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Summary 

The	 large	 and	 ever-increasing	 numbers	 of	 quantitative	 proteomics	 datasets	 constitute	 a	

currently	 underexploited	 resource	 for	 drawing	 biological	 insights	 on	 proteins	 and	 their	

functions.	Multiple	 observations	 by	 different	 laboratories	 indicate	 that	 protein	 complexes	

often	 follow	 consistent	 trends.	 However,	 proteomic	 data	 is	 often	 noisy	 and	 incomplete	 –	

members	of	 a	 complex	may	 correlate	only	 in	 a	 fraction	of	 all	 experiments,	or	may	not	be	

always	 observed.	 Inclusion	 of	 potentially	 uninformative	 data	 hence	 imposes	 the	 risk	 of	

weakening	 such	 biological	 signals.	 	 We	 have	 previously	 used	 the	 Random	 Forest	 (RF)	

machine-learning	 algorithm	 to	 distinguish	 functional	 chromosomal	 proteins	 from	

‘hitchhikers’	in	an	analysis	of	mitotic	chromosomes.	Even	though	it	is	assumed	that	RFs	need	

large	training	sets,	in	this	technical	note	we	show	that	RFs	also	are	able	to	detect	small	high-

covariance	 groups,	 like	 protein	 complexes,	 and	 relationships	 between	 them.	 We	 use	

artificial	datasets	to	demonstrate	the	robustness	of	RFs	to	identify	small	groups	even	when	

working	with	mixes	 of	 noisy	 and	 apparently	 uninformative	 experiments.	We	 then	use	 our	

procedure	 to	 retrieve	 a	 number	 of	 chromosomal	 complexes	 from	 real	 quantitative	

proteomics	 results,	 which	 compare	 wild-type	 and	 multiple	 different	 knock-out	 mitotic	

chromosomes.	The	procedure	also	revealed	other	proteins	 that	covary	strongly	with	 these	

complexes	 suggesting	 novel	 functional	 links.	 Integrating	 the	 RF	 analysis	 for	 several	

complexes	revealed	the	known	interdependency	of	kinetochore	subcomplexes,	as	well	as	an	

unexpected	dependency	between	the	Constitutive-Centromere-Associated	Network	(CCAN)	

and	 the	 condensin	 (SMC	 2/4)	 complex.	 Serving	 as	 negative	 control,	 ribosomal	 proteins	
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remained	 independent	 of	 kinetochore	 complexes.	 Together,	 these	 results	 show	 that	 this	

complex-oriented	 RF	 (nanoRF)	 can	 uncover	 subtle	 protein	 relationships	 and	 higher-order	

dependencies	in	integrated	proteomics	data. 

INTRODUCTION 

Proteins	 influence	many	 processes	 in	 cells,	 often	 affecting	 the	 synthesis,	 degradation	 and	

physicochemical	 state	 of	 other	 proteins.	 One	 strategy	 that	 diversifies	 and	 strengthens	

protein	functions	is	the	formation	of	multi-protein	complexes.	For	this	reason,	identification	

of	partners	in	complexes	is	a	powerful	first	step	to	determining	protein	function.	However,	

determination	of	membership	to	or	interaction	with	protein	complexes	remains	an	arduous	

task,	mainly	achieved	via	demanding	biochemical	experimentation.	The	latter	can	be	limited	

by	 the	 ability	 to	 overexpress,	 purify,	 tag,	 stabilize,	 and	 obtain	 specific	 antibodies	 for	 the	

proteins	 in	 complexes	 of	 interest.	 Thus,	 any	 methods	 that	 facilitate	 protein	 complex	

identification	 and	monitoring	 (1–3)	 have	 the	 potential	 to	 accelerate	 the	 understanding	 of	

biological	 functions	and	phenotype.	The	vast	amount	of	proteomics	data	already	available	

represents	 a	 largely	 untapped	 resource	 that	 could	 potentially	 reveal	 features	 currently	

undisclosed	 by	 traditional	 analysis,	 such	 as	 condition-dependent	 links,	 inter-complex	

contacts	and	transient	interactions. 

	  

	 To	 date,	 co-fractionation	 is	 the	 gold	 standard	 to	 prove	 membership	 of	 protein	

complexes.	This	is	based	on	the	fact	that	proteins	with	the	same	mass,	charge,	elution	rate,	

etc.	 will	 be	 part	 of	 the	 same	 fraction	 –i.e.	 co-fractionate–	 in	 techniques	 such	 as	
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chromatography	or	 gel	 electrophoresis.	 Yet,	 even	 in	 ideal	 cases,	 spurious	proteins	will	 co-

fractionate	with	(contaminate)	the	complex	of	interest(4).	One	way	to	distinguish	bona-fide	

members	 is	 to	 combine	 several	 fractionation	 experiments,	 as	 well	 as	 perturbations(5).	

Members	of	a	complex	will	behave	coordinately,	whereas	contaminants	will	usually	behave	

more	randomly.	From	a	quantitative	perspective,	this	translates	into	protein	covariance	-	the	

covariance	 of	 proteins	 within	 a	 complex	 is	 stronger	 than	 that	 among	 contaminants.	 As	

additional	 biochemical	 fractionation	 conditions	 are	 considered,	 high	 covariance	 sets	 true	

members	of	a	complex	apart	from	contaminants	or	hitchhikers.	This	principle	has	been	used	

recently	in	a	large-scale	effort	that	predicted	622	putative	protein	complexes	in	human	cells	

by	 assessing	 the	 coordinated	 behaviour	 of	 proteins	 across	 several	 fractionation	methods,	

among	others	(Havugimana	et	al.,	2012;	Michaud	et	al.,	2012;)	. 

 

	 Covariance	among	members	of	protein	complexes	has	been	observed	in	several	

integrative		proteomics	experiments	(8,	9)	and	even	used	to	predict	association	with	

complexes	(8,	10).	This	relies	on	the	fact	that	the	co-fractionation	of	proteins	that	are	

functionally	interconnected	will	be	affected	by	common	parameters,	such	as	knock-outs	or	

varying	biochemical	purification	conditions.	However,	performing	covariance	analysis	using	

multiple	quantitative	proteomics	datasets	is	non-trivial.	First,	experimental	or	biological	

noise	hampers	quantitation	of	protein	levels.	Second,	only	a	fraction	of	the	experiments	may	

be	informative	for	any	given	complex.	Third,	proteins	may	go	undetected,	leading	to	missing	

values.	Fourth,	the	relationship	between	different	protein	groups	may	only	be	observed	
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under	specific	circumstances.	The	power	of	multivariate	analysis	methods	like	Principal	

Component	Analysis	(PCA),	hierarchical	clustering	or	k-nearest	neighbours	could	be	limited	

when	a	protein	complex’s	signal	in	the	data	is	affected	in	all	these	ways.		Here	we	show	that	

the	supervised	machine	learning	technique	Random	Forests	can	overcome	these	limitations,	

distinguish	the	covariance	of	small	protein	groups,	and	provide	biologically	sound,	predictive	

insights	to	protein	complex	composition,	relationships	and	function.	We	describe	this	

approach	using	as	an	example	the	behaviour	of	multi-protein	complexes	in	mitotic	

chromosomes. 
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EXPERIMENTAL	PROCEDURES 

Cell	Culture 

As	 reported	 in	 (11),	 DT40	 cells	 with	 wild-type	 genes	 (clone	 18),	 as	 well	 as	 conditional	

knockouts	 for	 SMC2,	 CAP-H,	 CAP-D3,	 Scc1,	 or	 SMC5	 were	 maintained	 in	 Roswell	 Park	

Memorial	 Institute	 (RPMI)	 1640	 medium	 (Wako	 Pure	 Chemical	 Industries	 Ltd.)	

supplemented	with	10%	(v/v)	fetal	bovine	serum	(FBS),	1%	calf	serum,	100	U/mL	penicillin,	

and	100	µg/mL	streptomycin	 (Wako	Pure	Chemical	 Industries	Ltd.)	at	39°C	 in	a	humidified	

incubator	with	an	atmosphere	containing	5%	CO2 (12–15);		For	13C	and	15N	labeling	of	lysine	

and	arginine,	cells	were	maintained	in	RPMI	without	L-lysine	and	L-arginine	(Thermo	Fisher	

Scientific,	Waltham,	MA,	USA)	supplemented	with	10%	(v/v)	FBS	dialyzed	against	a	10,000-

molecular-weight	 cut-off	 membrane	 (Sigma-Aldrich,	 St.	 Louis,	 MO,	 USA),	 100	 µg/mL	 13C6,	

15N2-L-lysine:	2HCl,	30	µg/mL	13C6,	15N4-L-arginine:	HCl	(Wako	Pure	Chemical	Industries	Ltd.),	

100	U/mL	penicillin,	 and	 100	µg/mL	 streptomycin	 (Gibco-BRL;	 Thermo	 Fisher	 Scientific)	 at	

37°C	in	a	humidified	incubator	with	an	atmosphere	containing	5%	CO2.	To	generate	SMC2OFF,	

CAP-HOFF,	 CAP-D3OFF,	 Scc1OFF,	 or	 SMC5OFF	 cells,	 SMC2ON/OFF,	 CAP-HON/OFF,	 CAP-D3ON/OFF,	

Scc1ON/OFF,	or	SMC5ON/OFF	cells	were	grown	in	the	presence	of	doxycycline	for	30,	26,	24,	19,	

or	60	h,	respectively,	prior	to	blocking	with	nocodazole	to	inhibit	expression.	HeLa	and	U2OS	

cells	 in	the	exponential	growth	phase	were	seeded	onto	coverslips	and	grown	overnight	 in	

Dulbecco's	Modified	 Eagle’s	Medium	 (DMEM)	 supplemented	 with	 10%	 FBS	 at	 37°C	 in	 an	

atmosphere	containing	5%	CO2. 
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Mitotic	chromosome	isolation	and	SILAC 

DT40	 cells	were	 incubated	with	 nocodazole	 for	 13	 h,	 resulting	 in	 a	mitotic	 index	 of	 70%–

90%.	 Mitotic	 chromosomes	 were	 isolated	 using	 a	 polyamine-ethylenediaminetetraacetic	

acid	 buffer	 system	 optimized	 for	 chicken	 DT40	 cells	 (16).	 Five	 OD260	 units	 were	 obtained	

from	pooling	 the	material	of	4	 independent	preparations	 totaling	1.0	×	109	DT40	cells	and	

solubilized	in	sodium	dodecyl	sulfate-polyacrylamide	gel	electrophoresis	(SDS-PAGE)	sample	

buffer.	 Mitotic	 chromosomes	 of	 wild	 type	 and	 knockout	 cell	 lines	 were	 mixed	 in	 equal	

amounts	 judging	by	Picogreen	quantification,	except	for	the	Ska3	KO	experiment	(9)where	

samples	were	equated	using	Histone	H4	as	a	reference.	 

 

Mass-spectrometric	analysis 

Proteins	were	separated	into	high-	and	low-molecular	weight	fractions	by	SDS-PAGE,	in-gel	

digested	 using	 trypsin	 (17),	 and	 fractionated	 into	 30	 fractions	 each	 using	 strong	 cation-

exchange	chromatography	(SCX).	The	individual	SCX	fractions	were	desalted	using	StageTips	

(18)and	analyzed	by	liquid	chromatography-MS	on	a	LTQ-Orbitrap	(Thermo	Fisher	Scientific)	

coupled	to	high-performance	liquid	chromatography	via	a	nanoelectrospray	ion	source.	The	

6	most	 intense	 ions	 of	 a	 full	MS	 acquired	 in	 the	 Orbitrap	 analyzer	 were	 fragmented	 and	

analyzed	 in	 the	 linear-ion	 trap.	 The	MS	 data	 were	 analyzed	 using	MaxQuant	 1.0.5.12	 for	

generating	 peak	 lists,	 searching	 peptides,	 protein	 identification (19),	 and	 protein	

quantification	against	the	UniProt	database	(release	2013_07).	 
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Preparation	of	MS	data	for	nanoRF 

The	SILAC	ratios	from	the	‘Protein	groups’	Maxquant	output	table	were	used	directly.	As	for	

the	Ska3	knock	out	experiment,	SILAC	ratio	column	values	were	directly	taken	from (9),	and	

re-indexed	 according	 to	 the	 rest	 of	 the	 experiments.	 The	 ratio	 columns	 in	 table	 S1	 were	

directly	 used	 for	 the	 analysis.	 All	 the	 raw	MS	 and	Maxquant	 output	 data,	 including	 those	

from	 the	 Ska3	 experiment	 (9)	 via	 ProteomeXchange	 with	 identifier	 PXD003588.	 Missing	

values	were	substituted	by	the	median	value	of	each	experiment,	as	is	common	practice	in	

Random	 Forest	 applications.	 We	 reasoned	 that	 doing	 so	 would	 penalize	 the	 lack	 of	

observations	 by	 giving	 the	 same	 score	 to	 missing	 proteins	 of	 both	 positive	 and	 negative	

classes,	 which	 in	 turn	 increases	 the	 intersection	 between	 classes	 and	 thereby	 impacts	

separation	quality. 

 

Random	Forest	analysis.	 

The	analysis	was	done	with	a	custom	R	pipeline	based	on	the	Random	Forests	algorithm	of	

Leo	Breiman	and	Adele	Cutler's	Random	Forest™	algorithm	(20),	implemented	in	R	(21).	All	

our	scripts	used	are	freely	available	through	a	Github	repository	(22)	and	include	a	step-by-

step	R	guide	script	to	perform	nanoRF	on	any	particular	dataset.	The	RF	algorithm	attempts	

to	 find	a	series	of	 requirements	 in	 the	data	 that	are	satisfied	by	 the	positive	 training	class	

and	not	by	the	negative	training	class.	All	these	decisions	are	performed	sequentially,	hence	

they	become	a	decision	tree.	An	example	of	a	decision	tree	would	be	“proteins	with	values	

>x	in	experiments	1	and	2.	Out	of	those,	proteins	with	values	<	y	in	experiments	3	and	5”.	As	
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the	best	set	and	decision	sequence	is	not	known	a	priori,	the	best	bet	is	to	generate	many	

decision	trees	at	random	(hence	the	name	random	forest).	Each	tree	votes	for	all	compliant	

proteins	 as	 members	 of	 the	 positive	 class.	 The	 clearer	 the	 difference	 between	 the	 two	

classes	 in	 the	 data,	 the	 larger	 the	 number	 of	 trees	 that	will	 vote	 for	 the	 positive	 class	 as	

indeed	positive.	The	RF	score	(calculated	for	each	protein)	is	the	fraction	of	trees	that	voted	

for	a	protein	as	positive.	In	order	to	get	a	score	for	the	members	of	the	positive	class	as	well,	

during	the	generation	of	each	tree,	some	of	the	members	of	the	positive	and	negative	class	

are	left	out	and	treated	as	unknown.	This	Out-of-bag	(OOB)	procedure	intrinsically	controls	

for	training	set	bias.	 

We	 set	 the	 number	 of	 trees	 in	 the	 forest	 to	 3000	 in	 each	 run.	 The	Matthews	 correlation	

coefficient	was	calculated	by	using	the	formula 

 

 
	

where	 TP	 indicates	 true	 positives,	 FP	 false	 positives,	 TN	 true	 negatives	 and	 FN	 false	

negatives.	For	null	values	of	any	of	the	sums	in	the	denominator,	the	MCC	was	defined	as	0.	

To	choose	a	particular	RF-Score	as	a	cut-off,	we	evaluated	100	possible	cut-offs	between	RF-

scores	 0	 and	 1	 and	 kept	 that	 which	 maximized	 the	 MCC.	 In	 for	 cutoffs	 with	 the	 same	

maximum	MCC,	the	smallest	RF	was	chosen	as	a	cut	off	to	maximize	sensitivity.	Table	S2	was	

directly	used	for	machine	learning.	 
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Informative	experiment	fraction	VS	noise	analysis 

We	 arbitrarily	 generated	 600	 matrices	 with	 ~5000	 ‘protein’	 rows	 and	 20	 ‘experiment’	

columns	(sizes	similar	to	our	SILAC	ratio	matrix)	by	sampling	a	standard	normal	distribution.	

In	each	matrix,	365	‘proteins’	were	selected	to	be	part	of	the	negative	set	and	5	groups	of	12	

proteins	were	 set	 to	 be	 identical	within	 their	 group	 in	 2	…	 20	 ‘experiments’	 (Figure	 1D-F,	

horizontal	axis).	Next,	Gaussian	noise	with	standard	deviation	of	 .02	...	2	was	added	to	the	

entire	matrix	(Figure	1D-F,	vertical	axis).	Missing	values	were	not	added	to	the	simulations	as	

the	 RF	 pipeline	 would	 only	 transform	 NAs	 into	 the	 median	 value	 of	 the	 experiment	 and	

therefore	 just	 have	 the	 same	 effect	 as	 noise	 addition.	 RF	 analysis	was	 then	 run	 for	 the	 5	

groups	versus	the	negative	set.	Lastly,	we	calculated	the	mean	of	means	of	the	RF	scores	for	

each	positive	group.	The	correlation	was	the	mean	of	intra-group	correlations	of	all	positive	

groups.	 

 

Definition	of	protein	group	covariance. 

The	covariance	between	random	variables	is	only	defined	pairwise,	and	as	such,	the	‘mean	

correlation	of	a	complex’	as	mentioned	in	the	text	could	be	seen	as	a	matrix	A	where	Ai	 j	 is	

the	 correlation	 of	 protein	 I	 with	 protein	 j.	 Several	 proxies	 of	 a	 single	 group-covariance	

measure	 exist.	 For	 practical	 purposes,	 the	 average	 of	 the	 lower	 triangular	 entries	 of	 the	

correlation	matrix	was	used	as	a	proxy	of	covariance.	 
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RESULTS 

Random	Forests	can	detect	protein	complexes	in	simulated	organelle	proteomics	data 

Proteins	 in	 multi-protein	 complexes	 have	 been	 shown	 to	 covary	 across	 quantitative	

proteomics	 experiments	of	 organelles	 (8,	 9).	 That	 is,	 the	 absolute	or	 relative	quantities	of	

proteins	 that	 together	 form	 a	 complex	 increase	 or	 decrease	 in	 a	 coordinate	manner.	 This	

concerted	behaviour	forms	a	potentially	detectable	‘signature’	of	the	complex	across	sets	of	

proteomics	experiments.	Other	proteins	that	share	the	same	signature	may	be	functionally	

related	to	the	complex.	 

 

We	wondered	how	strong	such	a	signature	would	need	to	be	for	its	detection.	The	

signature	 is	 an	outcome	of	 the	 resemblance	of	each	protein’s	behavior	 to	each	other	and	

how	much	the	group	stands	out	 from	other	groups.	We	reasoned	that	 the	strength	of	 the	

signature	 could	 be	 modulated	 in	 two	 ways:	 a)	 by	 controlling	 the	 fraction	 of	 informative	

experiments	 (experiment	subsets	where	the	members	of	 the	complex	correlate)	and	b)	by	

different	 amounts	 of	 noise.	 Less	 informative	 experiments	 should	 ‘dilute’	 the	 complex’s	

signal,	 whereas	 stronger	 noise	 would	 lead	 to	 fluctuations	 away	 from	 the	 common	

behaviour.	 We	 therefore	 constructed	 artificial	 proteomics	 data	 in	 which	 we	 could	

independently	 control	 these	 two	 properties	 and	 evaluate	 their	 influence	 on	 detecting	 a	

hypothetical	complex. 
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We	generated	artificial	proteomics	 tables	 (Figure	1A)	by	populating	random	values	

into	tables	of	20	‘experiment’	columns	by	5000	‘protein’	rows.	In	those	tables,	12	‘proteins’,	

which	were	 intended	to	represent	a	hypothetical	protein	complex,	were	constrained	to	be	

identical	 in	 a	 fraction	 X	 of	 columns,	 while	 leaving	 independent	 random	 values	 in	 the	

remaining	experiments.	This	action	imitated	situations	 in	which	a	complex	covaried	in	only	

an	 informative	 subset	 of	 experiments	 (Figure	 1A,	middle	 panel).	 Next,	 we	 jittered	 all	 the	

entries	 in	 the	 table	 by	 adding	Gaussian	 noise	 of	 strength	 Y.	 Figure	 1B	 illustrates	 the	 data	

generated	 by	 this	 approach	 and	 exemplifies	 visually	 how	 the	 number	 of	 informative	

variables	and	noise	contribute	to	a	protein	group’s	signature	behaviour.	 

 

We	 wondered	 first	 if	 the	 mean	 of	 pairwise	 correlations	 between	 proteins	 of	 a	

complex	would	suffice	to	reveal	membership	as	levels	of	noise	and	informative	experiments	

changed.	 As	 one	 would	 expect,	 when	 the	 noise	 was	 low	 and	 the	 fraction	 of	 informative	

experiments	 was	 high,	 protein	 correlation	 was	 high.	 However,	 it	 dropped	 rapidly	 with	

slightly	weaker	signatures	(Figure	1C). 

 

We	then	asked	if	the	machine	learning	algorithm	“Random	Forests”	would	recognise	

stronger	 or	 weaker	 signatures	 in	 the	 behaviour	 of	 the	 hypothetical	 complex	 (for	 an	

introductory	explanation	of	the	algorithm,	see	methods).	Specifically,	we	asked	whether	the	

algorithm	 Random	 Forests	 could	 distinguish	 our	 hypothetical	 complex	 from	 >350	 other	

proteins,	composed	of	>350	rows	in	the	random	protein	table	(Figure	1A,	middle	panel).	In	
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two	previous	works	 from	our	group	(1,	9),	we	used	Random	Forests	because	 it	a)	 samples	

combinations	 of	 experiments	 and	 attempts	 to	 draw	 a	 ‘boundary‘	 between	 a	 positive	 and	

negative	 class,	 b)	 does	 not	make	 any	 assumptions	 about	 the	 data,	 c)	 can	 handle	missing	

values,	 and	 d)	 For	 every	 ‘protein’,	 RF	 outputs	 a	 score	 between	 0	 and	 1	 –	 the	 RF-score	 –	

indicating	whether	the	‘protein’	behaves	as	being	part	of	the	hypothetical	complex	(20,	21).	

Proteins	part	of	the	positive	and	negative	classes	also	obtain	an	unbiased	score	regardless	of	

their	membership	to	the	training	classes	(see	methods).	

 

Figure	1	D	shows	that	the	RF	score	of	the	hypothetical	complex	remained	high	even	

with	few	informative	experiments,	but	fell	significantly	with	higher	noise.	Therefore,	if	

looking	at	the	RF	score	alone,	even	small	amounts	of	noise	could	lead	to	not	recognising	

members	of	the	true	complex	(false	negatives),	even	when	they	initially	had	a	fairly	strong	

correlation.	These	results	suggest	that	the	RF	score	is,	on	its	own,	not	robust	to	noisy	data	

even	when	correlation	in	a	complex	is	high. 

 

We	reasoned	that	a	noise-induced	decrease	in	RF	scores	could	be	tolerated	as	long	

as	the	scores	of	members	of	the	hypothetical	complex	were	overall	higher	than	those	of	the	

negative	class.	Yet,	levels	of	noise	too	high,	and	too	few	informative	experiments,	could	lead	

to	false	positives.	To	strike	a	balance,	we	searched	for	a	RF	score	that,	if	used	as	a	boundary	

between	 the	 two	 classes,	 maximized	 separation	 quality	 –	 i.e.	 made	 the	 fewest	 class	

misassignments	 –	 between	 the	 hypothetical	 complex	 and	 the	 hypothetical	 contaminants.	
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This	can	be	assessed	by	the	Matthews	Correlation	Coefficient	(MCC	-	Exemplified	 in	Figure	

2A,	lower	panels).	Figure	1F	shows	that	class	separation	quality	remains	for	different	levels	

of	noise	and	a	 small	 fraction	of	 informative	experiments.	All	measures	 showed	 the	 lowest	

values	for	the	weakest	signatures,	where	the	complex	can	no	longer	be	distinguished	from	

randomly	covarying	groups.	Altogether,	we	conclude	that	RF	is	able	to	distinguish	significant	

signatures	of	a	protein	group	 in	high	noise	and	 few	 informative	experiments,	even	though	

the	group	could	be	as	small	as	a	protein	complex.	Because	of	the	small	training	set	size,	we	

refer	to	this	instance	of	Random	Forests	as	nanoRF. 

 

RF	can	distinguish	protein	complexes	from	contaminants	in	proteomics	experiments	of	

mitotic	chromosomes 

Our	group	has	both	collected	and	published	SILAC	proteomics	data	of	mitotic	chromosomes	

isolated	 from	 chicken	 DT40	 wild	 type	 and	 knockout	 cell	 lines.	 The	 proteins	 targeted	 for	

knockouts	 belong	 to	 a	 range	 of	mitotic	 chromosome	 complexes	 of	 two	 groups:	 Structural	

Maintenance	 of	 Chromosomes	 (SMC	 complexes,	 like	 condensin	 SMC2-4.,	 cohesin	 SMC1-3	

(13,	 23,	 24)	 ,	 SMC5-6	 (14,	 25))	 and	 the	 kinetochore	 (Ska3).	 We	 have	 previously	 used	

Random	 Forests	 to	 classify	 between	 large	 groups	 of	 ‘true’	 chromosomal	 proteins	 and	

potential	 hitchhikers	 or	 contaminants.	 Given	 that	 RF	 could	 distinguish	 small	 covarying	

groups	in	simulated	data,	we	asked	whether	it	could	detect	known	small	protein	complexes	

based	on	real	data	and	if	any	other	proteins	shared	the	signature	of	the	complexes. 
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	 The	 diagram	 in	 Figure	 2A	 illustrates	 our	 strategy	 to	 detect	 protein	 complexes	 in	

mitotic	chromosomes	and	retrieve	proteins	that	may	be	functionally	linked	with	them.	First,	

we	choose	a	protein	complex	(Figure	2,	red	dots),	and	a	set	of	curated	hitchhikers	(Figure	2	

blue	dots	(9),	which	serve	as	the	negative	class	(Table	S2).	Then	we	use	RF	to	distinguish	the	

complex	from	the	hitchhikers	on	the	basis	of	our	proteomics	data.		As	every	protein	will	get	

a	RF	score,	we	look	for	a	‘boundary’	score	that	maximizes	class	separation	quality	–	i.e.	that	

most	members	of	a	complex	are	above	it	and	the	most	contaminants	below.	Proteins	above	

that	score	covary	strongly	with	members	of	the	complex	(Figure	2A	and	2B,	orange	dots).	To	

find	 the	 boundary,	 we	 use	 the	 MCC	 (Figure	 2A,	 bottom	 panel)	 as	 used	 in	 the	 previous	

section.	A	more	“traditional”	way	to	evaluate	the	significance	of	this	result	 is	to	consider	a	

hypergeometric	test.	The	higher	the	enrichment	of	red	marbles	on	top	of	the	cutoff	and	the	

lower	the	number	of	blue	marbles	 (higher	separation	quality),	 the	 lower	the	probability	of	

such	draw		under	an	equiprobable	hypothesis. 

 

	 We	analysed	a	number	of	different	complexes	with	RF	(Figure	2B).	 In	particular	we	

performed	 nanoRF	 on	 the	 Constitutive-Centromere-Associated	 Network,	 the	 KNL-Mis12-

Ndc80	(The	KMN	network),	Nucleoporin	107-160/RanGAP,	condensin,	SMC	5/6	and	cohesin	

and	 ribosomal	 proteins.	 For	most	 complexes,	 a	 large	 number	 (if	 not	 all)	 of	 the	members	

have	 greater	 RF	 scores	 than	 the	 contaminants,	 ensuring	 high	 quality	 boundaries	 between	

classes. 
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	 To	rule	out	whether	the	approach	could	classify	any	arbitrary	protein	group	to	be	a	

complex,	we	ran	RF	on	5000	random	protein	sets	from	our	dataset.	The	size	of	those	sets	(10	

random	positive	class	proteins	and	400	random	negative	class	proteins)	were	in	the	range	of	

the	 chromosomal	 protein	 complexes	we	 investigated,	which	 ranged	 between	 7	 and	 20.	 It	

can	 be	 observed	 that	 an	 exemplary	 random	 positive	 class	 intercalates	 with	 the	 random	

negative	 class,	 resulting	 in	 a	 poor	 separation	 quality	 (Figure	 2B,	 bottom	 panel).	 In	 other	

words,	nanoRF	does	not	support	the	hypothesis	that	these	arbitrary	groups	are	complexes.	

This	 contrasts	 starkly	with	 the	 success	 of	 separating	 protein	 complexes	 from	 the	negative	

class	 (Figure	 2B,	 upper	 panels).	We	 further	 evaluated	 the	 significance	 of	 our	 results	 using	

Receiver-Operating	Characteristic	 (ROC)	curves	(Figure	2C)	and	the	MCC	values	themselves	

(Figure	 2D).	 Starting	 from	 the	 highest	 RF	 score,	 a	 ROC	 curve	 evaluates	 the	 fraction	 of	

positive	 class	members	 recovered	 (true	 positives)	 on	 the	 vertical	 axis	 versus	 the	 negative	

class	members	 recovered	 (false	 positives)	 on	 the	 horizontal	 axis.	 A	 ROC	 curve	 that	 climbs	

vertically	is	favourable	because	it	means	that	the	RF	score	is	sensitive	to	the	complex.	Under	

these	circumstances,	 the	area	under	 the	ROC	curve	 (AUC)	 is	 larger	 than	0.5.	 In	contrast,	 if	

the	 RF	 score	 contained	 a	 poor	 signal,	 the	 positive	 and	 negative	 class	 would	 be	 retrieved	

randomly.	In	this	case,	the	ROC	curve	climbs	up	the	diagonal	and	has	an	area	of	around	0.5.	

In	our	analysis,	all	of	the	complex-specific	RF	retrieved	roughly	70%	of	the	complexes	before	

any	 false	positives	were	collected	 (Figure	2C).	All	our	 complexes	 showed	an	AUC	between	

0.9	 and	 0.999	 (Table	 S2),	 implying	 accurate	 classification.	 In	 contrast,	 ROC	 curves	 of	 the	
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randomly	selected	groups	(examples	 in	Fig.	2C,	black	and	grey	lines)	remained	close	to	the	

diagonal.	 

 

	 Finally,	 we	 evaluated	 the	 distributions	 of	 MCC	 values	 for	 real	 complexes	 and	 for	

randomly	sampled	protein	groups.	Quantification	of	class	separation	quality	by	the	highest	

MCC	 value	 obtained	 for	 the	 random	 classes	 was	 0.543	 (P≈0.0002,	 N=5000),	 whereas	 the	

minimum	MCC	value	for	the	complexes’	separation	was	0.71	(P≈0.002,	N=500).	Altogether,	

these	results	support	the	hypothesis	that	the	RF	can	distinguish	between	protein	complexes	

and	contaminants	in	real	data.	Thus,	the	performance	of	real	complexes	is	likely	the	result	of	

biological	relationships,	rather	than	an	artefact	of	machine	learning.	Strikingly,	no	particular	

experiment	was	aimed	at	studying	the	Nup107-160/RanGAP	complex	or	ribosomal	proteins.	

This	 suggests	 that	 this	 biological	 information	 is	 protein	 complex	 covariance	 as	 previously	

observed	in	other	works		(8,	9)	and	suggested	by	the	simulations	in	the	previous	section.	The	

full	list	of	proteins	associated	with	each	complex	can	be	found	in	table	S2.	

 

Integration	of	several	complex-specific	RF	reveals	known	and	novel	interdependencies	

between	protein	complexes. 

The	covariance	of	each	complex	could	be	its	unique	signature	or	could	overlap	with	that	of	

other	 complexes,	 possibly	 implying	 conditional	 interdependency	 among	 complexes.	 We	

decided	to	test	this	hypothesis	with	kinetochore	subcomplexes	as	there	is	significant	contact	

among	them.	To	this	aim,	we	analysed	2D	plots	of	RF	for	different	complexes	(Figure	3). 
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We	 categorized	 several	 possible	 interdependency	 scenarios	 between	 kinetochore	

complexes	(Figure	3A,	B).	According	to	these	scenarios,	the	CCAN	and	the	Nucleoporin	107-

160	 /RanGAP	 complex	 (Figure	 3C)	 appeared	 independent,	 i.e.	 they	 do	 not	 associate	 with	

each	 other.	 In	 contrast,	 the	 KMN	 network	 associated	 with	 both.	 We	 concluded	 that	

perturbations	on	both	CCAN	and	Nup-107-160	have	a	hierarchical	effect	on	KMN	(i.e.	their	

effects	 propagate	 to	 KMN	but	 not	 vice	 versa),	 implying	 that	 the	 latter	 is	 involved	 in	 links	

between	 inner	 and	 outer	 kinetochore.	 These	 observations	 are	 consistent	 with	 current	

models	of	the	kinetochore (26, 27).	The	other	proteins	associated	with	the	CCAN,	Nup-Ran	

or	SMC5-6	complexes	can	be	found	in	Figure	S1. 

 

Even	 though	 the	CCAN	RF	prediction	was	 rich	 in	associated	proteins	–	 this	might	be	

expected	 from	 a	 crowded	 chromatin	 environment	 –	 the	 entire	 condensin	 complex	

associated	 with	 the	 CCAN.	 This	 dependency	 may	 imply	 a	 potential	 relationship	 between	

these	 complexes	 that	 merits	 further	 study.	 Finally,	 Figure	 2C	 shows	 that	 the	 CCAN	 RF	

prediction	is	independent	from	the	SMC	5/6	complex,	and	no	CCAN	protein	co-fractionated	

with	 ribosomal	 proteins	 (Figure	 S2).	 Together,	 these	 results	 show	 that,	 by	 integrating	 the	

outcome	 of	 several	 complex-specific	 Random	 Forests,	 we	 can	 reconstruct	 known	

dependencies	 at	 the	 kinetochore	 and	 identify	 novel	 inter-complex	dependencies.	Notably,	

none	of	these	relationships	were	directly	addressed	a	priori	by	the	experiments	used.	 
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We	suggest	that	this	strategy	to	infer	protein	functions	and	relationships	training	RF	

with	small	protein	complexes	be	named	nanoRF.	Other	sub-complexes	and	uncharacterized	

proteins	also	associated	with	the	complexes	shown	here.	An	experimental	analysis	of	

putative	interactions	identified	by	nanoRF,	in	the	context	of	SMC	complexes,	can	be	found	in	

(11)	.	 

 

DISCUSSION 

A	recurrent	goal	in	the	post-genomic	era	has	been	to	make	sense	of	increasing	amounts	of	

underexploited	data,	 including	noisy	 and	 incomplete	proteomics	 output.	Our	 results	 show	

that,	 even	 with	 high	 noise	 and	 when	 few	 experiments	 are	 informative,	 small	 groups	 of	

covarying	proteins	–i.e.	complexes–	can	be	recognised	based	on	their	coordinated	behaviour	

by	 Random	Forests	 (Figure	 1	 and	 2).	 In	 data	 of	 this	 type,	 statistical	measures	 such	 as	 the	

mean	 correlation	 (Figure	 1C)	 or	 absolute	 RF	 score	 of	 members	 in	 a	 complex	 can	 drop	

considerably	(Figure	1D).	We	have	demonstrated	that	lower	RF	scores	can	be	informative	as	

long	 as	 the	 negative	 and	 positive	 class	 remain	 separable	 by	 their	 RF	 score	 (Figure	 1F).	 By	

tolerating	 a	 decrease	of	 the	RF	 score	 and	maximizing	 separation	quality,	we	were	 able	 to	

predict	 highly	 specific	 associations	 with	 complexes	 (Figure	 2B)	 and	 retrieve	 known	 inter-

complex	 relationships	 in	 our	 dataset	 (Figure	 3).	 As	 no	 experiment	 targeted	 all	 of	 the	

complexes	 detected,	 this	 strategy	 could	 potentially	 identify	 protein	 function	 in	 any	

combination	of	comparable	proteomics	results.	
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Comparison	between	nanoRF	and	other	methods 

Two	previous	studies	from	our	group,	MCCP	and	ICP,	have	used	Random	Forests	to	attempt	

to	 find	 general	 trends	 shared	 by	 functional	 members	 of	 chromosomes	 (9)	 or	 interphase	

chromatin	(1)	in	proteomics	data.	The	evidence	presented	in	the	current	work	suggests	that	

the	 ‘true	 chromosome	 class’	 is	 the	 integration	 of	 the	 signatures	 of	 multiple	 protein	

complexes	 covarying	 in	 specific,	 distinguishable	 ways.	 Because	 of	 strong,	 yet	 conditional	

complex-specific	covariance,	adding	more	than	one	complex	to	a	training	class	may	restrict	

the	performance	of	RF.	Compared	to	MCCP	and	fractionation	profiling	 (11),	our	prediction	

would	upgrade,	 for	 example,	 from	 “true	 chromosomal	 protein”	 to	 “protein	 dependent	 on	

complex	A	but	not	complex	B”.	 In	a	previously	unmentioned	example,	the	polybromo-and-

BAF-containing	(PBAF)	complex	(ARID2,	PBRM1,	BRD7,	SMARCB1	and	SMARCE1)	associated	

specifically	 with	 Nup107-160	 but	 not	 with	 the	 CCAN	 (Figure	 S1A).	 In	 support	 of	 this	

prediction,	 another	 bromodomain-containing	 protein,	 CREBBP,	 has	 been	 found	 to	 interact	

with	Nup98	in	Nup107-160	complex	and	was	linked	to	Nup98	oncogenicity	(26).	 

 

Methods	like	Fractionation	Profiling	(FP)	and	multivariate	proteomic	profiling	(MVPP)	

(8)	are	based	on	guilt-by-association	analyses	to	similarly	detect	protein	complexes	and	have	

cleverly	dealt	with	the	intricate	nature	of	proteomics	data	–i.e.	presence	of	missing	values–	

but	 the	 conditional	 covariance	 of	 the	 complex	 –i.e.	 a	 signal	 present	 in	 only	 a	 few	

experiments–	 has	 not	 been	 accounted	 for	 previously.	We	 have	 shown	 that	 nanoRF	 finds	
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such	 covariance,	 even	 when	 there	 is	 high	 noise.	 Consequently,	 nanoRF	 has	 successfully	

predicted	proteins	with	previously	uncharacterized	links	to	mitosis	(11). 

 

Potential	pitfalls	and	statistical	considerations	of	nanoRF 

It	 is	 not	 possible	 to	 conclude	 from	 computational	 analysis	 alone	 that	 the	 relationships	

predicted	by	nanoRF	are	direct	 physical	 interactions	between	 the	 aforementioned	protein	

complexes.	 Nevertheless,	 our	 results	 come	 strictly	 from	 protein-level	 dependencies	 (or	

indirect	effects	of	these)	rather	than	changing	expression	levels,	so	physical	associations	are	

likely.		

We	believe	that	finding	the	objectively	best	separation	quality	lessens	the	burden	to	select	

an	arbitrary	significance	cutoff	for	candidates,	especially	as	more	uninformative	experiments	

are	 collected.	 We	 have	 intentionally	 avoided	 using	 a	 hypergeometric	 P-Value	 as	 a	

significance	measure	since	a)	the	exact	P-values	we	obtained	for	all	of	our	complexes	were	

in	the	range	of	10	-11	to	10-51	(Table	S2),	b)	P-Values	were	strongly	influenced	by	the	number	

of	 proteins	 in	 the	 complex,	 c)	 were	 undefined	 for	 some	 some	 of	 the	 random	 group	 RF	

results,	where	 none	 of	 the	 two	 classes	were	 above	 the	MCC	 threshold	 (Figure	 2B,	 lowest	

panel).		

Instead	 of	 direct	 P-Value	 usage,	 the	 significance	 of	 the	 predictions	 by	 nanoRF	 is	

subject	 to	 the	 probability	 of	 obtaining	 a	 high	 separation	 quality	 by	 chance	 for	 a	 given	

dataset.	To	minimise	the	risk	of	 type	 I	error,	we	suggest	 that	 the	MCC	at	 the	classification	

threshold	 for	 a	 complex	 remains	 higher	 than	 the	 highest	 MCC	 obtained	 from	 randomly	
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assigned	protein	groups	in	a	data	set.	In	our	analysis,	the	probability	of	obtaining	an	MCC	as	

high	as	that	of	real	complexes	by	chance	showed	negligible	–our	sampled	MCC	distributions	

did	not	overlap	(Figure	2D),	but	it	may	vary	for	other	datasets.	Naturally,	a	lower	MCC	may	

be	accepted	at	the	risk	of	more	false	positives.	 

For	 prediction	 of	 associations	 with	 a	 complex,	 the	 false	 discovery	 rate	 for	 each	

complex	 should	be	proportional	 to	 the	 fraction	of	negative-class	proteins	 that	 surpass	 the	

classification	threshold.	A	small	negative	class	could	lead	to	underestimating	false	positives	

as	higher	noise	may	increase	the	RF	score	of	spurious	proteins.	Therefore,	a	 large	negative	

class	may	be	essential	 for	 a	 realistic	 False	Discovery	Rate	estimation	 (28)	 and	a	 small	 one	

could	be	compensated	with	a	more	stringent	prediction	cutoff	for	the	RF-score.		

	

Potential	applications	of	nanoRF	

In	 the	context	of	all	 the	massive	protein-protein	 interaction	networks	being	 identified,	we	

face	 a	 lack	 of	 detail	 in	 the	 functionality,	 hierarchy,	 specificity	 and	 conditionality	 of	 these	

interactions.	 We	 have	 shown	 that	 nanoRF	 could	 satisfy	 these	 unmet	 needs	 by	 providing	

deep	insight	about	protein	complexes.	

Experiments	 are	 informative	 if	 members	 of	 a	 complex	 covary	 in	 them	 (Figure	 1A).	

Differentiating	 between	 informative	 and	 non-informative	 experiments	 (feature	 selection)	

could	itself	be	a	powerful	tool	for	protein	complex	data	mining.	For	example,	a	specific	set	of	

perturbations	may	break	the	stoichiometry	(and	hence	the	correlation)	in	a	complex.	In	this	

direction,	our	nanoRF	pipeline	(22)	includes	a	calculation	of	each	experiment’s	‘importance’	
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for	 classification,	 though	 exploiting	 such	 importance	 may	 not	 be	 straightforward.	 This	

estimation	employs	the	Gini	importance,	which	compares	classification	performance	with	or	

without	 a	 given	 experiment.	 A	 thorough	 analysis	 of	 importance	 measures	 is	 provided	 by 

(29). 

 

	 We	speculate	that	nanoRF	could	be	performed	on	the	same	complex	multiple	times,	

each	 time	 using	 a	 distinct	 subset	 of	 experiments.	 These	 subsets	 could	 correspond,	 for	

example,	 to	 different	 time	 points	 or	 biological	 conditions,	 such	 as	 drug	 treatments.	 Such	

analysis	 could	potentially	 inform	how	the	capacity	 to	 retrieve	a	complex	changes	with	 the	

experiments,	or	whether	there	is	a	difference	in	associated	proteins	from	one	condition	to	

the	next.	Such	changes	 in	retrieval	may	provide	 insight	about	conditional	binding	partners,	

or	the	biology	of	specific	conditions,	drugs	or	diseases.	 

 

CONCLUSION 

Here	we	 described	 NanoRF,	 which	 uses	 supervised	machine	 learning	 to	 a)	 detect	 protein	

complexes	 of	 interest	 in	 noisy	 datasets	 with	 few	 informative	 experiments,	 b)	 predicts	

proteins	 that	 have	 functional	 associations	 with	 specific	 complexes	 and	 c)	 evaluates	 the	

relationship	between	complexes	according	to	their	behaviour.	NanoRF	enables	hypothesis-

driven	data	analysis	from	ever-increasing,	underexploited	quantitative	proteomics	data.	It	is	

generally	assumed	that	machine	learning	requires	large	training	sets	to	work.	However,	we	

have	established	that	Random	Forests	can	retrieve	strikingly	small	protein	complexes,	their	
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associated	 proteins	 and	 relationships	 between	 complexes	 from	 ordinary	 proteomics	 data.	

We	 anticipate	 nanoRF	 to	 complement	 experimental	 co-fractionation	 approaches	 such	 as	

immunoprecipitation.	 Importantly,	 nanoRF	 does	 not	 require	 proteins	 to	 remain	 physically	

attached	 to	 each	 other	 during	 analysis,	 which	 may	 be	 difficult	 for	 weakly	 interacting	 or	

insoluble	protein	complexes	such	as	associated	in	chromatin	or	membranes.	 
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FIGURE	LEGENDS 

Figure	1.	Supervised	Machine	Learning	algorithm	Random	Forests	can	detect	small,	

correlated	protein	groups	in	artificial	proteomics	data.	A.	Depiction	of	the	procedure	used	

to	simulate	proteomics	data	with	‘protein’	rows	and	‘experiment’	columns.	Some	rows	are	

made	identical	(red	tones)	in	a	fraction	of	experiments	to	simulate	a	hypothetical	complex	

(HC),	and	Gaussian	noise	is	then	added	element-wise	to	each	table	entry.	B.	Visual	

description	of	a	hypothetical	complex	(red)	versus	other	randomly	generated	proteins	(grey)	

as	the	number	of	experiments	(left-right)	and	the	noise	(bottom-up)	affect	the	protein	

values	in	the	experiments	(all	subpanels).	C.	Diagram	to	visualize	the	output	from	machine	

learning	technique	Random	Forests.	The	RF	score	denotes	the	resemblance	to	the	complex,	

while	separation	quality	indicates	how	easily	unrelated	proteins	covary	with	the	complex.	

Red	and	grey	dots	depict	the	hypothetical	complex	and	other	proteins	respectively.	D,E,F.	

heat	maps	showing	how	the	fraction	of	informative	experiments	(X	axis)	and	the	noise	

amount	(Y	axis)	affect	the	Mean	correlation	(D)	Random	Forest	score	(E)	and	separation	

quality	(F)	of	proteins	in	a	complex.	In	each	square,	the	value	projected	is	the	mean	of	

means	of	5	independent	groups.	 

 

Figure	2.	Random	Forests	can	detect	small	protein	complexes	in	chicken	chromosome	

SILAC	proteomics	experiments.	Entire	figure:	red-protein	complex,	blue	tones-	

contaminants/hitchhikers.	A.	Logic	of	the	procedure	to	detect	complexes	with	Random	

Forests.	Groups	separable	in	multiple	dimensions	(only	2	depicted)	yield	a	higher	MCC	than	
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inseparable	groups.	B.	RF	scores	of	multiple	complexes	versus	the	same	set	of	

contaminants/hitchhikers,	and	randomly	selected	groups	from	the	table.	 

C.	Receiver	operating	characteristic	(ROC)	performance	curves	of	the	RF	as	a	classifier	for	

each	protein	complex	and	for	two	randomly	selected	protein	groups	(grey,	black).	Diagonal	

shows	the	random	assignment	scenario.	D.	Kernel	densities	of	MCC	values	for	500	random	

forest	runs	of	each	complex	and	5000	runs	for	randomly	assigned	groups	(black.	Sample	

sizes:	10	for	positive	class	and	425	for	the	negative	class).	All	distributions	were	made	of	

height	1	for	visualization	purposes. 

 

Figure	3.	Known	and	novel	interdependencies	between	complexes	revealed	by	RF.	A.	

Schematic	of	a	2D	diagram	to	visualize	intersections	between	Random	Forests	for	different	

complexes.	Highest	separation	quality	thresholds	are	depicted	by	dotted	lines.	Proteins	

above	both	thresholds	(pink	quadrant)	associate	with	both	complexes	whereas	those	just	

above	one	remain	independent.	B.	Possible	scenarios	of	interdependence	between	

complexes	inferred	from	2D	RF	plots.	C,D.	2D	interdependence	plot	of	the	Constitutive	

Centromere-Associated	network	(CCAN,	C	and	D	,	squares)	versus	the	Nup107-160/RanGap	

complex	(C,	triangles)	and	the	SMC	5/6	complex	(D,	triangles). 

 

Figure	S1.	Expanded	version	of	2D	interdependency	plots	in	Fig	3C(A)	and	3D(B)	shows	

proteins	with	functional	association	to	either	complex.	A.	Expanded	version	of	3C.	Green	
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list	corresponds	to	proteins	(histones)	in	green	circle	cluster.	B.	Expanded	version	of	3D.	

Names	were	slightly	moved	to	avoid	overlap.	 

 

Figure	S2.	2D	interdependency	plot	between	the	Constitutive	Centomere-Associated	

Network	(CCAN,	X	axis,	squares)	and	the	ribosomal	protein	group	(Y	axis,	triangles).		

 
Table	S1.	nanoRF	proteomics	results	table.	Grey	columns:	the	training	factors	used	

for	each	complex’s	nanoRF	where	‘T’=	member	of	a	complex,	‘F’=	hitchhiker,	and	‘?’=	

unknown,	proteins	that	are	uncalled	as	any	specific	class.	Orange	Columns:		the	SILAC	ratio	

columns	used	from	the	mitotic	chromosome	proteomics	experiments,	b)	Colourless	

columns:	each	RF	scores	for	each	complex.	Red-coloured	entries	are	proteins	that	surpass	

each	RF’s	cutoff	score–i.e.	they	are	significantly	associated	with	the	complex.	

Table	S2.	Information	about	protein	complexes	and	associations.	Relevant	information	

about	the	complex	composition	and	statistics	(MCC,	AUC,	RF	cutoffs,	hypergeometric	tests).		
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