppose that reproductive tissue 236

releases an amount of heat Eo for the production of an average offspring (fecundity 237

cost). Similarly, assume that the reproductive tissue releases an amount of heat Bo per 238

unit time for maintaining an average offspring (physiological cost of maternal care; e.g., 239

due to lactation). Hence, from energy conservation, the rate of heat release by the 240

reproductive tissue due to offspring production and maintenance must equal the 241

reproductive metabolic rate allocated to offspring production and maintenance: 242

xo(t)Bo + ẋo(t)Eo = srMrepr(t). (24)

Rearranging, we obtain the model’s fourth key equation specifying fecundity: 243

f(t) = ẋo(t) =
srMrepr(t)− xo(t)Bo

Eo
. (25)

The first term in the numerator of (25) gives the heat released due to energetic input 244

for reproduction whereas the second term gives the heat released for physiological 245

parental care. 246

Eq. (25) can be simplified as follows. If the reproductive tissue is defined narrowly 247

enough (e.g., as preovulatory ovarian follicles) so that it is not involved in offspring 248

maintenance, the physiological costs of maternal care incurred by the reproductive 249

tissue are essentially null (i.e., Bo ≈ 0; they are, however, included in the maintenance 250

costs Bs of the somatic tissue as we defined it above). With this definition of 251

reproductive tissue, we take body mass at age t as xT(t) = xb(t) + xr(t) + xs(t). If 252

additionally, reproductive tissue maintenance is much more expensive than production 253

(i.e., Br � Er, which holds with our estimated parameters for humans; Table S2), 254

fecundity can be approximated as 255

f(t) ≈ srBr

Eo
xr(t). (26)

For the results reported below, the approximation (26) is accurate and yields no 256

detectable difference in the predicted adult brain and body mass [Supporting 257

Information (SI) §7]. 258

Using Eq. (22) and (26), effective fecundity becomes 259

m(t) ≈ C(v)f0xr(t), (27)
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where f0 = srBr/Eo. We assume that non-physiological costs of (allo)parental care are 260

included in C(v)f0. Effective fecundity is then proportional to the mass of reproductive 261

tissue, which is consistent with medical approaches to predict fecundity in women in 262

terms of ovarian follicle count [62,63]. 263

Energy acquisition 264

We now model energy acquisition. We assume that energy extraction at age t is done 265

exclusively by overcoming a challenge posed by the non-social environment (e.g., 266

gathering food or lighting a fire) and that the individual engages alone (but possibly 267

with caregivers’ help) in overcoming such a challenge (“me against nature”). This 268

setting implies that the energy extraction efficiency, e(xk(t), v) = e(xk(t)) is 269

independent of the resident strategy. 270

We treat the me-against-nature setting as a contest against the environment. We 271

thus let energy extraction efficiency e(xk(t)) take the form of a contest success 272

function [64,65]: 273

e(xk(t)) =
c(xk(t))

d(t) + c(xk(t))
, (28)

which depends on two terms. First, energy extraction efficiency depends on the difficulty 274

of the challenge at age t, measured by d(t). The higher d(t), the more challenging energy 275

extraction is and the more energy-extraction skills the individual must have to obtain 276

resources. We let d(t) = α− ϕ(t), where α is the environmental difficulty and ϕ(t) is 277

the facilitation of the challenge due to (allo)parental care. We let this facilitation be an 278

exponentially decreasing function with age, ϕ(t) = ϕ0 exp(−ϕrt), and for simplicity we 279

ignore the increased resting metabolic rate caused by gestation and lactation [66]. 280

Second, energy extraction efficiency depends on the individual’s competence, 281

denoted by c(xk(t)). We consider two cases that are standard in contest models: (1) a 282

power function c(xk(t)) = (xk(t))
γ
, so energy extraction efficiency e(xk(t)) is a contest 283

success function in ratio form (power competence); and (2) an exponential function 284

c(xk(t)) = (exp(xk(t)))
γ

so energy extraction efficiency is in difference form 285

(exponential competence) [64,65]. In both cases, the parameter γ describes the 286

effectiveness of skills at energy extraction. Thus, with γ = 0, skills are ineffective while 287

with increasing γ fewer skills are needed to extract energy. In general, competence 288

c(xk(t)) represents features of the individual (e.g., how increasing skill changes efficiency 289

in information processing by the brain), and of the environment (e.g., how adding the 290

skill of caching nuts to that of cracking nuts changes energy extraction efficiency). For a 291

given skill effectiveness (γ), exponential competence assumes a steeper increase in 292

competence with increasing skill number than power competence. 293

Model summary and solution implementation 294

On substituting Eqs. (21) and (27) into Eq. (2) along with Eq. (28) into Eq. (20), the 295

model is closed and can be used to determine uninvadable allocation strategies and the 296

resulting equilibrium growth patterns. From our simplifying assumptions, determining 297

uninvadable allocation strategies reduces to an optimal control problem. We obtain 298

locally uninvadable allocation strategies using optimal control methodology (e.g., [67]), 299

both by a “direct” approach with the software GPOPS [68] for numerical 300

approximations and by an “indirect” approach using Pontryagin’s maximum principle 301

for analytical results (SI §1-4). The model depends on 22 parameters which measure 302

(P1) tissue mass in the newborn (xi0 for i ∈ {b, r, s}), (P2) tissue metabolism (K, β, Bi 303

and Ei for i ∈ {b, r, s}), (P3) demography (f0, µ, and T ), (P4) skill of the newborn 304

(xk0), (P5) skill metabolism (sk, Bk and Ek), (P6) (allo)parental care (ϕ0 and ϕr), and 305

(P7) contest success (α and γ). From their definitions, the parameters are measured in 306
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units of mass, energy, time, and skill. The parameter f0 only displaces the objective 307

vertically and thus has no effect on the uninvadable allocation strategies. The 308

parameter T is taken finite for numerical implementation and set as the observed age of 309

menopause. 310

We use published data for human females to estimate 13 parameters that affect the 311

uninvadable allocation strategies (P1-P3) (SI §5,6; Table S2). These parameters include 312

the brain and body metabolic costs, and with these parameters fixed, the model can 313

only generate a vastly narrower set of outcomes. These parameters are in units of mass, 314

energy, and time which we measure in kg, MJ (megajoules), and years, respectively. 315

The remaining 8 parameters that affect the uninvadable allocation strategies (P4-P7) 316

are less easily estimated from available data, so we identify by trial-and-error 317

benchmark values that yield a model output in agreement with observed ontogenetic 318

body and brain mass data for modern human females. The benchmark parameter values 319

are different with power (Table S3) and exponential (Table S4) competence. The 320

benchmark parameter values involve skill units, and as we do not estimate them from 321

empirical data, we measure skill in arbitrary units. We first present the numerical 322

results for the two sets of benchmark parameter values and then the results when 323

deviating from them (see SI for analytical results and computer code). 324

Results 325

Predicted life history stages: childhood, adolescence, and 326

adulthood 327

The optimal strategy we obtain divides the individual’s lifespan in three broad stages: 328

(1) a “childhood” stage, defined as the stage lasting from birth to tm years of age (age 329

at maturity) and during which allocation to growth of reproductive tissue is zero; (2) an 330

“adolescence” stage, defined as the stage lasting from tm to ta years of age (age at 331

adulthood) and during which there is simultaneous allocation to growth of somatic and 332

reproductive tissue; and (3) an “adulthood” stage, defined as the stage lasting from ta 333

to the end of the individual’s reproductive career and during which all growth allocation 334

is to reproductive tissue (Fig. 2A). These life stages are obtained with either power or 335

exponential competence (Fig. 2A,E). Note that the ages at maturity tm and adulthood 336

ta (switching times) are not parameters but an output of the model. 337

The obtained childhood stage, which is the only stage where there is brain growth, is 349

further subdivided in three periods: (1a) “ante childhood”, defined here as the earliest 350

childhood period with pure allocation to somatic growth; (1b) “childhood proper”, 351

defined here as the childhood period where there is simultaneous allocation to somatic 352

and brain growth; and (1c) “preadolescence”, defined here as the latest childhood 353

period of pure somatic growth. Hence, brain growth occurs exclusively during 354

“childhood proper”. The occurrence of an “ante childhood” without brain growth 355

disagrees with observation in humans. Two possible and particularly relevant reasons 356

for this discrepancy may be either the absence of social interactions in this setting of 357

the model, or the approximation of resting metabolic rate by a power law (20) which 358

underestimates resting metabolic rate (and thus growth metabolic rate) during ante 359

childhood (Fig. S3). The period we refer to here as childhood proper then lasts from 360

the obtained age tb0 of brain growth onset to the obtained age tb of brain growth arrest 361

(these switching times are also an output rather than parameters of the model; Fig. 2A). 362

With the exception of the age of brain growth onset, the predicted timing of 363

childhood, adolescence, and adulthood closely follows that observed in humans with 364

competence being either a power or an exponential function of skill number, given their 365

respective benchmark parameter values (Table 1). Recall that measurement units (i.e., 366
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Fig 2. Uninvadable growth strategy (u∗i ) and the resulting growth patterns (x∗i ) under
a me-against-nature setting. Lines are model’s results and circles are observed values in
human females. Results with (A-D) power and (E-H) exponential competence. (A,E)
Uninvadable growth strategy vs. age. (C,G) Resulting growth metabolic rate vs. age.
(B,F) Resulting body and tissue mass vs. age. (D,H) Resulting brain and reproductive
mass vs. age. Lines and circles with the same color are respectively the model’s
prediction and the observed values in modern human females [69]. Black circles are the
observed (B,F) adult female body mass and (D,H) adult sex-averaged brain mass, either
for late H. erectus [70] or Neanderthals [71,72]. Jitter in the growth strategy (A,E) is
due to negligible numerical error (Fig. S2).
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years, kg, and MJ), excepting skill units, are not arbitrary as they result from the units 367

of the parameter values estimated from empirical data (Table S2). Hence, while using 368

realistic metabolic costs of brain and body, the model can correctly predict major stages 369

of human life history with accurate timing, with the possible exception of brain growth 370

allocation during ante childhood (Table 1). 371

Table 1. Predictions for life history timing and adult brain and body mass with a
me-against-nature setting. Switching times and adult values resulting with competence
as a power or exponential function (PC and EC) for the results in Fig. 2. ∗Observed
values in human females: age at maturity [73], adulthood [74], brain growth onset and
arrest [69], adult body mass [69], and adult brain mass [69]. †Encephalization quotient,
calculated as EQ = xb(ta)/

[
11.22× 10−3xT(ta)0.76

]
(mass in kg) [75].

372

373

374

375

376

377378

Predicted with Observed in∗

PC EC H. sapiens
A

ge
at

: 379Maturity, tm [y] 9.94 9.70 7−13

Adulthood, ta [y] 23.37 17.33 ≈17

Brain growth onset, tb0 [y] 2.36 1.81 0

Brain growth arrest, tb [y] 7.19 7.34 ≈17

Adult body mass, [kg] 53.19 67.79 51.1

Adult brain mass, [kg] 1.02 1.53 1.31

EQ†, [ ] 4.43 5.52 5.87

380

Body and brain mass through ontogeny 381

The optimal growth strategy generates the following predicted body and brain mass 382

throughout ontogeny. For total body mass, there is fast growth during ante childhood, 383

followed by slow growth during childhood proper, a growth spurt during preadolescence, 384

slow growth during adolescence, and no growth during adulthood, each of which closely 385

follows the observed growth pattern in humans (Fig. 2B). The slow growth during 386

childhood proper results from the simultaneous allocation to somatic and brain growth 387

and from the decreasing growth metabolic rate due to the increasing energetic costs of 388

brain maintenance (Fig. 2C). The growth spurt during preadolescence arises because (1) 389

all growth metabolic rate is allocated to inexpensive somatic growth, and (2) growth 390

metabolic rate increases due to increased metabolic rate caused by increasing, 391

inexpensive-to-maintain somatic mass (Fig. 2C). The slow growth during adolescence is 392

due to simultaneous somatic and reproductive growth, and to the elevated costs of 393

reproductive tissue maintenance (Fig. 2C). These growth patterns result in two major 394

peaks in growth metabolic rate (Fig. 2C). While the first peak in growth metabolic rate 395

is made possible by (allo)parental care, the second peak is made possible by the 396

individual’s own skills (Fig. S8D). After the onset of adulthood at ta, growth metabolic 397

rate is virtually depleted and allocation to growth has essentially no effect on tissue 398

growth (Fig. 2C). 399

Whereas predicted body growth patterns are qualitatively similar with either power 400

or exponential competence, they differ quantitatively (Fig. 2B,F). With power 401

competence, the predicted body mass is nearly identical to that observed in human 402

females throughout life (Fig. 2B). In contrast, with exponential competence, the 403

predicted body mass is larger throughout life than that of human females (Fig. 2F). 404

Our exploration of the parameter space indicates that the larger body mass with 405
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exponential competence relative to power competence is robust to parameter change 406

(Figs. 4A-C, S16A-C, S17A-F). 407

Regarding brain mass, the model predicts it to have the following growth pattern. 408

During ante childhood, brain mass remains static, in contrast to the observed pattern 409

(Fig. 2D). During childhood proper, brain mass initially grows quickly, then it slows 410

down slightly, and finally grows quickly again before brain growth arrest at the onset of 411

preadolescence (Fig. 2D). Predicted brain growth is thus delayed by the obtained 412

ante-childhood period relative to the observed brain growth in humans (Fig. 2D). As 413

previously stated, such brain growth delay may be a result of the absence of social 414

interactions in this model setting, or an inaccuracy arising from the underestimation of 415

resting metabolic rate during ante childhood by the power law of body mass. 416

Predicted brain growth patterns are also qualitatively similar but quantitatively 417

different with power and exponential competence (Fig. 2D,H). Adult brain mass is 418

predicted to be larger with competence as an exponential rather than as a power 419

function (Fig. 2D,H). As for body mass, our exploration of the parameter space 420

indicates that the larger brain mass with exponential competence is robust to parameter 421

change (Figs. 4A-C, S16A-C, S17A-F). Moreover, the encephalization quotient (EQ, 422

which is the ratio of observed adult brain mass over expected adult brain mass for a 423

given body mass) is also larger with exponential competence for the benchmark 424

parameter values (Table 1). For illustration, with competence as a power function, the 425

predicted adult body and brain mass approach those observed in late H. erectus (Fig. 426

2B,D). In contrast, with competence as an exponential function, the predicted adult 427

body and brain mass approach those of Neanderthals (Fig. 2F,H). The larger EQ with 428

exponential competence is also robust to parameter change (Figs. 4D-F, S16D-F, 429

S17G-L). 430

Skills through ontogeny 431

The obtained optimal growth strategy predicts the following patterns for 432

energy-extraction skills throughout ontogeny. Under the same parameter values as in 433

Fig. 2, the individual gains most skills during childhood and adolescence, skill number 434

continues to increase after brain growth arrest, and skill number plateaus in adulthood 435

(Fig. 3). That is, skill growth is “determinate”, in agreement with empirical 436

observations (Fig. 3). Yet, if memory cost Bk is substantially lower, skill number can 437

continue to increase throughout life (i.e., skill growth is then “indeterminate”; Fig. S9E) 438

[see Eq. (14)]. Nevertheless, in that case, the agreement between predicted and observed 439

body and brain mass throughout ontogeny is substantially reduced (Fig. S9B,C). 440

When skill growth is determinate, the model predicts adult skill number to be 448

proportional to adult brain mass. In particular, with determinate skill growth, the 449

number of skills that is asymptotically achieved [from Eq. (14) setting ẋk(t) = 0 and 450

u∗b(t) = 0] is 451

x̂k = sk
Bb

Bk
x∗b(ta), (29)

where x̂k is the asymptotic skill number, x∗b(ta) is the adult brain mass, sk is the 452

fraction of brain metabolic rate allocated to energy-extraction skills, and Bb is the brain 453

mass-specific maintenance cost. The requirement for skill growth to be determinate is 454

that the brain metabolic rate allocated to skills [skMbrain(t)] becomes saturated with 455

skill maintenance [xk(t)Bk] within the individual’s life [Eq. (14)]. Hence, adult skill 456

number is proportional to adult brain mass in the model because of saturation with skill 457

maintenance of the brain metabolic rate allocated to skills and because adult brain 458

metabolic rate is found to be proportional to adult brain mass [setting ẋb(ta) = 0 in Eq. 459

(12) yields Mbrain(ta) = xb(ta)Bb]. Weak correlations between cognitive ability and 460

PLOS 13/21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 27, 2016. ; https://doi.org/10.1101/050534doi: bioRxiv preprint 

https://doi.org/10.1101/050534
http://creativecommons.org/licenses/by-nc/4.0/


�� �� �� ��

�

�

�

�

������

�
�
*
[#

�
�
���
�
]

��� �� �� ��
�

��

���������
�����������

���������

�� �� �� ��

�

�

�

�

�
�
*
[#

�
�
���
�
]

��� �� �� ��
�
��

���������
�����������

���������

��� [�����]

�
�
�
�
�
�
�
�
�
�
��
�
�
�

�
�
�
�
�
�
�
���
�
�
�
�
�
�
��
�
�
�

Fig 3. Predicted skill ontogeny plateaus within the individual’s lifespan. Lines are the
predicted number of skills vs. age with power (A) and exponential (B) competence for
the results in Fig 2. Circles are the observed cumulative distribution of self-reported
acquisition ages of food production skills in female Tsimane horticulturalists [76]
multiplied by our x̂k. However, note that the observed skills in Tsimane include socially
learned skills which we do not consider explicitly in the model.
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brain mass have been identified across taxa including humans [5, 77–80]. Since skills are 461

here broadly understood to include cognitive abilities (provided parameters are suitably 462

reinterpreted), this result offers an explanation for these correlations in terms of 463

saturation of brain metabolic rate with skill maintenance (memory). 464

We now vary parameter values to assess what factors favor a large brain at 465

adulthood in a me-against-nature setting. 466

A large brain is favored by intermediate environmental 467

difficulty, moderate skill effectiveness, and costly memory 468

A larger adult brain mass is favored by an increasingly challenging environment 469

[increasing α; Eq. (28)], but is disfavored by an exceedingly challenging environment 470

(Fig. 4A). Environmental difficulty favors a larger brain because more skills are needed 471

for energy extraction [Eq. (28)], and from Eq. (14) more skills can be gained by 472

increasing brain metabolic rate in turn by increasing brain mass. Thus, a large brain is 473

favored to energetically support skill growth in a challenging environment. However, 474

with exceedingly challenging environments, the individual is favored to reproduce early 475

without substantial body or brain growth because it fails to gain enough skills to 476

maintain its body mass as (allo)parental care decreases with age (Fig. S13). 477
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Fig 4. Large adult brain mass and EQ are favored by environmental difficulty,
moderate skill effectiveness, and costly memory. Plots are the predicted adult body and
brain mass, EQ, and skill vs. parameter values with exponential competence. A-C show
adult body mass (blue) and adult brain mass (red). D-F show adult EQ (green) and
skill (orange). Vertical axes are in different scales. Dashed horizontal lines are the
observed values in human females [69].
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485

A larger adult brain is favored by moderately effective skills. When skills are 486

ineffective at energy extraction [γ → 0; Eq. (28)], the brain entails little fitness benefit 487

and fails to grow in which case the individual also reproduces without substantially 488

growing (Fig. 4B). When skill effectiveness (γ) crosses a threshold value, the fitness 489

effect of brain becomes large enough that the brain becomes favored to grow. Yet, as 490

skill effectiveness increases further and thus fewer skills are needed for energy extraction, 491

a smaller brain supports enough skill growth, so the optimal adult brain mass decreases 492
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with skill effectiveness (Fig. 4B). Hence, adult brain mass is largest with moderately 493

effective skills. 494

A larger brain is also favored by skills that are increasingly expensive for the brain 495

to maintain (costly memory, increasing Bk), but exceedingly costly memory prevents 496

body and brain growth (Fig. 4C). Costly memory favors a large brain because then a 497

larger brain mass is required to energetically support skill growth [Eq. (14)]. If 498

memory is exceedingly costly, skills fail to grow and energy extraction is unsuccessful, 499

causing the individual to reproduce without substantial growth (Fig. 4C). 500

Factors favoring a large EQ and high skill 501

A large EQ and high adult skill number are generally favored by the same factors that 502

favor a large adult brain. However, the memory cost has a particularly strong effect 503

favoring a large EQ because it simultaneously favors increased brain and reduced body 504

mass (Fig. 4C,F). In contrast to its effect on EQ, increasing memory cost disfavors a 505

high adult skill number (Fig. 4F). That is, a higher EQ attained by increasing memory 506

costs is accompained by a decrease in skill number (Fig. 4C,F). The factors that favor a 507

large brain, large EQ, and high skill are similar with either power or exponential 508

competence (Fig. 4 and Figs. S16, S17). Importantly, although with the estimated 509

parameter values the me-against-nature setting can recover human growth patterns 510

yielding adult body and brain mass of ancient humans, our exploration of the 511

parameters that were not estimated from data suggests that the me-against-nature 512

setting cannot recover human growth patterns yielding adult body and brain mass of 513

modern humans. 514

Discussion 515

By combining elements of life history and metabolic theories, we formulated a 516

metabolically explicit mathematical model for brain life history evolution that yields 517

testable quantitative predictions from predefined settings. We analyzed the model for a 518

me-against-nature setting where individuals have no social interactions except possibly 519

with caregivers, but the model can be implemented to study brain evolution more 520

generally. Our results for the me-against-nature case show that this setting can be 521

sufficient to generate major human life history stages as well as adult brain and body 522

mass of ancient human scale, all without social interactions or evolutionary arms races 523

in cognition triggered by social conflict. Overall, we find that in the model the brain is 524

favored to grow to energetically support skill growth, and thus a larger brain is favored 525

when (1) competence at energy extraction has a steep dependence on skill number, (2) 526

many skills are needed for energy extraction due to environmental difficulty and 527

moderate skill effectiveness, and (3) skills are expensive for the brain to maintain but 528

are still necessary for energy extraction. 529

The model correctly divides the individual’s lifespan into childhood, adolescence, and 530

adulthood. The model also rightly predicts brain growth to occur only during childhood, 531

although there is a delay in the predicted brain growth which may be due to the 532

absence of social interactions or an underestimation of resting metabolic rate early in 533

life by its power law approximation. Additionally, the predicted childhood stage finishes 534

with a growth spurt, as observed in human preadolescence. The model also recovers an 535

adolescence stage with simultaneous allocation to growth and reproduction, which has 536

previously been difficult to replicate with life history models [28]. While the timing of 537

these predicted life stages depends on the magnitude of parameter values, their relative 538

sequence is likely to depend on the relative magnitude of metabolic costs of maintenance 539

and production of the different tissues (i.e., on whether (1) Bi < Bj and (2) Ei < Ej for 540
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i, j ∈ {b, r, s}). Empirically guided refinement of both parameter values and the shape 541

of energy extraction efficiency is expected to allow for increasingly accurate 542

predictions [81]. Similarly, empirical data for non-human taxa should allow determining 543

the model’s ability to predict diverse life histories and brain growth patterns [82]. 544

The model also offers an explanation for observed inter- and intraspecific 545

correlations between adult cognitive ability and brain mass across taxa including 546

humans [5, 77–80]. The explanation is the saturation with memory costs of the brain 547

metabolic rate allocated to skills during the individual’s lifespan [Eq. (29)]. The 548

proportionality arises because the adult brain metabolic rate is found to be proportional 549

to brain mass. This explanation follows from a general equation for the learning rate of 550

skills [Eq. (14)] that is based on metabolic considerations [34] without making 551

assumptions about skill function; yet, this equation assumes that the fraction of brain 552

metabolic rate allocated to the skills of interest (sk) is independent of brain mass (and 553

similarly for Bb and Bk). The model further predicts that additional variation in 554

correlations between cognitive ability and brain mass can be explained by variation in 555

maintenance costs of brain and skill, and by variation in brain metabolic rate allocation 556

to skill [Eq. (29)]. However, the model indicates that adult skill number and brain mass 557

need not be correlated since saturation with skill maintenance of the brain metabolic 558

rate allocated to skills may not occur during the individual’s lifespan, for example if 559

memory is inexpensive, so skill number increases throughout life (Fig. S9E). 560

Predicted adult brain mass and skill have non-monotonic relationships with their 561

predictor variables (Figs. 4, S16, S17). Consequently, conflicting inferences can be 562

drawn if predictor variables are evaluated only on their low or high ends. For instance, 563

increasingly challenging environments favor large brains up to a point, so that 564

exceedingly challenging environments disfavor large brains. Thus, on the low end of 565

environmental difficulty, the prediction that increasingly challenging environments favor 566

large brains is consistent with ecological challenge hypotheses [21,38]; yet, on the high 567

end of environmental difficulty, the prediction that increasingly challenging 568

environments disfavor large brains is consistent with constraint hypotheses according to 569

which facilitation of environmental challenge favors larger brains [21,83–85]. 570

Counter-intuitively on first encounter, the finding that moderately effective skills are 571

most conducive to a large brain and high skill is a consequence of the need of more skills 572

when their effectiveness decreases (Fig. 4B). Regarding memory cost, the strong effect 573

of memory cost on favoring a high EQ at first glance suggests that a larger EQ than the 574

observed in humans is possible if memory were costlier (see dashed lines in Fig. 4E). 575

However, such larger memory costs cause a substantial delay in body and brain growth, 576

and the resulting growth patterns are inconsistent with those of humans (Figs. 577

S10–S12). 578

Although our model does not include numerous details relevant to humans including 579

social interactions and social learning, our results are relevant for a set of hypotheses for 580

human-brain evolution. In particular, food processing (e.g., mechanically with stone 581

tools or by cooking) has previously been advanced as a determinant factor in 582

human-brain evolution as it increases energy and nutrient availability from otherwise 583

relatively inaccessible sources [86,87]. Evidence of human fire control has been 584

inconclusive for early dates (1.5 mya, associated with early H. erectus in South Africa), 585

while being more secure for more recent dates (800 kya, associated with H. erectus in 586

Israel) and abundant for yet more recent times (130 kya, associated with Neanderthals 587

and H. sapiens throughout the Old World) [88, 89]. Evidence of fire deep inside a South 588

African cave associated to H. erectus has been identified for sediments dated to 1 589

mya [90]. Regarding mechanical processing, “many of the oldest stone tools bear traces 590

of being used to slice meat” (1.5 mya in Kenya; [87,91]) and experimental evidence 591

shows that meat slicing and vegetable pounding substantially reduce chewing effort [87]. 592
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Food processing relates to our results not only in that it can primarily constitute a 593

me-against-nature setting, but also in that it may help satisfy at least two of the three 594

key conditions identified for large-brain evolution listed in the first paragraph of the 595

Discussion. First, a shift in food-processing technology (e.g., from primarily mechanical 596

to cooking) could create a steeper relationship between energy-extraction skills and 597

competence by substantially facilitating energy extraction (relating to condition 1). 598

Second, food processing (e.g., by building the required tools or lighting a fire) is a 599

challenging feat to learn and may often fail (relating to condition 2). Yet, there are 600

scant data allowing to judge the metabolic expense for the brain to maintain 601

tool-making or fire-control skills (condition 3). Our results are thus consistent with the 602

hypothesis of food processing as being a key factor in human brain expansion. 603

In sum, the model identifies various drivers of large-brain evolution, in particular 604

steep competence with respect to skill, intermediate environmental difficulty, moderate 605

skill effectiveness, and costly memory. As we did not consider social interactions, our 606

application of the model cannot refute or support social brain hypotheses. However, 607

application of our model to the social realm should allow for assessments of social 608

hypotheses. 609
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