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Abstract9

Large brains are metabolically expensive but support skills (or cognitive abilities, knowledge,10

information, etc.) that allow overcoming ecological and social challenges, with social challenges11

being thought to strongly promote large-brain evolution by causing evolutionary arms races in12

cognition yielding exaggerated brain sizes. We formulate a mathematical model that yields quan-13

titative predictions of brain and body mass throughout ontogeny when individuals evolve facing14

ecological but no social challenges. We find that ecological challenges alone can generate adult15

brain and body mass of ancient human scale, showing that evolutionary arms races in cognition16

are not necessary for extreme brain sizes. We show that large brains are favored by intermediately17

challenging ecological environments where skills are moderately effective and metabolically ex-18

pensive for the brain to maintain. We further show that observed correlations of cognitive abili-19

ties and brain mass can result from saturation with skill maintenance of the brain metabolic rate20

allocated to skills.21
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Introduction22

Large brains use copious amounts of resources that could otherwise be allocated to reproductive23

function (Aiello and Wheeler, 1995, Mink et al., 1981, Kuzawa et al., 2014). Large brains can, how-24

ever, support complex cognition giving rise to abilities such as creativity, expertise, intelligence, lan-25

guage, consciousness, self control, and predicting the thoughts of others (theory of mind) (Stern-26

berg and Ben-Zeev, 2001, Shettleworth, 2010, MacLean et al., 2014, Heyes and Frith, 2014). Large27

brains may thus entail sizable benefits in reproductive success by providing the individual with skills28

(or cognitive abilities, knowledge, information, etc.) to overcome ecological and social challenges.29

For instance, brain-generated skills may allow overcoming ecological challenges such as obtaining30

nutritionally rich but relatively inaccessible food (Seyfarth and Cheney, 2002, Milton, 1981, Clutton-31

Brock and Harvey, 1980, Barton, 1999, Kaplan et al., 2000, Kaplan and Robson, 2002, Wrangham,32

2009). Additionally, brain-generated skills may allow overcoming social challenges such as coordi-33

nating with or out-competing social partners, for example to hunt big game or ascend the social34

hierarchy (Humphrey, 1976, Byrne and Whiten, 1988, de Waal, 1998, Dunbar and Shultz, 2007). An35

important aspect of social challenges is that they can involve conflicts of interest among social part-36

ners, which may promote evolutionary arms races in cognition, possibly leading to exaggerated brain37

sizes (Humphrey, 1976, Byrne and Whiten, 1988, de Waal, 1998, Dunbar and Shultz, 2007, McNally38

and Jackson, 2013, Arbilly et al., 2014). Yet, regardless of the selective forces for large brains, the en-39

ergy needed to support them must be available in order to meet their substantial energetic demands40

(Aiello and Wheeler, 1995, Isler and van Schaik, 2006).41

Ecological and social challenge hypotheses are often assessed by means of correlations between42

ecological or social variables with measurements of cognitive abilities or proxies thereof (Clutton-43

Brock and Harvey, 1980, Barton, 1999, Dunbar and Shultz, 2007, Dunbar, 1998, Fish and Lockwood,44

2003, Taylor and van Schaik, 2007, MacLean et al., 2009, Allen and Kay, 2012, MacLean et al., 2014,45

Shettleworth, 2010, MacLean et al., 2013, Benson-Amram et al., 2016). For instance, in primates, diet46

breath correlates with self control (MacLean et al., 2014) and group size correlates with neocortex ra-47

tio (Dunbar and Shultz, 2007); yet, diet quality has failed to correlate with endocranial volume in New48

World monkeys (Allen and Kay, 2012) and group size has failed to correlate with problem-solving49

ability in mammalian carnivores (Benson-Amram et al., 2016). Ecological and social challenge hy-50

potheses have also been evaluated with functional studies. For example, in humans, behavioral51

experiments have found refined cognitive skills for social rather than general (ecological) function52

(Herrmann et al., 2007, Cosmides et al., 2010), and brain imaging has identified various brain regions53

specialized for social interaction (Amodio and Frith, 2006, Frith, 2007). Recently, studies have more54

directly addressed the causes for large-brain evolution via phylogenetic analyses, artificial selection55
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experiments, and genomic patterns of selection (Pérez-Barbería et al., 2007, Finarelli and Flynn, 2009,56

Babbitt et al., 2010, Kotrschal et al., 2013, Mathieson et al., 2015). However, there is a need of testable57

mathematical theory guiding causal understanding of the relative contribution of ecological and so-58

cial challenges to large-brain evolution (Healy and Rowe, 2007, Jones, 2015).59

Here we study the possible causal contribution of ecological challenges alone to large-brain evo-60

lution by means of a mathematical model. We formulate a metabolically explicit model for the evo-61

lution of brain ontogenetic growth when individuals face ecological but no social challenges. We use62

the model to determine how much energy should be allocated to brain growth at each age as a re-63

sult of natural selection given that overcoming ecological challenges provides energetic returns (e.g.,64

through food procurement). By excluding social challenges, the model deliberately eliminates the65

possibilities of evolutionary arms races in allocation to brain growth, and thus serves as a baseline66

for understanding brain growth evolution. We derive the model in terms of measurable parame-67

ters using the approach of West et al. (2001). In particular, the model incorporates parameters mea-68

suring the mass-specific metabolic costs of brain growth and maintenance, which capture the rela-69

tively large metabolic expense of the brain. These parameters can be measured empirically, and are70

likely to differ among species given different brain structures and efficiencies. Once parameterized71

with values obtained from data, the model yields quantitative predictions for brain and body mass72

throughout ontogeny under the assumption that individuals evolved under ecological challenges73

alone.74

A defining feature of the model is that it assumes that some of the brain’s energetic consumption75

is due to acquisition and maintenance of skills (or cognitive abilities, knowledge, information, etc.).76

In particular, we focus on skills that allow extracting energy from the environment (Schniter et al.,77

2015). Our approach builds on previous models considering brain (physical embodied capital) and78

skill (functional embodied capital) as part of the individual’s embodied capital invested in fitness79

(Kaplan and Robson, 2002). It also accounts for the notion that information gained and maintained80

by the brain during ontogeny should be explicitly considered when attempting to understand brain81

evolution (Boyd and Richerson, 1985, Shettleworth, 2010, van Schaik and Burkart, 2011). Then, given82

that the brain consumes energy to gain and maintain skills, our model allows to predict how much83

an individual should grow its brain to obtain the energetic returns from skills. By feeding the model84

with parameter values for modern humans (i.e., Homo sapiens), we find that the model can correctly85

predict various major modern human life history stages as well as adult body and brain mass of an-86

cient human scale (i.e., of late Homo erectus and Neanderthals). These findings show that ecological87

challenges alone can generate extreme brain sizes despite the absence of evolutionary arms races in88

cognition.89
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Model description90

We consider a population with overlapping generations and measure the age of individuals in contin-91

uous time (Charlesworth, 1980). To keep the model tractable, we assume random mating, constant92

population size, and constant environment. We focus on females throughout and assume that at93

each age, each individual faces ecological challenges of energy extraction from the non-social envi-94

ronment (e.g., cracking a nut, hunting-gathering, or lighting a fire to cook). We assume that some95

of the energetic consumption of the brain is due to acquisition (learning) and maintenance (mem-96

ory) of energy-extraction skills. We assume that each individual uses the energy-extraction skills it97

has at a given age to extract energy. In accordance with our aim of building a model without social98

challenges, we further assume that energy extraction is done individually, but is facilitated early in99

life by parental or alloparental care. For simplicity, we assume that (allo)parental care has fertility100

but no survival costs. The individual can use the energy extracted in growth, maintenance, and re-101

production. We define growth metabolic rate as the heat released due to body growth by the resting102

individual per unit time at each age. We further define a tissue’s growth schedule as the fraction of103

growth metabolic rate due to the growth of that tissue. We let growth schedules be evolvable traits,104

and by making further standard life history assumptions (Mylius and Diekmann, 1995, Dieckmann105

et al., 2006), we identify evolutionarily stable growth schedules (ESGS) for each tissue by using opti-106

mal control theory.107

Energy and mass108

We partition the mass of an individual into three types of tissues: brain tissue, reproductive tissue,109

and the remainder which we refer to as somatic tissue. The mass of tissue i of a representative indi-110

vidual at age a is xi (a), and we use i ∈ {b,r,s} for brain, reproductive, and somatic tissue, respectively.111

The resting metabolic rate of the individual at age a is Brest(a), which is the heat released by the112

resting individual per unit time at age a. An average mass unit of tissue i of the resting individual113

releases an amount of heat Bi per unit time, which for simplicity we assume constant with respect114

to age. Hence, the maintenance metabolic rate at age a, which is the heat released by the resting115

individual per unit time for maintaining its existing mass, is Bmaint(a) = ∑
i∈{b,r,s} xi (a)Bi . Then, the116

growth metabolic rate is Brest(a)−Bmaint(a), which gives the amount of heat released by the resting117

individual per unit time for producing new tissue. The fraction of the growth metabolic rate allocated118

to tissue i at age a is the tissue’s growth schedule ui (a). We ask what is the growth schedule of each119

tissue at each age as a result of natural selection, so we take the growth schedules ui (a) of the three120

tissues as the evolvable traits.121

Producing an average mass unit of tissue i releases as heat an amount of energy Ei , which for122
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simplicity we also assume constant with respect to age. Building on the metabolic model of West123

et al. (2001), we show in the Supporting Information (SI, §1.1–1.3) that the growth rate of the mass of124

tissue i ∈ {b,r,s} is125

ẋi (a) = ui (a)

(
Brest(a)−Bmaint(a)

Ei

)
, (1)

where ẋi (a) denotes the derivative of xi (a) with respect to age. Equation (1) is a general equation126

describing how growth schedules ui (a) specify tissue growth rates.127

Skill128

We let the individual have a number xk(a) of energy-extraction skills at age a. We assume that a frac-129

tion vk of the brain metabolic rate is due to the energetic expense incurred by the brain for acquiring130

(learning) and maintaining (memory) energy-extraction skills. We also assume that the brain releases131

as heat an amount of energy Ek for gaining an average skill (learning cost) and an amount Bk per unit132

time for maintaining an average skill (memory cost). We also assume vk, Ek, and Bk to be constant.133

The growth rate of energy-extraction skills (see SI §1.4 for derivation) is then134

ẋk(a) = vkMbrain(a)−xk(a)Bk

Ek
, (2)

where135

Mbrain(a) = xb(a)Bb + ẋb(a)Eb (3)

is the brain metabolic rate at age a (i.e., the energy released as heat by the brain per unit time with136

the individual at rest) which consists of the heat released for brain tissue maintenance [xb(a)Bb] and137

growth [ẋb(a)Eb]. Equation (2) is also a general equation capturing the link of brain with skill; it is138

general in that, for example, (2) is not restricted to energy-extraction skills (given that vk is accord-139

ingly reinterpreted). In analogy with (1), the first term in the numerator of (2) gives the heat released140

due to energetic input for skill growth whereas the second term gives the heat released for skill main-141

tenance.142

Skill function143

Finally, we specify how skills allow for energy extraction. We denote the probability of energy extrac-144

tion at age a as p(xk(a)), defined as the ratio of the amount of energy extracted per unit time at age145

a over that extracted if the individual is maximally successful at energy extraction. We assume that146

p(xk(a)) depends on skill number but is independent of body mass. Given the empirical relationship147

of resting metabolic rate and body mass as a power law (Kleiber, 1961, Peters, 1983, Sears et al., 2012),148

which for humans also holds ontogenetically to a good approximation (Fig. S4), we show in the SI149
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(§1.5) that resting metabolic rate takes the form150

Brest(a) = K p(xk(a)) xT(a)β, (4)

where β is a scaling coefficient, K is a constant independent of body mass, and body mass is xT(a) =151 ∑
i∈{b,r,s} xi (a). Equation (4) captures the notion that energy extraction gives the individual energy152

that it can use to grow or maintain its different tissues.153

We consider energy extraction at age a as a contest against the environment. We thus let the154

probability of energy extraction p(xk(a)) take the form of a contest success function (Hirshleifer,155

1995, Skaperdas, 1996):156

p(xk(a)) = c(xk(a))

d(a)+ c(xk(a))
, (5)

which we assume increases with the number xk(a) of energy-extraction skills, and depends on two157

terms. First, the probability of energy extraction depends on the difficulty of energy-extraction at age158

a, measured by d(a). Thus, the higher d(a), the more challenging energy extraction is and the more159

energy-extraction skills the individual must have to obtain resources. We let d(a) =α−ϕ(a), whereα160

is the environmental difficulty and ϕ(a) is the facilitation of energy-extraction due to (allo)parental161

care. We let this facilitation be an exponentially decreasing function with age, ϕ(a) = ϕ0e−ϕra , and162

we ignore the increased resting metabolic rate caused by gestation and lactation (Pontzer, 2015).163

Second, the probability of energy extraction depends on the individual’s competence at energy164

extraction, denoted by c(xk(a)). We consider two cases that are standard in contest models: (1) a165

power function c1(xk(a)) = (xk(a))γ, so the probability of energy extraction p(xk(a)) is a contest suc-166

cess function in ratio form (power competence); and (2) an exponential function c2(xk(a)) = (
exk(a)

)γ
167

so the probability of energy extraction is in difference form (exponential competence) (Hirshleifer,168

1995, Skaperdas, 1996). In both cases, the parameter γ describes the effectiveness of skills at energy169

extraction. Thus, with γ = 0, skills are ineffective while with increasing γ fewer skills are needed to170

extract energy. In general, competence c(xk(a)) represents features of the individual (e.g., how in-171

creasing skill changes efficiency in information processing by the brain), and of the environment172

(e.g., how adding the skill of caching nuts to that of cracking nuts changes energy extraction effi-173

ciency). For a given skill effectiveness (γ), exponential competence assumes a steeper increase in174

competence with increasing skill number than power competence.175

Evolutionary invasion analysis176

Under standard life history assumptions, if an evolutionary equilibrium is reached, natural selection177

maintains the population at this equilibrium where evolutionarily stable growth schedules (ESGS)178

maximize the individual’s lifetime number of offspring assuming that population density is regu-179

lated through fertility (Mylius and Diekmann, 1995, Dieckmann et al., 2006, see also Lande, 1982).180
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Using equations (1)–(5), we seek the ESGS, denoted by u∗
i (a), which yield the optimal tissue mass181

denoted by x∗
i (a). With this aim, we obtain the ESGS by solving this maximization problem, for182

which we employ optimal control theory (SI §2-4) and the software GPOPS (Patterson and Rao, 2014)183

for numerical solutions. For simplicity, we assume that mortality is constant, and so the brain only184

affects fitness through fertility. Assuming that part of the heat released by reproductive tissue is due185

to offspring cell production and that (allo)parental care only entails fertility costs, we let fertility be186

proportional to the mass of reproductive tissue (see SI §1.6 and Chang et al., 1998).187

The model depends on 21 parameters that affect the ESGS, and they measure (P1) tissue mass in188

the newborn, (P2) tissue metabolism (i.e., metabolic costs of tissue maintenance and growth), (P3)189

demography, (P4) skill of the newborn, (P5) skill metabolism (i.e., metabolic costs of memory and190

learning), (P6) (allo)parental care, and (P7) contest success (SI §5). We use published data for mod-191

ern human females to estimate 13 parameters that affect the ESGS that are readily estimated from192

available data (P1-P3) (SI §5,6; Table S2). These parameters include the brain and body metabolic193

costs, and with these parameters fixed, the model can only generate a vastly narrower set of out-194

comes. The remaining 8 parameters (P4-P7) are not readily estimated from available data, so for195

them we identify by trial-and-error benchmark values that yield a model output in agreement with196

observed body and brain mass data for modern human females. The benchmark values are thus dif-197

ferent with power (Table S3) and exponential (Table S4) competence. We first present the numerical198

results for the two sets of benchmark parameter values and then the results when these benchmark199

parameter values vary (see SI for further details and computer code).200

Results201

Predicted life history stages: childhood, adolescence, and adulthood202

The resulting ESGS divide the individual’s lifespan in three broad stages: (1) a “childhood” stage,203

defined as the stage lasting from birth to am years of age and during which allocation to growth204

of reproductive tissue is zero; (2) an “adolescence” stage, defined as the stage lasting from am to aa205

years of age and during which there is simultaneous allocation to growth of somatic and reproductive206

tissue; and (3) an “adulthood” stage, defined as the stage lasting from aa to the end of the individual’s207

reproductive career and during which all growth allocation is to reproductive tissue (Fig. 1a). These208

life stages are obtained with either power or exponential competence (Fig. 1a,e). Note that the ages209

at “menarche” am and adulthood aa are not parameters but an output of the model.210

The obtained childhood stage, which is the only stage where there is brain growth, is further sub-211

divided in three periods: (1a) “early childhood”, defined here as the earliest childhood period with212
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pure allocation to somatic growth; (1b) “mid childhood”, defined here as the childhood period where213

there is simultaneous allocation to somatic and brain growth; and (1c) “preadolescence”, defined214

here as the latest childhood period of pure somatic growth. Hence, brain growth occurs exclusively215

during “mid childhood”. This result disagrees with observation as the obtained absence of allocation216

to brain growth during early childhood does not occur in humans. This discrepancy may be an in-217

accuracy arising because the approximation of resting metabolic rate by a power law of body mass218

which we use in the model (West et al., 2001) underestimates resting metabolic rate, and thus growth219

metabolic rate, during early childhood (Fig. S4). The period we refer to here as mid childhood then220

lasts from the obtained age ab0 of brain growth onset to the obtained age ab of brain growth arrest221

(Fig. 1a).222

With the exception of the age of brain growth onset, the predicted timing of childhood, ado-223

lescence, and adulthood closely follows that observed in modern humans with competence being224

either a power or an exponential function of skill number (Table 1). Note that measurement units225

(i.e., years, kg, and MJ), excepting skill units, are not arbitrary as they result from the units of the226

parameter values estimated from empirical data (Table S2). Hence, the model correctly predicts ma-227

jor stages of human life history with accurate timing, with the exception of brain growth allocation228

during early childhood (Table 1).229

Body and brain mass through ontogeny230

The ESGS generate the following predicted body and brain mass throughout ontogeny. For total body231

mass, there is fast growth during early childhood, followed by slow growth during mid childhood, a232

growth spurt during preadolescence, slow growth during adolescence, and no growth during adult-233

hood, all closely following the observed pattern (Fig. 1b). The slow growth during mid childhood re-234

sults from the simultaneous allocation to somatic and brain growth and from the decreasing growth235

metabolic rate due to the increasing energetic costs of brain maintenance (Fig. 1c). The growth spurt236

during adolescence arises because (1) all growth metabolic rate is allocated to inexpensive somatic237

growth, and (2) growth metabolic rate increases due to increased metabolic rate caused by increas-238

ing, inexpensive-to-maintain somatic mass (Fig. 1c). The slow growth during adolescence is due239

to simultaneous somatic and reproductive growth, and to the elevated costs of reproductive tissue240

maintenance (Fig. 1c). These growth patterns result in two major peaks in growth metabolic rate241

(Fig. 1c). While the first peak in growth metabolic rate is made possible by (allo)parental care, the242

second peak is made possible by the individual’s own skills (Fig. S7d). After the onset of adulthood243

at aa, growth metabolic rate is virtually depleted and allocation to growth has essentially no effect on244

tissue growth (Fig. 1c).245
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Whereas predicted body growth patterns are qualitatively similar with either power or exponen-246

tial competence, they differ quantitatively (Fig. 1b,f). With power competence, the predicted body247

mass is quantitatively nearly identical to that observed in modern humans throughout life (Fig. 1b).248

In contrast, with exponential competence, the predicted body mass is larger throughout life than that249

of modern human females (Fig. 1f).250

Regarding brain mass, the model predicts it to have the following growth pattern. During early251

childhood, brain mass remains static, in contrast to the observed pattern (Fig. 1d). During mid252

childhood, brain mass initially grows quickly, then it slows down slightly, and finally grows quickly253

again before brain growth arrest at the onset of preadolescence (Fig. 1d). Predicted brain growth is254

thus delayed by the obtained early-childhood period relative to the observed brain growth in modern255

humans (Fig. 1d). As previously stated, this delay in predicted brain growth may be an inaccuracy256

arising from the underestimation of resting metabolic rate during early childhood by the power law257

of body mass.258

Predicted brain growth patterns are also qualitatively similar but quantitatively different with259

power and exponential competence (Fig. 1d,h). Adult brain mass is predicted to be smaller or larger260

than that observed in modern human females depending on whether competence is respectively a261

power or an exponential function (Fig. 1d,h). Remarkably, considering body and brain mass together,262

the predicted adult body and brain mass can match those observed in late H. erectus if competence263

is a power function (Fig. 1b,d). In contrast, the predicted adult body and brain mass can match those264

of Neanderthals if competence is an exponential function (Fig. 1f,h). Consequently, the encephaliza-265

tion quotient (EQ, which is the ratio of observed adult brain mass over expected adult brain mass for266

a given body mass) is larger with exponential competence for the parameter values used (Table 1).267

Skills through ontogeny268

The obtained ESGS predict the following patterns for energy-extraction skills throughout ontogeny.269

For the scenario in Fig. 1, the individual gains most skills during childhood and adolescence, skill270

number continues to increase after brain growth arrest, and skill number plateaus in adulthood (Fig.271

2). That is, skill growth is determinate, in agreement with empirical observations (Fig. 2). Yet, if mem-272

ory cost Bk is substantially lower, skill number can continue to increase throughout the individual’s273

reproductive career (i.e., skill growth is then indeterminate; Fig. S8e) [see equation (2)]. Neverthe-274

less, in that case, the agreement between predicted and observed body and brain mass throughout275

ontogeny is substantially reduced (Fig. S8b,c).276

When skill growth is determinate, the model predicts adult skill number to be proportional to277

adult brain mass. In particular, with determinate skill growth, the number of skills that is asymptoti-278
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cally achieved [from equation (2) setting ẋk(a) = 0 and u∗
b (a) = 0] is279

x̂k = vk
Bb

Bk
x∗

b (aa), (6)

where x̂k is the asymptotic skill number, x∗
b (aa) is the adult brain mass, vk is the fraction of brain280

metabolic rate allocated to energy-extraction skills, and Bb is the brain mass-specific maintenance281

cost. The requirement for skill growth to be determinate is that the brain metabolic rate allocated282

to skills [vkMbrain(a)] becomes saturated with skill maintenance [xk(a)Bk] within the individual’s283

reproductive career [equation (2)]. Hence, adult skill number is proportional to adult brain mass284

in the model because of saturation with skill maintenance of the brain metabolic rate allocated to285

skills and because adult brain metabolic rate is found to be proportional to adult brain mass [setting286

ẋb(aa) = 0 in equation (3) yields Mbrain(aa) = xb(aa)Bb]. Weak correlations between cognitive ability287

and brain mass have been identified across taxa including humans (Andreasen et al., 1993, Deaner288

et al., 2007, MacLean et al., 2014, Pietschniga et al., 2015, Benson-Amram et al., 2016). Since skills289

are here broadly understood to include cognitive abilities (provided parameters are suitably rein-290

terpreted), this result provides an explanation for these correlations in terms of saturation of brain291

metabolic rate with skill (cognitive ability) maintenance.292

We now vary parameter values to assess what factors favor a large brain at adulthood.293

A large brain is favored by intermediate environmental difficulty, moderate skill effec-294

tiveness, and costly memory295

A larger adult brain mass is favored by an increasingly challenging environment [increasing α; equa-296

tion (5)], but is disfavored by an exceedingly challenging environment (Fig. 3a). Environmental dif-297

ficulty favors a larger brain because more skills are needed for energy extraction [equation (5)], and298

from equation (2) more skills can be gained by increasing brain metabolic rate in turn by increasing299

brain mass. Thus, a large brain is favored to energetically support skill growth in a challenging en-300

vironment. However, with exceedingly challenging environments, the individual is favored to repro-301

duce early without substantial body or brain growth because it fails to gain enough skills to maintain302

its body mass as (allo)parental care decreases with age (Fig. S12).303

A larger adult brain is favored by moderately effective skills. When skills are ineffective at energy304

extraction [γ→ 0; equation (5)], the brain entails little fitness benefit and fails to grow in which case305

the individual also reproduces without substantially growing (Fig. 3b). When skill effectiveness (γ)306

crosses a threshold value, the fitness effect of brain becomes large enough that the brain becomes307

favored to grow. Yet, as skill effectiveness increases further and thus fewer skills are needed for energy308

extraction, a smaller brain supports enough skill growth, so the optimal adult brain mass decreases309

with skill effectiveness (Fig. 3b). Hence, adult brain mass is largest with moderately effective skills.310
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A larger brain is also favored by skills that are increasingly expensive for the brain to maintain311

(costly memory, increasing Bk), but exceedingly costly memory prevents body and brain growth (Fig.312

3c). Costly memory favors a large brain because then a larger brain mass is required to energetically313

support skill growth [equation (2)]. If memory is exceedingly costly, skills fail to grow and energy314

extraction is unsuccessful, causing the individual to reproduce without substantial growth (Fig. 3c).315

Factors favoring a large EQ and high skill316

A large EQ and high adult skill number are generally favored by the same factors that favor a large317

adult brain. However, the memory cost has a particularly strong effect favoring a large EQ because it318

simultaneously favors increased brain and reduced body mass (Fig. 3c,f). In contrast to its effect on319

EQ, increasing memory cost disfavors a high adult skill number (Fig. 3f). That is, a higher EQ attained320

by increasing memory costs is accompained by a decrease in skill number (Fig. 3c,f). The factors that321

favor a large brain, large EQ, and high skill are similar with either power or exponential competence322

(Fig. 3 and Figs. S15,S16). Importantly, although with the estimated parameter values the model323

can recover modern human growth patterns yielding adult body and brain mass of ancient humans,324

our exploration of the parameters that were not estimated from data suggests that the model cannot325

recover modern human growth patterns yielding adult body and brain mass of modern humans.326

Discussion327

Our model shows that ecological challenges alone can be sufficient, and that evolutionary arms races328

in cognition are not necessary, to generate major human life history stages as well as adult brain329

and body mass of ancient human scale. We find that the brain is favored to grow to energetically330

support skill growth, and thus a large brain is favored when simultaneously (1) competence at energy331

extraction has a steep dependence on skill number, (2) many skills are needed for energy extraction332

due to environmental difficulty and moderate skill effectiveness, and (3) skills are expensive for the333

brain to maintain but are still necessary for energy extraction.334

While the model considers ecological challenges alone and so evolutionary arms races in cogni-335

tion do not take place, the model can recover body and brain mass of ancient human scale. Predicted336

encephalization can match that of late H. erectus with competence being a power function of skills,337

and that of Neanderthals with competence as an exponential function. These results call for em-338

pirical assessment of the probability of energy extraction versus skill number (or cognitive ability,339

knowledge, etc.) to allow for increasingly accurate predictions (Jia et al., 2013). Similarly, use of pa-340

rameter values for non-human taxa would allow to determine the model’s ability to predict diverse341
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life histories and brain growth patterns (Moses et al., 2008), offering a means to assess the explana-342

tory potential of ecological challenges for large-brain evolution across taxa.343

The model also provides an explanation for observed inter- and intraspecific correlations be-344

tween adult cognitive ability and brain mass across taxa including humans (Andreasen et al., 1993,345

Deaner et al., 2007, MacLean et al., 2014, Pietschniga et al., 2015, Benson-Amram et al., 2016). The346

explanation is the saturation with skill maintenance of the brain metabolic rate allocated to skills347

during the individual’s lifespan [equation (6)]. The proportionality arises because the adult brain348

metabolic rate is found to be proportional to brain mass. This explanation follows from a general349

equation for the learning rate of skills [equation (2)] that is based on metabolic considerations (West350

et al., 2001) without making assumptions about skill function; yet, this equation assumes that the351

fraction of brain metabolic rate allocated to the skills of interest (vk) is independent of brain mass352

(and similarly for Bb and Bk). The model further predicts that additional variation in correlations be-353

tween cognitive ability and brain mass can be explained by variation in maintenance costs of brain354

and skill, and by variation in brain metabolic rate allocation to skill [equation (6)]. However, the355

model indicates that adult skill number and brain mass need not be correlated since saturation with356

skill maintenance of the brain metabolic rate allocated to skills may not occur during the individual’s357

lifespan, for example if memory is inexpensive, so skill number increases throughout life (Fig. S8e).358

Predicted adult brain mass and skill have non-monotonic relationships with their predictor vari-359

ables (Fig. 3 and Figs. S15,S16). Consequently, conflicting inferences can be drawn if predictor vari-360

ables are evaluated only on their low or high ends. For instance, increasingly challenging environ-361

ments favor large brains up to a point, so that exceedingly challenging environments disfavor large362

brains. Thus, on the low end of environmental difficulty, the prediction that increasingly challeng-363

ing environments favor large brains is consistent with ecological challenge hypotheses (Kaplan and364

Robson, 2002, Kaplan et al., 2000); yet, on the high end of environmental difficulty, the prediction365

that increasingly challenging environments disfavor large brains is consistent with constraint hy-366

potheses according to which facilitation of environmental challenge favors larger brains (Austad and367

Fischer, 1994, Kaplan and Robson, 2002, Hintze et al., 2015). Counter-intuitively on first encounter,368

the finding that moderately effective skills are most conducive to a large brain and high skill is sim-369

ply a consequence of the need of more skills when their effectiveness decreases (Fig. 3b). Regarding370

memory cost, the strong effect of memory cost on favoring a high EQ at first glance suggests that a371

larger EQ than the observed in modern humans is possible if memory were costlier (see dashed lines372

in Fig. 3e). However, such larger memory costs cause a substantial delay in body and brain growth,373

and the resulting growth patterns are inconsistent with those of modern humans (Figs. S9–S11).374

Although our model does not include numerous details relevant to humans including social chal-375
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lenges and social learning, our results are relevant for a set of hypotheses for human-brain evolution.376

In particular, food processing (e.g., mechanically with stone tools or by cooking) has previously been377

advanced as a determinant factor in human-brain evolution as it increases energy and nutrient avail-378

ability from otherwise relatively inaccessible sources (Wrangham, 2009, Zink and Lieberman, 2016).379

Evidence of human fire control has been inconclusive for early dates (1.5 mya, associated with early380

H. erectus in South Africa), while being more secure for more recent dates (800 kya, associated with381

H. erectus in Israel) and abundant for yet more recent times (130 kya, associated with Neanderthals382

and H. sapiens throughout the Old World) (Klein, 2009). Unambiguous evidence of fire deep inside a383

South African cave associated to H. erectus has been identified for sediments dated to 1 mya (Berna384

et al., 2012). Regarding mechanical processing, “many of the oldest stone tools bear traces of being385

used to slice meat” (1.5 mya in Kenya; Zink and Lieberman, 2016, Keeley and Toth, 1981) and ex-386

perimental evidence shows that meat slicing and vegetable pounding substantially reduce chewing387

effort (Zink and Lieberman, 2016). Food processing relates to our results not only in that it consti-388

tutes an ecological rather than a social challenge, but also in that it may help satisfy at least two of389

the three key conditions identified for large-brain evolution listed in the first paragraph of the Dis-390

cussion. First, a shift in food-processing technology (e.g., from primarily mechanical to cooking)391

may create a steeper relationship between energy-extraction skills and competence by substantially392

facilitating energy extraction (relating to condition 1). Second, food processing (e.g., by building the393

required tools or lighting a fire) is a challenging feat to learn and may often fail (relating to condi-394

tion 2). Yet, there are scant data allowing to judge the metabolic expense for the brain to maintain395

tool-making or fire-control skills (condition 3). Our results thus indicate that food processing may396

well have been a key causal factor in human brain expansion. Also, although we did not consider so-397

cial aspects in our model, the steepness of competence with respect to skill may increase with social398

learning as well. Social learning can facilitate the acquisition of adaptive skills (Boyd and Richerson,399

1985, van Schaik and Burkart, 2011), and skills increasing the steepness of competence with respect400

to skill could be particularly adaptive. In this case, sociality could favor high encephalization in the401

absence of cognitive arms races (van Schaik and Burkart, 2011).402

Despite considering ecological challenges alone and additional simplifying assumptions, our403

model accurately predicts major stages of human life history while simultaneously recovering adult404

brain and body mass of ancient human scale. The model identifies various ecological drivers of large-405

brain evolution, in particular steep competence with respect to skill, intermediate environmental406

difficulty, moderate skill effectiveness, and costly memory. As we did not consider social challenges,407

our model cannot refute or support social challenge hypotheses. However, our results show that408

when the various factors favoring large brains co-occur, ecological challenges alone can be sufficient409
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to explain major aspects of human life history and large-brain evolution.410
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Table 1: Life history predictions. Predicted values use competence as a power or exponential func-

tion (PC and EC) with their respective benchmark parameter values. Observed values are those

in three Homo species. Predictions and observations with the same color (blue or red) agree.

∗Observed adult body mass in females and adult brain mass averaged across sexes for both late

H. erectus (McHenry, 1994) and Neanderthals (Froehle and Churchill, 2009, Ruff et al., 1997). For

H. sapiens all values are for females: age at menarche (Gluckman and Hanson, 2006), adulthood

(Henry et al., 2005), brain growth onset and arrest (Kuzawa et al., 2014), adult body mass (Kuzawa

et al., 2014), and adult brain mass (Kuzawa et al., 2014). †Encephalization quotient, calculated as

EQ = xb(aa)/
[
11.22×10−3xT(aa)0.76

]
(mass in kg) (Martin, 1981).
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Figure 1: Ecological challenges alone can generate modern human life history stages and ancient

human body and brain sizes. Lines are model’s predictions and large dots are observations. Results

with (a-d) power and (e-h) exponential competence. (a,e) Predicted growth schedules vs. age. (c,g)

Growth metabolic rate vs. age. (b,f) Predicted body and tissue mass vs. age. (d,h) Predicted brain

and reproductive mass vs. age. Dots and lines with the same color are respectively the observed

and predicted values in modern human females (Kuzawa et al., 2014). Black dots are the observed

(b,f) adult female body mass and (d,h) adult sex-averaged brain mass, either for late H. erectus or

Neanderthals (Table 1). Jitter in growth schedules (a,e) is due to negligible numerical error (Fig. S3).
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Figure 2: Predicted skill ontogeny plateaus before the end of the individual’s reproductive career.

Lines are the predicted number of skills vs. age with power (a) and exponential (b) competence for

the results in Fig 1. Dots are the observed cumulative distribution of self-reported acquisition ages

of food production skills in female Tsimane horticulturalists (Schniter et al., 2015) multiplied by our

x̂k. However, note that the observed skills in Tsimane include socially learned skills which we do not

consider explicitly in the model.
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Figure 3: Large adult brain mass and EQ are favored by environmental difficulty, moderate skill ef-

fectiveness, and costly memory. Plots are the predicted adult body and brain mass, EQ, and skill vs.

parameter values with exponential competence. a-c show adult body mass (blue) and adult brain

mass (red). d-f show adult EQ (green) and skill (orange). Vertical axes are in different scales. Dashed

horizontal lines are the observed values in modern human females (Kuzawa et al., 2014).
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1 Model39

In this section we derive the equations of the model presented in the main text [equations (1–4)] and formulate40

the evolutionary question. This question gives rise to an optimal control problem that we describe in section41

2.1.42

1.1 Tracking resting metabolic rate43

Life history models generally study the allocation of an individual’s energy budget to different functions44

(Kozłowski, 1992). Consequently, parameters in life history models refer to complete components of the en-45

ergy budget (e.g., assimilated energy (Ziółko and Kozłowski, 1983)). In practice, it is easier to measure heat46

release (metabolic rates) (Blaxter, 1989). Hence, in order to facilitate parameter measurement, we follow the47

approach of West et al. (2001) to formulate our life history model in terms of resting metabolic rate allocation48

rather than energy budget allocation. Thus, in the model, we track how resting metabolic rate is due to growth49

and maintenance of different tissues, in particular the brain.50

We start from the partition of the individual’s energy budget used by Hou et al. (2008) which divides the51

energy budget (assimilation rate) into heat released at rest (resting metabolic rate) and the remainder (see52

Blaxter (1989) for details into why this partition is correct). The amount of energy used per unit time by an53

individual is its assimilation rate. Part of this energy per unit time is stored in the body (S) and the rest is the54

total metabolic rate which is the energy released as heat per unit time after use. Part of the total metabolic rate55

is the resting metabolic rate Brest and the rest is the energy released as heat per unit time due to activity Bact. In56

turn, part of the resting metabolic rate is due to maintenance of existing biomass Bmaint, and the rest is due to57

production of new biomass Bsyn. We refer to Bsyn as the growth metabolic rate. This partitioning is illustrated58

in Fig. S1. We formulate our model in terms of allocation of resting metabolic rate Brest to maintenance and59

growth of the different tissues.60

1.2 Energy use62

Suppose that an individual of age a has a number Ni (a) of cells of type i , for i ∈ {b,r,s} corresponding to63

brain, reproductive, and (the remainder) somatic cells, respectively. Assume that an average cell of type i in64

the resting body releases as heat an amount of energy Bci per unit time. Hence, the total amount of energy65

released as heat per unit time by existing cells in the resting individual is66

Bmaint(a) = Nb(a)Bcb +Nr(a)Bcr +Ns(a)Bcs, (S1)

which gives the part of resting metabolic rate due to body mass maintenance (Hou et al., 2008).67

Assume that producing a new average cell of type i releases as heat an amount of energy Eci . Hence, the68

total amount of energy released as heat per unit time by the resting individual due to production of new cells69

is70

Bsyn(a) = Ṅb(a)Ecb + Ṅr(a)Ecr + Ṅs(a)Ecs, (S2)

which gives the rate of heat release in biosynthesis (Hou et al., 2008), and we call it the growth metabolic rate.71
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Figure S1: Relation of resting metabolic rate to assimilation rate. Modified from Hou et al. (2008).

From (S2), we have that72

Ṅi (a)Eci = ui (a)Bsyn(a), (S3)

for i ∈ {b,r,s}, where ui (a) is the fraction of growth metabolic rate due to production of new type-i cells [sum-73

ming over all cell types returns (S2)].74

Adding the expressions above, the total amount of energy released as heat by the resting individual per unit75

time is76

Brest(a) = Bmaint(a)+Bsyn(a). (S4)

1.3 Tissue mass77

Let the mass of an average cell of type i be xci for i ∈ {b,r,s}. Then, the mass of tissue i at age a is78

xi (a) = xci Ni (a), (S5)

and hence, using (S3), we have that79

ẋi (a) = xci Ṅi (a)

= xci

Eci
ui (a)Bsyn(a). (S6)

Defining Ei = Eci /xci , this gives80

ẋi (a) = ui (a)
Bsyn(a)

Ei
(S7)

for i ∈ {b,r,s}. From (S4), we then have equation (1) of the main text where from (S1)81

Bmaint(a) = xb(a)Bb +xr(a)Br +xs(a)Bs (S8)
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and Bi = Bci /xci . We will denote body mass at age a as xT(a) = xb(a)+xr(a)+xs(a).82

1.4 Skills83

We consider that some of the brain metabolic rate is to acquiring and maintaining energy-extraction skills. We84

assume that the individual at age a has a number xk(a) of energy-extraction skills. From energy conservation85

and (S1) and (S2), the brain metabolic rate must equal Mbrain(a) = xb(a)Bb + ẋb(a)Eb. We thus let vk be the86

fraction of brain metabolic rate that is due to acquiring and maintaining energy-extraction skills (or brain’s87

allocation to energy-extraction skills). Suppose that the brain releases as heat an amount of energy Ek for88

acquiring an average energy-extraction skill (learning cost). Similarly, assume that the brain releases as heat89

an amount of energy Bk per unit time for maintaining an average energy-extraction skill (memory cost). Hence,90

from energy conservation,91

xk(a)Bk + ẋk(a)Ek = vk [xb(a)Bb + ẋb(a)Eb] . (S9)

Rearranging, we have92

ẋk(a) = vk [xb(a)Bb + ẋb(a)Eb]−xk(a)Bk

Ek
, (S10)

which is equation (2) in the main text. [A similar reasoning can be used to derive (S7), not in terms of allocation93

to tissue growth ui (a), but in terms of allocation to tissue growth and maintenance vi (a).]94

1.5 Energy acquisition95

We now derive an expression that specifies how energy extraction affects fitness in the model. To that end, we96

assume that at age a the individual obtains an amount of energy E(xk(a)) per unit time from the environment,97

which we assume depends on skill xk(a) (and possibly body mass). The quantity E(xk(a)) is thus the indi-98

vidual’s energetic production per unit time at age a. Let Emax(a) be the amount of energy that the individual99

obtains from the environment per unit time at age a if it is maximally successful at energy extraction (which100

also possibly depends on body mass). Let us use x ≡ y to denote that x is defined as y . Then, we define the101

probability of energy extraction at age t as the normalized production per unit time at age a:102

p(xk(a)) ≡ E(xk(a))

Emax(a)
. (S11)

We also define the ratio of resting metabolic rate and energy obtained per unit time as103

q(xk(a)) ≡ Brest(a)

E(xk(a))
(S12)

and, motivated by (S12), the quantity104

Brest,max(a) ≡ q(xk(a))Emax(a) (S13a)

= Brest(a)

p(xk(a))
. (S13b)

From (S13b), we have that105

Brest(a) = p(xk(a))Brest,max(a). (S14)

Consequently, Brest,max(a) gives the resting metabolic rate when the individual is maximally successful at en-106

ergy extraction. Adult resting metabolic rate typically scales with adult body mass as a power law across all107
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living systems (Kleiber, 1932, 1961; Peters, 1983; Schmidt-Nielsen, 1984), and also ontogenetically in humans108

to a good approximation (Fig. S4; see also Sears et al. (2012)). Hence, assuming that p(xk(a)) is independent109

of body mass, we assume that110

Brest,max(a) = K xT(a)β, (S15)

where K is a constant independent of body mass. Equation (S14) then becomes equation (4) in the main text.111

1.6 Fitness and evolving traits112

We consider the growth schedules ui (a) for i ∈ {b,r,s} as evolving traits, and we make assumptions (see below)113

that imply that these schedules attain evolutionarily stable values (Lande, 1982; Mylius and Diekmann, 1995).114

To obtain evolutionarily stable growth schedules we need a fitness measure. To obtain this measure, we con-115

sider a randomly mating population of constant size, with overlapping generations, where the environment is116

constant, and where the age of individuals is measured in continuous time. We assume that the probability117

l (a) that a newborn survives to age t satisfies118

l̇ (a) =−µl (a) (S16)

where µ is the mortality rate. For simplicity, we take mortality rate as constant.119

We obtain a measure of fertility as follows. We partition the mass-specific resting metabolic rate of repro-120

ductive tissue Br into a component due to maintenance of reproductive tissue itself Bra and a component due121

to production of offspring cells Bro. That is, Br = Bra+Bro (note that Bro is not part of Er because the latter refers122

to the production of mother’s cells). Let Ṅo(a) be the number of offspring cells produced by the individual per123

unit time at age t . Hence, the number of offspring cells produced is given by Ṅo(a) = C1BraNr(a) for some124

constant C1. Then, we assume that fertility, defined as the number of offspring produced per unit time at age125

a, is126

f (a) =C2Ṅo(a) =C3Nr(a) = f0xr(a), (S17)

where C2, C3, and f0 are proportionality constants defined in the absence of density dependence competition.127

We also assume that costs of parental or alloparental care are included in f0. Fertility is then proportional to128

the mass of reproductive tissue (King and Roughgarden, 1982).129

From (S16)–(S17), the individual’s lifetime number of offspring produced in the absence of130

density-dependent competition (Mylius and Diekmann, 1995) is then given by131

R0 =
∫ τ

0
l (a) f (a)da, (S18)

where τ is an age after which the individual no longer reproduces. With additional standard assumptions,132

evolutionarily stable growth schedules in the population of constant size regulated through fertility must max-133

imize R0 (Mylius and Diekmann, 1995), and so we take R0 as a fitness (objective) function that is maximized134

by the evolving growth schedules ui (a) at an evolutionary equilibrium.135

1.7 Model summary136

Our model specifies the ontogenetic dynamics of the brain, reproductive, and somatic tissue mass, xb, xr and137

xs, and of the number of energy-extraction skills xk of the individual. The dynamics of these four state vari-138
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ables is expressed in terms of the growth schedules ui (a) that we take as evolving traits and of 22 parameters:139

namely, 11 tissue- and skill-metabolism parameters (K , β, vk, and Bi and Ei for i ∈ {b,r,s,k}); 3 demographic140

parameters ( f0, µ, and τ); 2 contest success parameters (α and γ); 2 (allo)parental care parameters (ϕ0 andϕr);141

and 4 newborn tissue mass and newborn skill parameters [xi (0) for i ∈ {b,r,s,k}]. Parameter f0 only displaces142

the objective vertically and thus has no effect on the optimal growth schedules.143

We now formulate the optimal control problem posed by our evolutionary model and later describe how144

we estimated parameter values from empirical data.145
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2 Optimal control problem146

2.1 Problem statement147

The maximization of R0 by the growth schedules ui (a) for all a ∈ [0,τ] [or u(·) for short] poses an optimal148

control problem (King and Roughgarden, 1982; Iwasa and Roughgarden, 1984; Perrin, 1992; Irie and Iwasa,149

2005; Sydsæter et al., 2008). In the terminology of optimal control theory, we have the control variables150

u(a) = (ub(a),ur(a),us(a)) ∈ [0,1] subject to ub(·)+ur(·)+us(·) = 1, (S19a)

and the state variables151

x(a) = (xb(a), xr(a), xs(a), xk(a)) ≥ 0. (S19b)

For readability, we will suppress the argument in u(a) and x(a), and write u and x.152

We then have the optimal control problem153

max
u(·)

R0, (S19c)

where from (S16)–(S18)154

R0 = f0

∫ τ

0
e−µa xrda, (S19d)

subject to the dynamic constraints155

ẋ = g(u,x, a), (S19e)

with156

gi (u,x, a) = ei ui Bsyn(x, a) for i ∈ {b,r,s} (S19f)

gk(u,x, a) = d1
[
xbBb +ubBsyn(x, a)

]−d2xk, (S19g)

which are obtained from (S7) and (S10), where ei = 1/Ei , d1 = vk/Ek, and d2 = Bk/Ek. From (S4), (S8), (S14),157

and (S15), we have that growth metabolic rate is158

Bsyn(x, a) = K p(xk, a)xβT −Bbxb −Brxr −Bsxs, (S19h)

where body mass is159

xT = xb +xr +xs, (S19i)

and, from (5) in the main text, the probability of energy extraction at age a is160

p(xk, a) = c(xk)

α−ϕ0e−ϕra + c(xk)
, (S19j)

where competence at energy extraction is161

c(xk) =


xγk (power competence)

eγxk (exponential competence).
(S19k)

Finally, the initial conditions of (S19e) are162

xi (0) = xi 0 for all i (S19l)

and we do not consider any terminal conditions for (S19e) .163
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2.2 The Pontryagin Maximum Principle164

Necessary first-order conditions for maximizing the objective R0 with respect to the controls throughout t are165

given by the Pontryagin maximum principle (Bryson, Jr. and Ho, 1975; Kamien and Schwartz, 2012; Sydsæter166

et al., 2008). The Pontryagin maximum principle states that if (u∗,x∗) is a solution to the optimal control167

problem (S19), then an associated function, the Hamiltonian, is maximized with respect to the controls when168

evaluated at (u∗,x∗). The Hamiltonian for problem (S19) is169

H(u,x,λ, a) = f0e−µa xr +
∑

i∈{b,r,s,k}
λi gi (u,x, a), (S20)

where λi is the costate variable associated to state variable i and λ is the vector of costates. Here we also drop170

the argument of λi (a) and write simply λi . A costate variable gives the marginal value of the corresponding171

state variable; that is, it is the effect on the maximized objective (fitness) for a marginal change in the cor-172

responding state variable (Dorfman, 1969). Thus, we now proceed to maximize the Hamiltonian to obtain173

candidate optimal controls u∗ that satisfy these necessary conditions for optimality.174

Due to the constraint ub+ur+us = 1, we set ur = 1−ub−us and only two controls must be determined: u∗
b175

and u∗
s . Using (S19f) and (S19g), collecting for Bsyn in (S20), and evaluating at x = x∗ we have176

H(u,x∗,λ, a) = f0e−µa x∗
r +Bsyn(x∗, a)φ(u,λ)+λkξ(x∗), (S21)

where177

φ(u,λ) = ubσb +usσs +erλr (S22a)

ξ(x∗) = d1x∗
b Bb −d2x∗

k (S22b)

and178

σb(λ) = ebλb −erλr +d1λk (S23a)

σs(λ) = esλs −erλr. (S23b)

We thus seek to maximize (S21) with respect to u = (ub,us).179

The derivatives of the Hamiltonian (S21) with respect to the two controls (ub, us) are [see equation (10) on180

p. 126 of Kamien and Schwartz (2012)]181

∂H(u,x∗,λ, a)

∂ui

∣∣∣∣
u=u∗

= Bsynσi for i ∈ {b,s}. (S24)

If Bsyn > 0, then the Hamiltonian is maximized with respect to ub and us depending on the signs of the switch-182

ing functions σi and, because of the constraint that ub +us ≤ 1, also depending on the sign of the difference183

σs −σb = esλs −ebλb −d1λk. (S25)

By definition, the costates satisfy [see equation (7) on p. 126 of Kamien and Schwartz (2012)]184

λ̇i = −∂H(u∗,x,λ, a)

∂xi

∣∣∣∣
x=x∗

for i ∈ {b,r,s,k} (S26a)

λi (τ) = 0. (S26b)
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Hence, the dynamical equations of the costates are185

λ̇b =−(
φψb +λkd1Bb

)
(S27a)

λ̇r =−(
φψr + f0e−µa)

(S27b)

λ̇s =−φψs (S27c)

λ̇k =−(
φψk −λkd2

)
, (S27d)

evaluated at (x∗,u∗), where we define186

ψi (x∗, a) = ∂Bsyn

∂xi

∣∣∣∣
x=x∗

(S28)

for i ∈ {b,r,s,k}. Note that the marginal returns on energy extraction from increasing skill and skill synergy are187

respectively188

∂p

∂xk
= p(1−p)

dlnc(xk)

dxk
(S29a)

= p(1−p)
γ

δ(xk)
(S29b)

∂2p

∂x2
k

= p(1−p)

[
d2 lnc(xk)

dx2
k

+ (1−2p)

(
dlnc(xk)

dxk

)2
]

(S29c)

= p(1−p)
γ

δ(xk)2

[
γ(1−2p)− δ̂]

, (S29d)

where189

δ(x∗
k ) =


x∗

k for c(xk) = xγk

1 for c(xk) = eγxk ,
(S30a)

δ̂=


1 if c(xk) = xγk

0 if c(xk) = eγxk .
(S30b)

Hence,190

ψi (x∗, a) =ψ(x∗, a)−Bi for i ∈ {b,r,s} (S31a)

ψk(x∗, a) = K
∂p

∂xk
xT(x∗)β (S31b)

= Kγp(x∗
k , a)[1−p(x∗

k , a)]
xT(x∗)β

δ(x∗
k )

, (S31c)

whereby191

ψ(x∗, a) = Kβp(x∗
k , a)xT(x∗)β−1. (S31d)
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3 Analytical results192

We present the analytical results for the candidate optimal controls in this section, and their derivations in193

section 4. In these two sections, we assume that growth metabolic rate is positive; that is, Bsyn(x∗, t ) > 0.194

The Hamiltonian of the optimal control problem (S19) is affine (or, less rigorously, linear) in the controls195

[equation (S21)]. Since we assume that Bsyn(x∗, a) > 0, the sign of the derivative of the Hamiltonian with re-196

spect to us or ub is given by the sign of the two switching functionsσs andσb [equations (S23)]. Ifσi is negative,197

the Hamiltonian is maximized when u∗
i = 0. If σi is positive and the other switching function, denoted by σi ′ ,198

is negative, then the Hamiltonian is maximized when (u∗
i ,u∗

i ′ ) = (1,0). If both σi and σi ′ are positive, because199

of the constraint that u∗
s +u∗

b ≤ 1, the Hamiltonian is maximized when (u∗
i ,u∗

i ′ ) = (1,0) if and only if σi > σi ′ .200

If σi is zero and σi ′ is positive, then the Hamiltonian is maximized when (u∗
i ,u∗

i ′ ) = (0,1). If σi is zero and σi ′201

is negative, then the Hamiltonian is maximized when u∗
i ′ = 0 but the Hamiltonian is independent of ui . In this202

case, the candidate optimal control u∗
i = ûi is called a singular arc and must be determined by another method203

(Bryson, Jr. and Ho, 1975). If bothσs andσb are zero, the Hamiltonian is independent of both controls and the204

candidate optimal controls are the singular arcs (u∗
s ,u∗

b ) = (ûs, ûs). Finally, if both σs and σb are positive and205

equal, then both u∗
s and u∗

b are positive and maximal given the constraint u∗
s +u∗

b ≤ 1, so (u∗
s ,u∗

b ) = (1−ûb, ûb).206

Together, these cases show that there are seven possible growth regimes (Table S1). Regimes B, R, and S207

involve pure growth of one of the three tissues, whereas regimes BS, BR, RS, and BRS are singular arcs where at208

least two tissues grow simultaneously. These regimes occur as indicated in Table S1 depending on the sign of209

both the switching functions and their difference. Numerical illustration of these regimes is given in Fig. S2.210

Regime Tissues growing
Candidate

optimal controls

Sign of switching

functions

(u∗
s ,u∗

b ) sign(σs,σb,σs −σb)

R Reproductive (0,0) (−,−, ·)
B Brain (0,1) (−,+, ·), (+,+,−), (0,+, ·)
S Soma (1,0) (+,−, ·), (+,+,+), (+,0, ·)
BS Brain and soma (1− ûb, ûb) (+,+,0)

BR Brain and reproductive (0, ûb) (−,0, ·)
RS Reproductive and soma (ûs,0) (0,−, ·)
BRS Brain, reproductive, and soma (ûs, ûb) (0,0, ·)

211

Table S1: Growth regimes. Four regimes are singular arcs. Note that u∗
r = 1−u∗

s −u∗
b . The “·” means any sign.

For simplicity of presentation in the remainder of section 3 and 4, we will explicitly write the arguments of216

a function only when defining the function and will suppress their writing elsewhere, except in a few places217

where it is useful to recall them.218
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Figure S2: Switching functions and costates for the process in Fig. 1. GPOPS yields the costatesλi using a direct

approach rather than the Pontryagin maximum principle (Patterson and Rao, 2014). The switching functions

σi are calculated using (S23).

213
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In section 4 we show that for the singular arcs and assuming the denominators are non-zero, the candidate219

optimal controls are220

Regime BS: ûb(x∗,λ, a) =
ρsk −χsb

/sk

χsb
bsk

(S32a)

Regime BR: ûb(x∗,λ, a) =
ρrk −χbr

/rk

χbr
brk

(S32b)

Regime RS: ûs(x∗,λ, a) = ρrs −χsr
/r/

χsr
sr/

(S32c)

Regime BRS: ûs(x∗,λ, a) =
(ρrs −χsr

/sk)χbr
brk − (ρrk −χbr

/rk)χsr
br/

χsr
sr/χ

br
brk −χsr

br/χ
br
srk

(S32d)

ûb(x∗,λ, a) =
(ρrk −χbr

/rk)χsr
sr/ − (ρrs −χsr

/r/)χbr
srk

χsr
sr/χ

br
brk −χsr

br/χ
br
srk

. (S32e)

Here we have221

χlm
i j k (x∗,λ, a) = e jλ j

xT

[
ψωi j (el −em)+θ0ψkηi j d1

]
(S33a)

ρ j k (x∗,λ, a) = θ1

(
θ2d1d2λk(ebBb −d2) (S33b)

+e jλ j
{
e jψ j

[
e jψ j −θ2(ebψb +d1ψk)− θ̂2esψs

]−θ2d1ψk(ebBb −d2)
}

(S33c)

+θ3 f0e−µa [
µ+ (e jψ j −θ2ebψb − θ̂2esψs)

])
, (S33d)

for i , j ,k, l ,m ∈ {b,r,s,k}, and a subscript “/” in χl m
i j k in (S32) denotes a removed subscript. In turn, functions222

defining the χl m
i j k ’s and ρ j k ’s functions are223

ωsr(x∗, a) = Bsyn(x∗, a)(β−1)(es −er) (S34a)

ωbr(x∗, a) = Bsyn(x∗, a)

[
(β−1)(eb −er)+γd1

xT(x∗)

δ(x∗
k )

(1−p(x∗
k , a))

]
(S34b)

ωr(x∗, a) = Bsyn(x∗, a)(β−1)er +γxT(x∗)

δ(x∗
k )
ξ(x∗)(1−p(x∗

k , a))− xT(x∗)

c(x∗
k )

p(x∗
k , a)ϕrϕ(a) (S34c)

ηsr(x∗, a) =βBsyn(x∗, a)(es −er) (S34d)

ηbr(x∗, a) = Bsyn(x∗, a)

{
β(eb −er)+ xT(x∗)

δ(x∗
k )

d1
[
γ(1−2p(x∗

k , a))− δ̂]}
(S34e)

ηr(x∗, a) =βBsyn(x∗, a)er + xT(x∗)

δ(x∗
k )
ξ(x∗)

[
γ(1−2p(x∗

k , a))− δ̂]+xT(x∗)ϕrϕ(a)

(
1

α−ϕ(a)
−2

p(x∗
k , a)

c(x∗
k )

)
, (S34f)

where224

ωbs(x∗, a) =ωbr −ωsr (S35a)

ωs(x∗, a) =ωsr +ωr (S35b)

ηbs(x∗, a) = ηbr −ηsr (S35c)

ηs(x∗, a) = ηsr +ηr. (S35d)
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Finally, to complete the specification of (S32), we have225

θ0 =


0, if (l ,m) = (s,r)

−1, if (l ,m) = (s,b)

1, otherwise

; (S36a)

θ1 =


1, if ( j ,k) = (s,k)

−1, if ( j ,k) = (r,k), (r,s)
; θ2 =


1, if ( j ,k) = (s,k), (r,k)

0, if ( j ,k) = (r,s)
(S36b)

θ̂2 =


0, if ( j ,k) = (s,k), (r,k)

1, if ( j ,k) = (r,s)
; θ3 =


0, if ( j ,k) = (s,k)

1, if ( j ,k) = (r,k), (r,s).
(S36c)

The analytical solutions for the candidate optimal controls given by Table S1 and (S32) are functions of the226

candidate optimal states x∗ and costates λ, which we have not specified analytically. To assess if these analyti-227

cal candidate optimal controls are indeed optimal, we compare them to optimal controls found numerically by228

GPOPS (Patterson and Rao, 2014) (Fig. 1a,e). GPOPS uses a direct approach to solve optimal control problems229

by iterating varying controls and determining which improves maximization of the objective (Patterson and230

Rao, 2014), rather than the indirect approach of the Pontryagin maximum principle via necessary conditions231

for optimality (see Diehl et al. (2006) for a comparison of direct and indirect solution approaches to optimal232

control problems). From the numerical solutions given by GPOPS, we obtain optimal states and their costates233

which are part of the output given by GPOPS (Fig. S2b-e). Feeding these numerically obtained optimal states234

and costates to the expressions for the analytical candidate optimal control, we plot in Fig. S3 the analytical235

solutions for the candidate optimal controls given by Table S1 and (S32). Comparison with Fig. 1a,e shows that236

the analytical candidate optimal controls closely follow the controls found numerically by GPOPS.237
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Figure S3: Plots of the analytically found candidate optimal controls. (a) is for the power competence case in

Fig. 1a-d. (b) is for the exponential competence case in Fig. 1e-h. Near the switching points between regimes

(ab0, ab, am, aa), the analytically found controls can be greater than one or smaller than zero, possibly due to

negligible numerical error in the location of the switching points.
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4 Derivation of analytical results243

Here we derive the expressions for ûb(x∗,λ, t ) and ûs(x∗,λ, t ) during the singular arcs given by (S32). To do so,244

we make use of the well-known result, according to which ûb and ûs can be obtained from the age derivatives245

of the switching functions up to some even, but not odd, order (Kelley et al., 1967). Note that during singular246

arcs, eitherσi = 0 for some i or the differenceσs−σb = 0, and hence their age derivatives also equal zero during247

the singular arcs. We thus obtain the singular controls by taking second age derivatives of these functions, but248

before doing so, we obtain expressions that will be useful.249

By differentiating (S31d) and (S31c) with respect to age, we obtain250

ψ̇(u∗,x∗, a) = ψ

xT

(
u∗

s ωsr +u∗
bωbr +ωr

)
(S37a)

ψ̇k(u∗,x∗, a) = ψk

xT

(
u∗

s ηsr +u∗
bηbr +ηr

)
. (S37b)

From (S27), taking the second age derivatives for the costates and noting that ψ̇i = ψ̇ for i ∈ {b,r,s}, we find251

λ̈b =−(
φψ̇+ φ̇ψb + λ̇kd1Bb

)
(S38a)

λ̈r =−[
φψ̇+ φ̇ψr − f0µe−µa]

(S38b)

λ̈s =−(
φψ̇+ φ̇ψs

)
(S38c)

λ̈k =−(
φψ̇k + φ̇ψk − λ̇kd2

)
. (S38d)

4.1 Singular controls for regime BS: σs > 0, σb > 0, and σs =σb252

We now obtain the singular controls for growth regime BS. The procedure is essentially the same for growth253

regimes BR, RS, and BRS.254

For regime BS, we have the singular arc where (u∗
b ,u∗

s ) = (ûb,1− ûb) and σs = σb. Hence, from (S22a),255

during regime BS the variable φ in the Hamiltonian (S21) is no longer an explicit function of the controls:256

φ(λ) = (1− ûb)σs + ûbσs +erλr

=σs +erλr

= esλs. (S39a)

From (S37), we also have the simplifications257

ψ̇(u∗,x∗, a) = ψ

xT
(ûbωbs +ωs) (S39b)

ψ̇k = (u∗,x∗, a) = ψk

xT

(
ûbηbs +ηs

)
. (S39c)

Since σs −σb = 0, we have that σ̈s − σ̈b = 0, which using (S25), (S38), and (S39) becomes258

esλ̈s −ebλ̈b −d1λ̈k = 0 (S40a)

−es
(
φψ̇+ φ̇ψs

)+eb
(
φψ̇+ φ̇ψb + λ̇kd1Bb

)+d1
(
φψ̇k + φ̇ψk − λ̇kd2

)= 0 (S40b)

ψ̇(u∗,x∗, a)φ(λ)(eb −es)+ ψ̇k(u∗,x∗, a)φ(λ)d1 +ρsk(x∗,λ, a) = 0, (S40c)
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where259

ρsk(x∗,λ, a) = λ̇kd1 (ebBb −d2)− φ̇(
esψs −ebψb −d1ψk

)
(S41a)

= d1d2λk(ebBb −d2)+esλs
[
esψs(esψs −ebψb −d1ψk)−d1ψk(ebBb −d2)

]
. (S41b)

Here λ̇k during the singular arc BS is similarly not an explicit function of the controls.260

In (S40c), only ψ̇ and ψ̇k are functions of u∗. Expanding these terms in (S40c), we obtain an affine equation261

in the singular control ûb:262 [
ψ

xT
(ûbωbs +ωs)

]
φ(eb −es)+

[
ψk

xT

(
ûbηbs +ηs

)]
φd1 +ρsk = 0 (S42a)

−ûbζbsk(x∗,λ, a)+ζsk(x∗,λ, a) = 0, (S42b)

where263

ζbsk(x∗,λ, a) = φ

xT

[
ψωbs(es −eb)−ψkηbsd1

]
= esλs

xT

[
ψωbs(es −eb)−ψkηbsd1

]
(S43a)

ζsk(x∗,λ, a) = ρsk −
φ

xT

[
ψωs(es −eb)−ψkηsd1

]
= ρsk −

esλs

xT

[
ψωs(es −eb)−ψkηsd1

]
. (S43b)

Therefore, assuming that ζbsk 6= 0, the singular control for regime BS is264

ûb(x∗,λ, a) = ζsk

ζbsk
. (S44)

4.2 Singular controls for regime BR: σs < 0 and σb = 0265

For regime BR, we have that (u∗
b ,u∗

s ) = (ûb,0). Hence, from (S22a), during regime BR the variableφ is no longer266

an explicit function of the controls:267

φ(λ) = 0×σs + ûb ×0+erλr

= erλr. (S45a)

From (S37), we have the simplifications268

ψ̇(u∗,x∗, a) = ψ

xT
(ûbωbr +ωr) (S45b)

ψ̇k(u∗,x∗, a) = ψk

xT
(ûbηbr +ηr). (S45c)

From σb = 0, we have that σ̈b = 0, which becomes269

ebλ̈b −erλ̈r +d1λ̈k = 0 (S46a)

−eb
(
φψ̇+ φ̇ψb + λ̇kd1Bb

)+er
(
φψ̇+ φ̇ψr − f0µe−µa)−d1

(
φψ̇k + φ̇ψk − λ̇kd2

)= 0 (S46b)

−ψ̇(u∗,x∗, a)φ(λ)(eb −er)− ψ̇k(u∗,x∗, a)φ(λ)d1 +ρrk(x∗,λ, a) = 0, (S46c)
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where270

ρrk(x∗,λ, a) =−λ̇kd1 (ebBb −d2)+ φ̇(
erψr −ebψb −d1ψk

)−er f0µe−µa (S47a)

=−d1d2λk (ebBb −d2)−erλr
[
erψr

(
erψr −ebψb −d1ψk

)−d1ψk (ebBb −d2)
]

−er f0e−µa [
µ+ (

erψr −ebψb −d1ψk
)]

. (S47b)

Again, in (S46c), only ψ̇ and ψ̇k are functions of u∗. Expanding these terms in (S46c), we similarly obtain271

an affine equation in the singular control ûb:272

−
[
ψ

xT
(ûbωbr +ωr)

]
φ(eb −er)−

[
ψk

xT
(ûbηbr +ηr)

]
φd1 +ρrk = 0 (S48a)

−ûbζbrk(x∗,λ, a)+ζrk(x∗,λ, a) = 0, (S48b)

where273

ζbrk(x∗,λ, a) = φ

xT

[
ψωbr(eb −er)+ψkηbrd1

]
= erλr

xT

[
ψωbr(eb −er)+ψkηbrd1

]
(S49a)

ζrk(x∗,λ, a) = ρrk −
φ

xT

[
ψωr(eb −er)+ψkηrd1

]
= ρrk −

erλr

xT

[
ψωr(eb −er)+ψkηrd1

]
. (S49b)

Therefore, assuming that ζbrk 6= 0, the singular control for regime BR is274

ûb(x∗,λ, a) = ζrk

ζbrk
. (S50)

4.3 Singular controls for regime RS: σs = 0 and σb < 0275

For regime RS, we have that (u∗
b ,u∗

s ) = (0, ûs). Hence, during regime RS the variable φ is again no longer an276

explicit function of the controls:277

φ(λ) ≡ ûs ×0+0×σb +erλr

= erλr. (S51a)

We have the simplifications278

ψ̇(u∗,x∗, a) = ψ

xT
(ûsωsr +ωr) (S51b)

ψ̇k(u∗,x∗, a) = ψk

xT
(ûsηsr +ηr). (S51c)

From σs = 0, we have that σ̈s = 0, which becomes279

esλ̈s −erλ̈r = 0 (S52a)

−es
(
φψ̇+ φ̇ψs

)+er
(
φψ̇+ φ̇ψr − f0µe−µa)= 0 (S52b)

−ψ̇(u,x, a)φ(λ)(es −er)+ρrs(x∗,λ, a) = 0, (S52c)
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where280

ρrs(x∗,λ, a) = φ̇(
erψr −esψs

)−er f0µe−µa

=−erλr
[
erψr

(
erψr −esψs

)]−er f0e−µa [
µ+ (

erψr −esψs
)]

. (S53)

Once again, only ψ̇ is a function of u∗ in (S52c). Expanding this term in (S52c), we obtain an affine equation281

in the singular control ûs:282

−
[
ψ

xT
(ûsωsr +ωr)

]
φ(es −er)+ρr = 0 (S54a)

−ûsζsr(x∗,λ, a)+ζr(x∗,λ, a) = 0, (S54b)

where we define283

ζsr(x∗,λ, a) =φ ψ

xT
ωsr(es −er)

= erλr

xT
ψωsr(es −er) (S55a)

ζr(x∗,λ, a) = ρrs −φ ψ

xT
ωr(es −er)

= ρrs − erλr

xT
ψωr(es −er). (S55b)

Therefore, assuming that ζsr 6= 0, the singular control for regime RS is284

ûs(x∗,λ, a) = ζr

ζsr
. (S56)

4.4 Singular controls for regime BRS: σs =σb = 0285

For regime BRS, we have that (u∗
b ,u∗

s ) = (ûb, ûs). As before, the variable φ is no longer an explicit function of286

the controls:287

φ(λ) = ûs ×0+ ûb ×0+erλr

= erλr. (S57a)

Similarly, we have the simplifications288

ψ̇(u∗,x∗, a) = ψ

xT
(ûsωsr + ûbωbr +ωr) (S57b)

ψ̇k(u∗,x∗, a) = ψk

xT

(
ûsηsr + ûbηbr +ηr

)
. (S57c)

From σs = 0, we have that σ̈s = 0, which is289

esλ̈s −erλ̈r = 0 (S58a)

−es
(
φψ̇+ φ̇ψs

)+er
[
φψ̇+ φ̇ψr − f0µe−µa]= 0 (S58b)

ψ̇(u∗,x∗, a)φ(λ)(er −es)+ρrs(x∗,λ, a) = 0, (S58c)

where as before290

ρrs(x∗,λ, a) = φ̇(
erψr −esψs

)−er f0µe−µa

=−erλr
[
erψr

(
erψr −esψs

)]−er f0e−µa [
µ+ (

erψr −esψs
)]

. (S59)
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Expanding ψ̇ in (S58c), we obtain an affine equation in the two controls ûs and ûb:291 [
ψ

xT
(ûsωsr + ûbωbr +ωr)

]
φ(er −es)+ρrs = 0 (S60a)

−ûsζsr(x∗,λ, a)− ûbζbr(x∗,λ, a)+ζr(x∗,λ, a) = 0, (S60b)

where292

ζsr(x∗,λ, a) =−φ ψ

xT
ωsr(er −es)

= erλr

xT
ψωsr(es −er) (S61a)

ζbr(x∗,λ, a) =−φ ψ

xT
ωbr(er −es)

= erλr

xT
ψωbr(es −er) (S61b)

ζr(x∗,λ, a) = ρrs +φ ψ

xT
ωr(er −es)

= ρrs − erλr

xT
ψωr(es −er). (S61c)

Now, from σb = 0, we have that σ̈b = 0, which is293

ebλb −erλr +d1λk = 0 (S62a)

−eb
(
φψ̇+ φ̇ψb + λ̇kd1Bb

)+er
[
φψ̇+ φ̇ψr −µe−µa]−d1

(
φψ̇k + φ̇ψk − λ̇kd2

)= 0 (S62b)

−ψ̇(u∗,x∗, a)φ(λ)(eb −er)− ψ̇k(u∗,x∗, a)φ(λ)d1 +ρrk(x∗,λ, a) = 0, (S62c)

where as before294

ρrk(x∗,λ, a) =−λ̇kd1 (ebBb −d2)+ φ̇(
erψr −ebψb −d1ψk

)−er f0µe−µa (S63a)

=−d1d2λk (ebBb −d2)−erλr
[
erψr

(
erψr −ebψb −d1ψk

)−d1ψk (ebBb −d2)
]

−er f0e−µa [
µ+ (

erψr −ebψb −d1ψk
)]

. (S63b)

Expanding ψ̇ and ψ̇k in (S62c), we obtain another affine equation in the two controls ûs and ûb:295

−
[
ψ

xT
(ûsωsr + ûbωbr +ωr)

]
φ(eb −er)−

[
ψk

xT

(
ûsηsr + ûbηbr +ηr

)]
φd1 +ρrk = 0 (S64a)

−ûsζsrk(x∗,λ, a)− ûbζbrk(x∗,λ, a)+ζrk(x∗,λ, a) = 0, (S64b)

where296

ζsrk(x∗,λ, a) = φ

xT

[
ψωsr(eb −er)+ψkηsrd1

]
= erλr

xT

[
ψωsr(eb −er)+ψkηsrd1

]
(S65a)

ζbrk(x∗,λ, a) = φ

xT

[
ψωbr(eb −er)+ψkηbrd1

]
= erλr

xT

[
ψωbr(eb −er)+ψkηbrd1

]
(S65b)

ζrk(x∗,λ, a) = ρrk −
φ

xT

[
ψωr(eb −er)+ψkηrd1

]
= ρrk −

erλr

xT

[
ψωr(eb −er)+ψkηrd1

]
. (S65c)
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Therefore, solving (S60b) and (S64b) and assuming that ζsrζbrk−ζbrζsrk 6= 0, the singular controls for regime297

BRS are298

ûs(x∗,λ, a) = ζrζbrk −ζbrζrk

ζsrζbrk −ζbrζsrk
(S66a)

ûb(x∗,λ, a) = ζsrζrk −ζrζsrk

ζsrζbrk −ζbrζsrk
. (S66b)
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5 Parameter values299

Here we summarize the values of the 22 parameters used in numerical solutions. From these, 13 parameters300

are estimated as described in section 6 and they refer to newborn mass, tissue metabolism, and demography301

(Table S2). The estimates of Ei for are less accurate than those of Bi for i ∈ {b,s,r} as they require stronger302

assumptions given the available data (see Moses et al. (2008)). Since the parameter f0 only displaces the ob-303

jective vertically and thus has no effect on the solution, we choose its value to scale the objective R0 (Table S2).304

The remaining 8 parameters refer to skill metabolism, contest success, and (allo)parental care, for which we305

use values that produce body and brain mass that closely approach ontogenetic modern human data. Hence,306

we use different benchmark values with either power (Table S3) or exponential (Table S4) competence.307

Newborn mass Tissue metabolism Demography

K 132.7281 MJ
y kg−β β 0.7378

xs(0) 2.0628 kg Bs 29.6891 MJ
y×kg Es 12.4594 MJ

kg f0 10 #offspring
kg×y

xb(0) 0.3372 kg Bb 313.0962 MJ
y×kg Eb 123.7584 MJ

kg µ 0.034 1
y

xr(0) 0 kg Br 2697.1179 MJ
y×kg Er 190.8196 MJ

kg τ 47 y

308

Table S2: Estimated parameter values and f0, which is set to an arbitrary value.

For power competence:309

Skill metabolism Contest success (Allo)parental care

vk 0.5 α 1 skillγ ϕ0/α 0.6

Bk 36 MJ
y×skill γ 1.4 ϕr 0.2 1

y

Ek 370 MJ
skill xk(0) 1 skill

310

Table S3: Benchmark parameter values with power competence. The value of ϕr yields (allo)parental care for

≈ 20 years, as observed in forager-horticulturalists (Schniter et al., 2015).

311

312

For exponential competence:313

Skill metabolism Contest success (Allo)parental care

vk 0.5 α 1.15 ϕ0/α 0.8

Bk 50 MJ
y×skill γ 0.6 skill−1 ϕr 0.2 1

y

Ek 250 MJ
skill xk(0) 0 skill

314

Table S4: Benchmark parameter values with exponential competence.
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6 Estimation of parameter values315

Here we describe how we obtained the parameter values in Table S2. We use ontogenetic data for modern316

human females published in Table S2 of Kuzawa et al. (2014). We denote the observed mass of tissue i at age a317

as Xi (a) and their sum as XT(a). Thus, we set xs(0) = Xs(0) = 2.0628 kg and xb(0) = Xb(0) = 0.3372 kg (Kuzawa318

et al., 2014). The count of preovulatory ovarian follicles serves as a proxy for measuring female human fertility319

(McGee and Hsueh, 2000), so we take reproductive cells as referring to preovulatory ovarian follicle cells and set320

xr(0) = 0 kg. We also denote by Aa the observed age at adulthood. Hence, XT(Aa) = 51.1 kg and Xb(Aa) = 1.31321

kg (Kuzawa et al., 2014). We also have that Brest(Aa) = 1243.4 kcal/day×4184 J/kcal×365 d/y = 1898.8707 MJ/y322

(Kuzawa et al., 2014).323

6.1 Values for Bi for i ∈ {b,r,s}324

Bb: Let c1(a) be the ratio of glucose uptake by the brain per unit time at age a divided by the resting metabolic325

rate at that age. Let c2(a) be the fraction of brain glucose metabolism that is oxidative. Then, the empirically326

estimated brain metabolic rate at age a is the product Brest(a)c1(a)c2(a). c1(a) is obtained from Table S2 of327

Kuzawa et al. (2014) and rough estimates of c2(a) are obtained from Goyal et al. (2014). For adults they are328

c1(Aa) = 0.24 and c2(Aa) = 0.9 (Kuzawa et al., 2014; Goyal et al., 2014). Hence, we let329

Bb = Brest(Aa)c1(Aa)c2(Aa)/Xb(Aa) = 313.0962 MJ/kg/y.330

Br: We are unaware of reports of the metabolic rate of preovulatory follicles. Thus, we use the metabolic331

rate of a human oocyte as a proxy. The oxygen consumption by a human oocyte is estimated to be 0.53×332

10−9 l O2/h/oocyte (Magnusson et al., 1986). Oxygen consumption can be transformed into power units by333

multiplying by 20.1 kJ/l O2 (Blaxter, 1989). The mass of a mouse oocyte is 34.6 ng (Abramczuk and Sawicki,334

1974). Assuming that mouse and human oocyte are of similar mass, then Br = 0.53×10−9 l O2
h×oocyte ×20.1 kJ

l O2
×335

1 oocyte
34.6 ng × 24 h

1 d × 365 d
1 y × 109 ng

1 g × 1000 g
1 kg × 1 MJ

1000 kJ = 2697.1179 MJ/kg/year.336

Bs: Adult human females have on average about 2 preovulatory follicles at any given age (Dickey et al., 2002).337

A preovulatory follicle has an average diameter of 21.1 mm (O’Herlihy et al., 1980). Approximating the follicle338

dry mass by the dry mass of a spherical cell with such diameter and water content of 60%, then the adult339

mass of reproductive tissue is Xr(Aa) = 2 follicles× 4
3π

( 21.1 mm
2

)3× 1 kg H2O
106 mm3H2O

× 0.4 kg dry mass
1 kg H2O = 3.9349×10−3 kg.340

Hence, Xs(Aa) = XT(Aa)−Xb(Aa)−Xr(Aa) = 49.7861 kg.341

Since at human adulthood there is no growth, it must be the case that342

Brest(Aa) = Bmaint(Aa) = ∑
i∈{b,r,s} Xi (Aa)Bi . Because we have that Brest(Aa) = 1898.8707 MJ/y, it follows that343

Bs = [Brest(Aa)−BbXb(Aa)−BrXr(Aa)]/Xs(Aa) = 29.6891 MJ/kg/y.344

6.2 Values for Ei for i ∈ {b,r,s}345

Eb : We have that brain metabolic rate is Mbrain(a) = Xb(a)Bb + Ẋb(a)Eb. Assuming that at birth most brain346

metabolic rate is due to brain growth, then Mbrain(0) ≈ Ẋb(0)Eb. We also have that, Mbrain(0) = Brest(0)c1(0)c2(0)347

and that Brest(0) = 166.6132 MJ/y (Kuzawa et al., 2014), c1(0) = 0.598 (Kuzawa et al., 2014), and c2(0) ≈ 0.9348
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(Goyal et al., 2014). From the data in Kuzawa et al. (2014), we estimate Ẋb(0) = 0.7246 kg/y. Then, we have349

Eb = Mbrain(0)/Ẋb(0) = 123.7584 MJ/kg.350

Er : We have that Bsyn(a) =∑
i∈{b,r,s} Ẋi (a)Ei . We assume that shortly before adulthood most growth is repro-351

ductive. So assuming Ẋr(Aa −1) 6= 0 while Ẋi 6=r(Aa −1) ≈ 0, we have that352

Er = Brest(Aa −1)−Bmaint(Aa −1)

Ẋr(Aa −1)
(S67a)

= Brest(Aa −1)−B XT(Aa −1)

ẊT(Aa −1)
(S67b)

We also have that Brest(Aa−1) = 1328.3 kcal
d × 4184 J

1 kcal × 365 d
1 y = 2028.5266 MJ/y, XT(Aa−1) = 47.4 kg, and ẊT(Aa−1) =353

1.4 kg/y (Kuzawa et al., 2014). Then, Er = 190.8196 MJ/kg.354

Es : Again, we have that Bsyn(a) = ∑
i∈{b,r,s} Ẋi (a)Ei . Assuming that there is no reproductive growth at birth,355

then Ẋr(0) = 0 and so356

Es = Brest(0)−Bmaint(0)− Ẋb(0)Eb

Ẋs(0)
(S68a)

≈ Brest(0)− Ẋb(0)Eb

Ẋs(0)
, (S68b)

assuming that at birth most resting metabolic rate is due to growth so Brest(0)−Bmaint(0) ≈ Brest(0). We have357

that Brest(0) = 109.1 kcal
d × 4184 J

1 kcal × 365 d
1 y = 166.6132 MJ/y and Ẋ (0) = 6.9 kg/y (Kuzawa et al., 2014). Since Ẋs(0) =358

Ẋ (0)− Ẋb(0), then Es = 12.4594 MJ/kg.359

6.3 Values for K and β360

Using the ontogenetic (averaged) data in Table S2 of Kuzawa et al. (2014), where resting metabolic rate is361

measured in well fed individuals, we find that Brest(a) = K XT(a)β with K = 132.7281 MJ
y kg−β and β = 0.7378362

(R2 = 0.92) (Fig. S4).363
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364

Figure S4: Power law approximation of resting metabolic rate with respect to body mass. Dots are ontogenetic

values of resting metabolic rate vs. body mass in modern humans in a log-log scale (Kuzawa et al., 2014). The

line is the linear least square regression yielding K = 132.7281 MJ
y kg−β and β= 0.7378 (R2 = 0.92).

365

366

367
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6.4 Values for f0, µ, and τ368

The constant f0 only multiplies R0 and thus has not effect on the solution of the optimal control problem. We369

thus arbitrarily set it to f0 = 10 # offspring
kg×y .370

For traditional hunter-gatherers, the average life expectancy at birth is between 21 and 37 years (Gurven371

and Kaplan, 2007). The mid-range life expectancy is thus 29 years. With a constant mortality rate, life ex-372

pectancy is 1/µ. We thus let µ= 1
29 y = 0.034 1

y .373

For Hadza and Gainj hunter-gatherers, the average age at menopause is about 47 years (Eaton et al., 1994).374

So, we let τ= 47 years.375
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7 Supplementary results376

7.1 Brain metabolic rate through ontogeny377

With the obtained ESGS, brain metabolic rate is predicted to peak at the age of brain growth arrest, which is378

qualitatively consistent with recent findings for brain glucose intake (Figs. S5a,b and S6a,b; (Kuzawa et al.,379

2014)). Brain metabolic rate and brain glucose intake are, however, not equivalent because the former refers380

to oxygen consumption while the latter includes non-oxidative glucose metabolism which is especially high381

during childhood (Kuzawa et al., 2014; Goyal et al., 2014). As observed with brain glucose intake (Kuzawa et al.,382

2014), a peak in brain metabolic rate is predicted during mid childhood. The predicted small peak in brain383

metabolic rate results from brain growth arrest (Figs. S5b and S6b) and is enhanced by a peak in allocation to384

brain growth just before brain growth arrest (Figs. 1a,e). The predicted ratio of brain metabolic rate and resting385

metabolic rate is also qualitatively consistent with brain glucose intake in modern humans (Figs. S5c and S6c).386
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Figure S5: Predicted and observed brain metabolic patterns in humans qualitatively agree. Plots are for the

scenario in Fig. 1a-d (power competence). (a) Maintenance (blue; x∗
b Bb), growth (green; ẋ∗

b Eb), and total (red;

Mbrain) brain metabolic rates. (b) Brain metabolic rate peaks at the age of brain growth arrest. (c) Ratio of

brain metabolic rate to resting metabolic rate vs. age. Dots are (a) the energy-equivalent brain glucose intake

observed in modern human females or (c) the ratio of the latter to resting metabolic rate (Kuzawa et al., 2014).

A similar pattern is predicted with exponential competence (Fig. S6).
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Figure S6: Predicted brain metabolic patterns with exponential competence. Plots are for the scenario in Fig.

1e-h (exponential competence). See legend of Fig. S5.
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7.2 Mass of reproductive tissue396

For the parameter values of Fig. 1, reproductive tissue mass remains at zero until maturity tm and reaches 129397

g (with power competence) or 131 g (with exponential competence) during adulthood, exceeding the 3 g we398

roughly estimate for human females (SI §6.1).399

7.3 Effect of the absence of (allo)parental care400
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Figure S7: Effect of the absence of (allo)parental care with exponential competence. Parameters are as in Fig.

1e-h, except that here (allo)parental is absent; i.e., ϕ0 = 0.
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7.4 Indeterminate skill growth with inexpensive memory404
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Figure S8: Indeterminate skill growth with inexpensive memory and exponential competence. Parameters are

as in Fig. 1e-h, except that here Bk = 1 MJ/y/skill rather than Bk = 50 MJ/y/skill.
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7.5 Large, yet inconsistent-with-data encephalization with exceedingly expensive mem-408

ory409
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Figure S9: Larger EQ than that in Fig. 1 with exponential competence, but predicted body mass is less consis-

tent with observation. Parameters are as in Fig. 1e-h, except that here Bk = 60 MJ/y/skill rather than Bk = 50

MJ/y/skill. Jitter in the controls indicates that the optimal control problem is computationally challenging for

GPOPS (this applies to all plots in the main paper and SI).

411

412

413

414

��
*

��
*

��
*

� �� �� �� ��

���

���

���

���

���

��

��
*

��
*

��
*

� �� �� �� ��

��

��

��

��

��

��
*

��
*

� �� �� �� ��

���

���

���

�����-������

� �� �� �� ��

���

���

���

��
*

� �� �� �� ��

���

���

���

���

���

���

���

��
��

� �� �� �� ��

����

����

����

����

����

����

����

[%
]

[�
�
]

[�
�
]

[�
�
/�
�
�
�]

[ #
�
�
���
�
]

[%
]

� ���

� [�����] � [�����] � [�����]

��� ��

��

�� ��� ��

��
�� ��� ��

��
��(�) (�) (�)

(�) (�) (�)

���������

�����������

���������

415

Figure S10: Larger EQ than that in Fig. 1 with exponential competence, but predicted body mass is less con-

sistent with observation. Parameters are as in Fig. 1e-h, except that here Bk = 70 MJ/y/skill rather than Bk = 50

MJ/y/skill.
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Figure S11: Larger EQ than that in Fig. 1 with exponential competence, but predicted body mass is less con-

sistent with observation. Parameters are as in Fig. 1e-h, except that here Bk = 80 MJ/y/skill rather than Bk = 50

MJ/y/skill.
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7.6 Reproduction without growth and body collapse for certain parameter values423
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Figure S12: Reproduction without substantial growth with exponential competence when the environment is

exceedingly challenging. Parameters are as in Fig. 1e-h, except that here α = 1.5 rather than 1.15. The mass

of reproductive tissue grows from 0 kg at birth, to 0.77 g at the age of am ≈ 6 months, and reaches a peak of

4.64 g at ab ≈ 8 months. Jitter in the controls indicates that the optimal control problem is computationally

challenging for GPOPS (this applies to all plots in the main paper and SI).
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Figure S13: Brain and body collapse in adulthood with exponential competence when learning is exceedingly

inexpensive. Parameters are as in Fig. 1e-h, except that here and Ek = 100 MJ/skill rather than 250 MJ/skill.
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Figure S14: Brain and body collapse with exponential competence when the newborn has overly many skills.

Parameters are as in Fig. 1e-h, except that here xk(0) = 4 skills rather than 0.
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7.7 A large brain is also favored by small metabolic costs of learning, few innate skills,436

and intermediate allocation of brain metabolic rate to skills437

When varying the learning cost, adult brain mass is largest when learning is inexpensive but not exceedingly438

so (Fig. S15a). If learning is exceedingly inexpensive, the individual acquires enough skills while receiving439

(allo)parental care that it grows more than what it can maintain when (allo)parental care is absent. In this case,440

brain and body collapse during adulthood (Fig. S13). Otherwise, if learning is inexpensive but not exceedingly441

so, brain and body grow to levels that the individual can maintain when (allo)parental care is absent. With442

further increasingly expensive learning, skills grow more slowly and thus there is less growth metabolic rate at443

each age, yielding a decreasing adult brain mass (Fig. S15a). Yet, while small learning costs favor a larger adult444

brain mass, they also favor a larger adult body mass. Consequently, EQ is invariant with learning costs within445

the range of brain and body growth (Fig. S15d).446
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Figure S15: Predicted adult body and brain mass, EQ, and skill vs. other parameter values with exponential

competence. See legend of Fig. 3. In d, jitter in EQ is due to increasing jittering in the controls when body and

brain mass collapse.

448

449

450

When varying newborn skills, a larger adult brain mass is predicted when the newborn has fewer skills451

(Fig. S15b). If the newborn has overly many skills, the individual grows more during the (allo)parental care452

period than what it can maintain when (allo)parental care is absent, causing brain and body collapse during453

adulthood (Figs. S15b and S14).454

Regarding allocation of brain metabolic rate to energy-extraction skills, brain mass is predicted to be larger455

with a decreasing, but not exceedingly, small brain allocation to skills (Fig. S15c). With an exceedingly small456

brain allocation to skills, the individual reproduces without substantial growth because skills grow little and457

the individual is unable to support itself when (allo)parental care becomes absent. Above a threshold, an458

increasing brain allocation to skills predicts a decreasing adult brain mass because the energetic input to skill459

growth is larger without the brain having to be as large [equation (A2)]. In contrast to brain mass and EQ, the460

predicted adult skill number increases with brain allocation to skills (Fig. S15f).461
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Comparative predictions with power competence are similar to those with exponential competence (Fig.462

S16).463
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Figure S16: Predicted comparative patterns with power competence. See legend of Fig. 3. Jitter in EQ is due to

increasing jittering in the controls when body and brain mass collapse.
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