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Abstract

Phylodynamics typically rely on likelihood-based methods to infer epidemiological parameters from dated

phylogenies. These methods are essentially based on simple epidemiological models because of the difficulty

in expressing the likelihood function analytically. Computing this function numerically raises additional

challenges, especially for large phylogenies. Here, we use Approximate Bayesian Computation (ABC) to

circumvent these problems. ABC is a likelihood-free method of parameter inference, based on simulation

and comparison between target data and simulated data, using summary statistics. We simulated target

trees under several epidemiological scenarios in order to assess the accuracy of ABC methods for inferring

epidemiological parameter such as the basic reproduction number (R0), the mean duration of infection, and

the effective host population size. We designed many summary statistics to capture the information in a

phylogeny and its corresponding lineage-through-time plot. We then used the simplest ABC method, called

rejection, and its modern derivative complemented with adjustment of the posterior distribution by regression.

The availability of machine learning techniques including variable selection, motivated us to compute many

summary statistics on the phylogeny. We found that ABC-based inference reaches an accuracy comparable to

that of likelihood-based methods for birth-death models and can even outperform existing methods for more

refined models and large trees. By re-analysing data from the early stages of the recent Ebola epidemic in Sierra

Leone, we also found that ABC provides more realistic estimates than the likelihood-based methods, for some
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parameters. This work shows that the combination of ABC-based inference using many summary statistics and

sophisticated machine learning methods able to perform variable selection is a promising approach to analyse

large phylogenies and non-trivial models.

Introduction 1

To control epidemics, we must understand their dynamics. Classical analyses typically rely on prevalence 2

or incidence data [1, 2], which correspond to the total number of reported cases, and the number of newly 3

reported cases through time, respectively. By combining such data with epidemiological models, one can 4

estimate key parameters, such as the basic reproduction number (R0), which is the number of secondary cases 5

generated by an infectious individual in a fully susceptible host population. A robust and rapid estimation 6

of epidemiological parameters is essential to establishing appropriate public health measures [1, 3]. Inference 7

methods in epidemiology are under rapid development as a result [4–7]. 8

With the advent of affordable sequencing techniques, infected individuals can now be sampled in order to 9

sequence genes (or even the complete genome) of the pathogen causing their infection. In the case of outbreaks, 10

this sampling can represent a significant proportion of infected hosts. For instance, Gire et al. sequenced 11

the whole genome of viruses from 78 Ebola cases sampled from late May to mid June 2014 and published a 12

complete analysis of the early spread of this large Ebola outbreak by mid-September [8]. It was estimated that 13

these samples represented a significant proportion of all the infections in Sierra Leone that had taken place at 14

that time [9, 10]. 15

A dated phylogeny can readily be inferred from virus sequences with a known sampling date. Such a 16

‘genealogy’ of infections bears many similarities with a transmission chain and potentially contains information 17

about the spread of the epidemic. This idea was popularised by Grenfell et al. [11], who coined the term 18

‘phylodynamics’ to describe the hypothesis that the way rapidly evolving parasites spread, leaves marks in 19

their genomes and in the resulting phylogeny. 20

Obtaining quantitative estimates from phylogenies of sampled epidemics remains a major challenge in 21

the field [12, 13]. In most studies, epidemiological parameters are inferred using a Bayesian framework 22

based on a likelihood function that describes the probability of observing a phylogeny given a demographic 23

model for a set of parameter values. This model is also referred to as the ‘tree prior’ [14]. Epidemiological 24

dynamics were first captured in the tree prior by using coalescent theory and assuming an exponential growth 25

rate of the epidemic [15], or more flexible variations in the effective population size over time (i.e. effective 26

prevalence) [16–18]. 27
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More recently, much progress has been made in deriving tree priors more relevant to epidemiological 28

models (see [19] for a review). In 2009, Volz et al. [20] managed to express the likelihood function of SIS 29

(for ‘Susceptible-Infected-Susceptible’) and SIR (for ‘Susceptible-Infected-Removed’) epidemiological models 30

using coalescent theory, thus allowing for the estimation of R0. One year later, Stadler [21] derived the 31

likelihood function of a phylogeny using the birth-death process. The method was then extended to other 32

epidemiological models and now allows for the inference of both R0 and the duration of the infection [22,23]. 33

Other developments have combined state-of-the-art techniques in epidemiological modelling, for instance 34

particle filtering, with the coalescent model for phylodynamics inference [24–26]. The success of these tree 35

priors was made possible by advances in computing power, and the generalisation of computationally intensive 36

techniques to explore the parameter space, such as Markov Chain Monte Carlo (MCMC) procedures [27]. Many 37

of the tree priors and procedures described above, are implemented in the software package BEAST [14]. 38

Since all the aforementionned phylodynamics studies rely on estimating the likelihood function of a 39

phylogeny under a given epidemiological model, they share the same two limitations. First, it is challenging to 40

express the likelihood function for models that are more realistic than the simple SI or SIR models. Second, 41

even when the likelihood function can be expressed, challenging numerical problems remain. For instance, some 42

analytical formulations (especially integrals) are extremely complicated to solve numerically [23]. Furthermore, 43

size matters and current Bayesian methods have already shown their difficulties to compute likelihood functions 44

for medium size phylogenies, i.e. with more than a few hundreds tips [9, 28], while data sets and trees with 45

thousands strains are not uncommon (e.g. [29, 30]). 46

The likelihood-free method, Approximate Bayesian Computation (ABC), may offer a means to circumvent 47

both these limitations. In short, ABC proposes to bypass the difficulty in computing (and even sometimes 48

formulating) the likelihood function, by performing simulations and comparing the simulated and ‘target’ 49

data [31–34]. This comparison is made possible through the description of the data by summary statistics. In 50

the end, as the name suggests, the likelihood is approximated instead of being computed. 51

By summarising phylogenies via summary statistics, one can then calculate a distance between the simulated 52

and target (observed) phylogenies. The basic ABC algorithm, called rejection [35], consists in retaining a small 53

fraction of simulations that are close to the target in view of the computed distances. The epidemiological 54

parameters that correspond to these retained simulations, constitute the final posterior distribution of the 55

parameters. Over the last decade, several improvements of the rejection algorithm have been proposed. The 56

first is a reference algorithm aimed at making the search in the parameter prior space more efficient, for instance 57

by using MCMC (ABC-MCMC) [36]. Newer ABC methods further adjust the posterior distribution obtained 58

by rejection. This can be done using Sequential Monte Carlo (ABC-SMC), which consists in re-sampling 59
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parameters from the posterior and thus iterating the rejection process until convergence [37,38]. An alternative 60

consists of adding a regression step (linear or not) [35,39]. In the latter method, the simulations selected by 61

rejection are used to learn a regression model, which is then used to project the simulation distribution on 62

the target. The regression-based ABC has the advantage of being potentially less computationally intensive 63

and also less sensitive to the curse of dimensionality of the set of summary statistics than the ABC-MCMC or 64

ABC-SMC [39]. 65

ABC has been compared to a Bayesian method based on the exact likelihood implemented in BEAST and 66

has been shown to infer epidemiological parameters from genetic data as accurately as and more effectively 67

than the Bayesian method [40]. Yet, to our knowledge, ABC has only been applied to phylodynamics in two 68

studies [41,42]. As shown in the first study, this could be due to the fact that the approach can be sensitive 69

to the choice of summary statistics and requires careful calibration of the tolerance parameter [41]. More 70

recently, an ABC-MCMC algorithm using a tree shape kernel distance has been developed for epidemiological 71

parameter estimation assuming the Birth-Death-Susceptible-Infectious-Removed model (BDSIR [28]) and 72

showed promising results [42]. 73

Here, we further assess the accuracy of regression-based ABC approaches to infer epidemiological parameters 74

from phylogenies. To this end, we first designed a large variety of summary statistics (83 in total) on both the 75

phylogeny and its associated lineage-through-time plot. The choice of such a large number of statistics was 76

motivated by the existence of powerful machine learning techniques that perform regression using variable 77

selection, such as the regularized neural network model introduced by Blum [39]. This also allowed us to analyse 78

where the epidemiological information was located in the phylogeny. We considered several epidemiological 79

scenarios in order to have a broad and accurate view of the performance of ABC methods to infer epidemiological 80

parameters. In particular, we used two classical epidemiological models: the Birth-Death (BD) model and the 81

Susceptible-Infectious-Removed (SIR) model. For the former model (BD), the exact likelihood function of 82

the phylogeny is known [21,22,43], whereas for the latter model (SIR), it is typically approximated. Indeed, 83

the likelihood function of the SIR model can be derived analytically [23] but its numerical computation for 84

large population size requires simplifying assumptions that lead to the BDSIR model [28]. Lastly, to further 85

assess the power of our method, we re-analysed data from the early stages of the recent Ebola epidemic in 86

Sierra Leone [8–10]. Overall, we found that the accuracy of the estimates obtained using regression-based 87

ABC approaches are comparable to that based on the likelihood function. ABC can even outperform existing 88

methods with regards to accuracy and computing time for more complex models and large phylogenies, making 89

it more valuable as the size of infection phylogenies increases. 90
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Figure 1. The epidemiological models. (a) The Birth-Death (BD) model. (b) The Susceptible Infected
Removed (SIR) model. (c) The Birth-Death model including an Exposed class (BDEI). The four compartments
correspond to susceptible (S), exposed (E), infectious (I) and removed (R) individuals. In BD and BDEI
models, new infections arise at a constant (‘birth’) rate β per infectious individual. In the SIR model, the
number of new infections depends on the number of susceptible individuals, the transmission rate β and the
number of infectious individuals. In this latter model, the total host population size is assumed to be constant
(N). In all models, infections end (i.e. ‘die’) at a rate γ + ε.

Materials and Methods 91

Compartmental models 92

We considered three epidemiological models: a Birth-Death (BD) model (Fig. 1a), a Susceptible-Infected- 93

Removed (SIR) model without demography (i.e. with a constant host population size, Fig. 1b) and a 94

Birth-Death model with an Exposed class (BDEI, Fig. 1c). The BD model [43] and an approximate version of 95

the SIR model, the BDSIR model [28], have been implemented in BEAST2 [44]. The BDEI model has been 96

used for likelihood-based parameter inference of the early spread of Ebola epidemics in Sierra Leone [9]. These 97

compartmental models are defined by ordinary differential equation (ODE) systems (see Supplementary Text 98

S1). 99

In these models [2], individuals susceptible to the pathogen become infected after a contact with infectious 100

individuals and a successful transmission, which occurs at an overall transmission rate β. Following infection, 101

individuals either become infectious immediately (BD and SIR models) or at a rate µ after a latency period 102

in the Exposed class (BDEI model). They are then ‘removed’ (i.e. recover with a lifelong immunity or die) 103

at a rate γ. Finally, they can be sampled, at a rate ε. By sampling, we mean that the pathogen is sequenced 104

from the patient. Because sampling generally leads to treatment or at least to behavioural changes, we 105

assumed that infected individuals are also ‘removed’ after sampling. This assumption is commonly made in 106

phylodynamics [22, 28, 43] and we kept it here to facilitate comparisons, but it could easily be relaxed. The 107

sampling proportion p is defined as the ratio of the sampling rate (ε) over the total removal rate (γ + ε). 108

The critical difference between BD models and the SIR model, lies in the transmission rate per infected 109

individual λ(t): this rate is constant in the BD models (λ(t) = β), but it depends on the susceptible population 110

size in the SIR model (λ(t) = β S(t)N , where S(t) is the number of susceptible individuals at time t and N is 111

the effective population size). In other words, the SIR model assumes an effective host population with a 112

fixed size N and which is initially fully susceptible (S(t = 0) = N). The susceptible population is depleted as 113

the epidemics spreads (S(t > 0) < N), and this depletion decreases the speed of the spread of the epidemics 114

(λ(t > 0) < λ(t = 0)). 115
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In this study, our goal is to infer, from dated phylogenies, the vector of epidemiological parameters θ 116

composed of: 117

• the mean duration of the infectious period dI = 1
γ+ε , 118

• for the BDEI model, the mean duration of the latency period dE = 1
µ , 119

• the basic reproduction number, or the number of secondary cases, which is defined as R0 = β
γ+ε , 120

• and, for the SIR model, the effective population size N = S + I +R. 121

Contrary to the likelihood-based phylodynamics methods [9,28,43], we did not attempt to infer the sampling 122

proportion using ABC, since γ and ε are inseparable in the epidemiological models we studied in this paper 123

(see Supplementary Text S1) [45]. 124

Epidemiological Event-Driven Model (EEDM) 125

The compartmental models described above are deterministic continuous-time models. However, whatever 126

the method used (likelihood-based or not), epidemiological parameter inference requires taking into account 127

the stochasticity of events at the level of the individual in the real-world epidemics. This is done here by 128

implementing an event-driven version of the ODE-based models. 129

A dated phylogeny of an epidemic can be viewed as a genealogy of infections where each branching 130

represents a transmission and each leaf an end of infection. To simulate such an object, one needs a discrete- 131

time stochastic simulation algorithm. Gillespie’s Direct Algorithm is an event driven approach that is commonly 132

used to simulate chronologies of epidemiological events [2, 46], sometimes called trajectories [47], assuming a 133

compartmental model. The translation of a compartmental model into an event-driven model via Gillespie’s 134

algorithm requires the specification of all events that may occur. In BDEI model for instance, these events are: 135

‘transmission’, ‘end of latency’, ‘removal’ and ‘sampling’, which occur respectively at rates β, µ, γ and ε, per 136

infected individual. Note that a great advantage of this algorithm is that there is an exact correspondence 137

between the stochastic simulations and the deterministic (continuous and ODE-based) model. 138

It is possible to build a tree while simulating epidemiological dynamics by using the analogy between a 139

genealogy of infections and a transmission chain [11]. Practically, this means assuming that each transmission 140

event leads to a branching in the tree. In the BDEI model, after transmission, an exposed individual is not 141

infectious yet and the new branch is said to be ‘passive’ because it cannot perform branching. It is only if an 142

‘end of latency’ event occurs that a passive branch is activated, thereby allowing it to branch. Lastly, when a 143

‘removal’ or a ‘sampling’ event occurs, a leaf is created because the infection ends. 144
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The simulation of an EEDM produces a full transmission tree. However, pathogen sequences are only 145

available for infected individuals who are ‘removed’ by sampling. To perform comparisons with a dated 146

phylogeny, we need a simulated tree of a sampled epidemics and thus removed all the phylogenetic history of 147

the non-sampled individuals. 148

Summary statistics 149

Dated phylogenies are complex objects. Therefore, to compare them and capture the epidemiological informa- 150

tion they may contain, we used summary statistics. We decided to compute as many summary statistics as 151

possible to capture as much information as possible. This was motivated by the fact that there is no consensus 152

in the field regarding which summary statistics to use. Importantly, this decision was made possible by the 153

existence of efficient regression models that perform variable selection and can be combined to ABC (see 154

below). Overall, we used 83 summary statistics which we group into ‘families’ to better identify where the 155

epidemiological information is in the phylogeny. 156

These involve objects such as branch lengths (Tab. 1), tree topology (Tab. 2) and the Lineage-Through-Time 157

(LTT) plot (Tab. 3) [48]. 158

Since branching occurs throughout the phylogeny at a rate that varies through time (the number of infected 159

Table 1. Summary statistics based on branch lengths (bl set).
• Statistics computed on three time-based parts of the tree. Internal branches belong respectively to the first (k = 1),
second (k = 2) or third (k = 3) part of the tree if they end before the first, second or third delimitation, respectively.
÷ Ratios between each piecewise statistic related to internal BL and the same statistic computed on all external BL.

Notation Description
max H Sum of the branch lengths between the root

and its farthest leaf
min H Sum of the branch lengths between the root

and its closest leaf
a BL mean Mean length of all branches

a BL median Median length of all branches
a BL var Variance of the lengths of all branches

e BL mean Mean length of external branches
e BL median Median length of external branches

e BL var Variance of the lengths of external branches
i BL mean [k]• Piecewise mean length of internal branches

i BL median [k]• Piecewise median length of internal branches
i BL var [k]• Piecewise variance of the lengths of internal branches

ie BL mean [k]÷ Ratio of the piecewise mean length of internal branches
over the mean length of external branches

ie BL median [k]÷ Ratio of the piecewise median length of internal branches
over the median length of external branches

ie BL var [k]÷ Ratio of the piecewise variance of the lengths of internal
branches over the variance of the lengths of external branches
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hosts can vary and also the number of susceptible hosts in the SIR model), we designed all the summary 160

statistics related to branching and internal branches (linking two internal nodes) in a piecewise manner (Tab. 1). 161

We temporally cut the tree into three equal parts: internal branches belong respectively to the first, second or 162

third part of the tree, if they end before the first (13max H), second ( 23max H) or third (max H) delimitation, 163

respectively, where max H represents the height of the farthest leaf. 164

The sampling rate also varies through time. However, sampling events often appear late in the phylogeny, 165

which is why we only computed global (on the whole tree) summary statistics to describe sampling events and 166

external branches (linking internal nodes to the leaves). 167

Table 2. Summary statistics based on the tree topology (topo set).
Notation Description
colless Sum for each internal node of the absolute difference between

the number of leaves on the left side and
the number of leaves on the right side [49]

sackin Sum for each leaf of the number of internal nodes
between the leaf and the root [50]

WD ratio Ratio of the maximal width (W ) over the maximal depth (D),
where the depth of a node characterizes the number
of branches that lies between it and the root,
and the width wd of a tree at a depth level d
is the number of nodes that have the same depth d [51]

∆w Maximal difference in width ∆w = maxD−1d=0 (|wd − wd+1|) [51]
max ladder Maximal number of internal nodes in a ladder

which is a chain of connected internal nodes each linked
to a single leaf, divided by the number of leaves [51]

IL nodes Proportion of internal nodes In Ladders [51]
staircaseness 1 Proportion of imbalanced internal nodes that have

different numbers of leaves between the left and the right side [51]
staircaseness 2 Mean ratio of the minimal number of leaves on a side

over the maximal number of leaves on a side,
for each internal node [51,52]

Table 3. Summary statistics based on the LTT plot (ltt set).
• Computed on three part of the tree. Consecutive steps up respectively to the first (k = 1), second (k = 2) or third (k = 3)
part of the tree if the second steps happens before the first, second or third delimitation, respectively.

Notation Description
max L Maximal number of lineages

t max L Time at which the maximal number of lineages is observed
slope 1 Linear slope between the origin and the maximal

number of lineages
slope 2 Linear slope between the maximal number of lineages

and the last leaf event
slope ratio Ratio of the slope 1 over the slope 2

mean s time Mean time between two consecutive down steps
(mean sampling time)

mean b time[k]• Piecewise mean times between two consecutive up steps
(piecewise mean branching times)
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Figure 2. Simulated phylogenies of 100 leaves assuming a BD model and their corresponding
LTT plot. The red phylogeny was simulated assuming θ = (R0 = 10, dI = 5, p = 0.5) and the blue phylogeny
was simulated assuming θ = (R0 = 2, dI = 5, p = 0.5). Different R0s lead to different LTT plots and different
tree shapes.

It is known that the topology of a phylogeny can be driven by processes such as immune escape [11]. 168

Moreover, it has been shown recently that different transmission patterns can result in quantitatively different 169

phylogenetic tree topologies. In particular, heterogeneity in host contact can influence the tree balance [51]. 170

This is why we also used phylogenetic topological indexes as summary statistics (Tab. 2). 171

The Lineage-Through-Time (LTT) plot provides a graphical summary of a phylogeny [48]. It represents 172

the number of lineages along the phylogeny as a piecewise constant function of time (Fig: 2). Each step up 173

in the LTT plot corresponds to a branching in the phylogeny, and each step down to a leaf. If all infected 174

individuals of an epidemics are sampled, the phylogeny corresponds to the full transmission tree and the LTT 175

plot is identical to the prevalence curve. Therefore, as noted in earlier studies [23,53–55], it is reasonable to 176

think that this plot could contain information about the epidemiological parameters. We summarized this 177

plot with two sets of summary statistics, one that captures particular measures of the LTT plot (Tab. 3) and 178

another that simply uses the coordinates of its points as ‘summary’ statistics. For this latter set of summary 179

statistics, because the LTT plot contains as many points as there are nodes in the phylogeny (a phylogeny of n 180

leaves has 2n− 1 nodes so its LTT plot has 2n− 1 points) and because we here consider phylogenies with more 181

than 100 leaves, we averaged the points into 20 equally-sized bins, thus generating 40 summary statistics (20 182

x-axis coordinates and 20 y-axis coordinates). 183

To sum up, we used two main sets of summary statistics: 184

• the sumstats set, with 43 summary statistics related to the tree and its LTT plot 185

– the topo set: 8 topology summary statistics, 186

– the bl set: 26 branch-length summary statistics, 187

– the ltt set: 9 summary statistics related to the LTT plot, 188

• the coords set, with 40 mean coordinates of the LTT plot. 189

Simulation study 190

We wanted to assess the potential of ABC methods to infer epidemiological parameters from phylogenies. 191

To this end, we compared ABC methods and Bayesian methods involving the derivation of the likelihood 192

function of the phylogeny (hereafter referred to as ‘Bayesian methods’) on ‘target’ trees that had been simulated 193
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under a variety of scenarios. In particular, we used the BD and the SIR epidemiological models to perform 194

exhaustive comparisons. We expected our method to perform less well than Bayesian methods since ABC, by 195

definition, only approximates the likelihood using simulations. However, practically, the implementation of 196

likelihood-based approach often requires simplifying assumptions to allow for efficient computation, which 197

makes the results of the comparison non trivial to predict. 198

Target trees. We considered 32 scenarios, which correspond to all the combinations between: 199

• 2 epidemiological models (BD and SIR), 200

• 2 R0 values (R0 = 2, for a slow Influenza-like spread, and R0 = 10, for a rapid Measles-like spread), 201

• 2 durations of infection (dI = 5 and dI = 30), 202

• 2 sampling proportions (p = 0.05 and p = 0.5), 203

• 2 tree sizes (100 leaves and 1,000 leaves), 204

SIR target trees were all simulated in a population with N = 25, 000 individuals. 205

To carry out a statistical performance analysis we simulated 100 phylogenies (replicates) for each scenario. 206

Simulated ‘training’ trees for ABC. For each of the 32 sets of simulated target trees, we simulated a set 207

of 10, 000 trees to train the ABC. We assumed the values of all the epidemiological parameters to be distributed 208

in uniform priors (see Tab. 4). 209

Correlation analysis. After simulating trees and computing the 83 summary statistics on each tree, we 210

looked for where the epidemiological information was in the trees. We used Spearman’s correlation between 211

each of the summary statistics and epidemiological parameters. 212

Table 4. Prior table.
Parameter Target value Prior range

R0 2 U(1 ; 5)
10 U(5 ; 20)

dI 5 U(1 ; 15)
30 U(7 ; 60)

N 25, 000 U(104 ; 5 · 104)
p 0.05 U(0.01 ; 0.1)

0.5 U(0.4 ; 0.6)
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ABC. We used the abc function from the abc R package [39,56] to infer posterior distributions from rejection 213

alone, and rejection followed by adjustment using feed-forward neural network (FFNN). This function performs 214

the rejection algorithm of Beaumont et al. [35] using a tolerance parameter Pδ, which represents a percentile of 215

the simulations that are close to the target. The proximity of the simulations to the target is evaluated in the 216

function via the euclidean distance between each normalized simulated vector of summary statistics, and the 217

normalized target vector. The acceptance region is therefore spherical. 218

Prior to adjustment, the abc function performs a smooth weighting using an Epanechnikov kernel as for the 219

loc-linear adjustment proposed by Beaumont et al. [35]. We then performed an FFNN adjustment using the 220

option available in the abc function [56]. This adjustment involves the construction of a non-linear conditional 221

heteroscedastic regression model, using the nnet function (nnet R package), which involves a FFNN with a 222

single-hidden-layer [39]. The nnet function includes a regularization of the fitting criterion through a penalty 223

on the ‘roughness’. This penalty, called weight decay, corresponds to the sum of the squares of the weights put 224

on the links of the neural network. This penalty contributes to avoid over-fitting [57]. Bishop [58] also states 225

that choosing a number of hidden units lower than the number of variables leads to dimensionality reduction 226

and smoother regression. We used the default parametrization of the abc function, which does not provide a 227

perfect control over the regularization, and uses 5 FFNN hidden units. 228

In addition to simple rejections (ABC) and to rejections with non-linear adjustment using FFNN (ABC- 229

FFNN), we also used a linear adjustment with variable selection using Least Absolute Shrinkage and Selection 230

Operator (LASSO) regression [59]. Using such a regression model that performs a well-controlled dimensionality 231

reduction was motivated by the high number of summary statistics. 232

We implemented the LASSO adjustment (ABC-LASSO) using the glmnet R package [60]. As in the 233

ABC-FFNN method, we weighted the simulations retained by rejection using an Epanechnikov kernel and 234

we corrected for heteroscedasticity. The variable selection in LASSO is based on the selection of the first 235

components of a principal component analysis [59]. The number of components selected was adjusted using 236

cross-validation with the cv.glmnet function. A multi-response gaussian LASSO model was then computed 237

using the glmnet function. The information about the variable selection was kept to see whether some specific 238

summary statistics are more often selected than others. 239

For completeness, we also performed a rejection that uses a functional distance (ABC-D): the distance 240

between two LTT plots. This use of the distance between two non-normalized LTT plots was inspired by the 241

function nLTTstat (nLTT R package), which computes the difference between two normalized LTT plots [61]. 242

However, we did not normalize the LTT plots, to account for the potential temporal shift between two LTT 243

plots. 244
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We ran all ABC methods (ABC, ABC-D, ABC-FFNN and ABC-LASSO) to estimate the parameters of all 245

target trees, using the sumstats and coords sets of summary statistics together or separately. We also used 246

different tolerance proportions Pδ = {0.01; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5} to determine the optimal value for each 247

method. 248

Likelihood-based Bayesian inference. We inferred the posterior distributions of the epidemiological 249

parameters of the target trees using the likelihood-based Bayesian approaches implemented in BEAST2 [44]. 250

These methods are often used to infer the phylogeny and the epidemiological parameters from dated DNA 251

sequences simultaneously, but they also allow the user to assume that the phylogeny is known. In order to 252

obtain comparable results, we ran BEAST2 with the same simulated dated phylogenies we used for ABC 253

(see [40] for a similar methodology). We also used the same priors in BEAST2 and in our simulations to 254

train ABC methods. The BEAST2 Markov chains were run for 106 steps for all BD scenarios excepted the 255

four scenarios with large trees and low sampling (1, 000 leaves and p = 0.05), which required 5 · 106 steps for 256

convergence. For SIR scenarios, we ran chains of 107 steps with 100-leaves trees and chains of 5 · 107 steps with 257

1, 000-leaves trees. For all BEAST2 posterior distributions (BEAST2-BD and BEAST2-BDSIR), we discarded 258

the first 10% of the estimates as a burn-in, and controlled for convergence using the Effective Sample Size 259

measure (ESS) for the epidemiological parameters. We checked that ESS was greater than 200 for R0 and dI , 260

and greater than 100 for N estimated on small trees (see Supplementary Table S1). 261

Performance analysis. We measured the median (θ̂i) and the 95% Highest Posterior Density (HPD95%) 262

boundaries of each parameter posterior distribution (Di). For each ABC run and each simulated scenario (100 263

target trees), we computed the mean relative error (MRE) as 264

MRE = 1
100

∑100
i=1

1
θ |θ̂i − θ|, 265

the mean relative bias (MRB) as 266

MRB = 1
100

∑100
i=1

1
θ (θ̂i − θ), 267

the mean relative 95% HPD width as 268

width95% = 1
100

∑100
i=1

1
θ (quantile97.5%(Di)− quantile2.5%(Di)) 269

and the 95% HPD accuracy as 270

accuracy95% = 1
100

∑100
i=1 1{quantile2.5%(Di)≤θ≤quantile97.5%(Di)}. 271
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We first tested the influence of the tolerance parameter on the mean relative error (MRE) of the four ABC 272

algorithms (ABC, ABC-D, ABC-FFNN and ABC-LASSO). Then, we compared the performance of all these 273

methods to that of likelihood-based methods implemented in BEAST2, assuming the same models and priors. 274

Lastly, we tested the influence of the epidemiological parameter values used in each scenario on the estimation 275

error (MRE). 276

Data analysis : Early stages of the 2014-2015 Ebola epidemic in Sierra Leone 277

We used the RaxML phylogeny inferred by Gire et al. [8], which was computed on 81 Ebola full-genome 278

sequences: 3 from Guinea patients and 78 from Sierra-Leone patients. The phylodynamics of the Sierra-Leone 279

side of the epidemics has already been investigated by Stadler et al. [9]. To compare our estimates with 280

theirs, we followed their protocol by pruning 6 leaves of the phylogeny corresponding to a sub-epidemics in 281

Sierra-Leone. The remaining 72 sequences were sampled from late May to mid June 2014. Using the known 282

sampling dates, we dated the phylogeny using the Least-Squares Dating (LSD) software, which uses fast 283

algorithms and reaches an accuracy comparable to more sophisticated methods [62]. 284

Stadler et al. inferred epidemiological parameters from this dataset either using BEAST2 with dated 285

sequences (BEAST2-BDEI). 286

For this data analysis, we assumed a BDEI model and therefore estimated R0, dI and the mean duration of 287

latency dE , as in Stadler et al. [9]. As for previous models, the sampling proportion could not be estimated 288

together with the other parameters due to identifiability problems [45]. 289

The Ebola epidemic in Sierra Leone is thought to have started 6 months before it was officially identified 290

and the first sample was collected [8,9]. We therefore needed to consider an additional simulation parameter, 291

origin, which is the time before sampling started. Over this time period, the sampling rate was assumed to be 292

ε = 0. 293

We simulated a set of 10, 000 ‘training’ trees assuming a BDEI model. For comparison purpose, we first 294

used priors identical to those used in Stadler et al. for their BEAST2-BDEI inferences (see column p ≈ 0.7 295

of Tab. 5). We then used a different interval for the prior on the sampling proportion (p ≈ 0.4), because 296

another study suggested that the sampling proportion lies between 0.2 and 0.7 [10]. Moreover, to only simulate 297

biologically realistic epidemiological scenarios [63], we discarded all simulations where the total number of 298

cases went above 50, 000 individuals. 299

As in the simulation study, we computed Spearman’s correlation coefficients between each parameter of the 300

set of simulated trees and each summary statistics. 301
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Rejection is a determinant step in ABC with adjustment because it selects the simulated data that will 302

be used for learning. Even if the chosen regression model is robust, it can collapse if the rejection step fails 303

at retaining a relevant training set. The goodness-of-fit test implemented in the gfit function of the abc R 304

package [56,64] is an important preliminary test to be made in data analysis because it indicates whether the 305

summary statistics are informative about the target parameters. This test uses rejection based on the euclidean 306

distance on normalized entries, as defined by Beaumont et al. [35]. 307

Since the dating of the Ebola phylogeny seemed poorly estimated (see Supplementary Figure S1), we 308

performed an upstream test of summary statistics goodness-of-fit of the ‘training’ set against the phylogeny. 309

We inferred the posterior distributions of dE , dI and R0 for the Ebola phylogeny using our ABC-LASSO 310

regression model with Pδ = 0.5. We then compared our own estimates for the epidemiological parameters of 311

the early spread of Ebola epidemic in Sierra Leone with those obtained using the likelihood-based methods of 312

Stadler et al [9]. Finally, we analysed which variables were selected by the LASSO. 313

Results 314

Locating the epidemiological information in the phylogeny 315

Figure 3 shows that the 9 summary statistics computed on the Lineage-Through-Time (LTT) plot (ltt set) 316

are the most correlated to the epidemiological parameters of the SIR model. The summary statistics describing 317

the branch lengths (bl set) are less correlated and the topological summary statistics (topo set) are, in 318

general, poorly correlated to the parameters. However, the topo set becomes more informative when the 319

tree size increases, most likely because topological patterns become more distinguishable. There is little 320

difference in the summary statistics histograms for trees of 100 leaves and trees of 1,000 leaves, the latter being 321

more heavy tailed. bl set summary statistics are positively correlated to the duration of infection (dI) and 322

negatively correlated to the R0 (see Supplementary Tables S2-S5). None of the topological summary statistics 323

are correlated to dI , even though they are correlated with R0. The coordinates of the LTT plot that are the 324

Table 5. Prior table for Ebola data.
Assumption

p ≈ 0.7 [9] p ≈ 0.4
origin U(0, 92)
R0 LN (0, 1.25)
dE Γ(0.5, 6)−1 ∈ [1; 26]
dI Γ(0.5, 6)−1 ∈ [1; 26]
p B(70, 30) B(25, 35)
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Figure 3. Heat map and histogram of Spearman’s correlations between the epidemiological
parameters of the SIR model and all sets of summary statistics for trees of 100 (A and C) or
1,000 (B and D) leaves. In panels A and B, the colors correspond to the bl (light green), topo (dark green)
and ltt (magenta) sets. Panels C and D show the coords set related to the LTT plot with x-axis (dark gray)
and y-axis (light gray) coordinates. Bar heights in the histograms represent the mean absolute correlation of
each summary statistics to the whole set of parameters. Summary statistics and coordinates are ranked from
the most to the least correlated. Correlation values between each summary statistics (or coordinate) and each
epidemiological parameter are displayed in the heat map, where squares are colored according to a gradient
from red (highly positively correlated) to white (no correlation) and blue (highly negatively correlated).

most correlated to the epidemiological parameters are those of the x-axis, which are positively correlated to dI 325

and negatively to R0. Y-axis coordinates of the LTT plot strongly positively correlate with the R0 and weakly 326

with the effective population size N . 327

Overall, R0 is the epidemiological parameter that is the most correlated to all the summary statistics, which 328

suggests that ABC approaches should be able to infer this parameter. On the opposite, Figure 3 bears doubts 329

on the ability of ABC approaches to infer the effective population size from phylogenies, because this parameter 330

is poorly correlated to all summary statistics. 331

Results for the BD model are very similar to that of the SIR model, except that the mean absolute 332

correlation per summary statistics is increased by 0.2 because of the absence of the N parameter in this model 333

(see Supplementary Figure S2 and Supplementary Tables S6-S9). 334

Estimating the appropriate tolerance value 335

In this sub-section, we study the influence of the tolerance parameter used in the rejection step, on the inference 336

error of our four ABC methods: standard rejection (ABC), rejection using the function distance between two 337

LTT plots (ABC-D), rejection and adjustment using regularized neural networks (ABC-FFNN), and rejection 338

and adjustment using LASSO (ABC-LASSO). 339

We expected the errors of inference of ABC and ABC-D to increase with the tolerance. Indeed, higher 340

tolerance values should cause the rejection step to retain trees that are more and more dissimilar to the target 341

tree, that is, which have been generated by parameter values which are more and more away from the target 342

values. This is what we observe in Figure 4 for R0 and N when we consider large trees. For the other parameters 343

and for small trees, the errors are similar to the error using the prior (the horizontal gray line), suggesting that 344

there is not enough signal in the summary statistics to infer dI by ABC and ABC-D. 345

Regarding the ABC-FFNN method, when the tolerance value increases, we expected the error to decrease 346

at first (because the adjustment method used here requires a certain amount of training data) and finally to 347

reach a plateau (when we have enough data and regularization can control for overfitting effects). This is the 348
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Figure 4. Influence of the tolerance parameter on the error for four ABC approaches used on
all summary statistics. The x-axis shows the tolerance value. Squares represent the mean relative errors for
each tolerance value with their standard errors. We show errors generated by ABC-D in turquoise, by ABC in
blue, by ABC-FFNN in orange and by ABC-LASSO in red. The gray horizontal lines correspond to the mean
relative error of the prior (i.e. expected error in rejection with a tolerance of 1). Results are displayed for both
BD and SIR model and both trees of 100 leaves and 1, 000 leaves.

case for the inference of R0 and N on small trees and for dI . The error sometimes increases at the end for 349

high tolerance values, which could be due to a poorly controlled regularization or to the limited size of the 350

neural-network in the abc R function. 351

Concerning the ABC-LASSO method, we expected an increase in the tolerance value to decrease inference 352

error at first for the same reason as for the FFNN. Then, we expected the error to reach a plateau and finally 353

to increase because increasing the size of the training data increases the probability of non-linearity, which is 354

problematic for the LASSO (linear) regression model. This is what we observe in Fig. 4. Furthermore, we see 355

that the relative errors with this method are generally below the threshold represented by the error induced by 356

the prior. 357

We also analysed the influence of the tolerance parameter on the 95% Highest Posterior Density (HPD) 358

width (width95%). As expected, the posterior distributions obtained using ABC methods with adjustments are 359

more adjusted than those obtained using the ABC-D or the standard ABC method (see Supplementary Figure 360

S3). The width95% of the posteriors obtained using ABC, ABC-D or ABC-FFNN increases with the tolerance. 361

However, the width95% of the ABC-LASSO posteriors seems to be insensitive to the tolerance parameter. 362

Results for the sumstats and coords sets of summary statistics separately are available in Supplementary 363

Figures S4 and S5. 364

Overall, 0.01 is the best tolerance value for rejections without adjustment and 0.5 is the best value with 365

adjustment. Since this result was observed for both the BD and the SIR model, we adopted these values as 366

default for the rest of the study. 367

Performance analysis 368

Figure 5 shows that for the SIR model, ABC methods often outperform the likelihood-based approach 369

(BEAST2-BDSIR, in black). The inference error (MRE) of the ABC-LASSO (in red) using all the summary 370

statistics, is always below that of the BEAST2-BDSIR with large trees, excepted for R0 estimation. This can 371

be explained by the fact that the BEAST2-BDSIR assumes an approximation of the true SIR model that speed 372

up MCMC computations. Moreover, in the BDSIR model, the approximation of the number of susceptible 373

individuals through time, S(t), potentially makes the effective population size N hard to estimate [28]. Here, 374
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Figure 5. Inference errors on epidemiological parameters of the SIR model using ABC ap-
proaches with different sets of summary statistics. The x-axis shows the sets of summary statistics
used. Squares represent mean errors with their standard errors. Empty squares correspond to results obtained
on trees of 100 leaves and filled squares to results on trees of 1,000 leaves. We show errors generated by ABC-D
in turquoise, by ABC in blue, by ABC-FFNN in orange, by ABC-LASSO in red and by BEAST2-BDSIR in
black. We show the average errors (bottom row) and the error for each parameter of interest.

we see that the likelihood-based method largely fails to infer the population size N from a uniform prior. 375

The standard ABC method (in blue) already provides good estimations of the R0. This is consistent the 376

Spearman’s correlations (Fig. 3): the R0 is the parameter the most correlated to the summary statistics, 377

especially to the coordinates of the LTT plot (coords set). 378

The standard ABC method (in blue) using the euclidean distance between LTT plot coordinates (coords 379

set), is more accurate than the ABC-D method using the functional distance between two LTT plots (in 380

turquoise). This can be explained by the fact that, in the functional distance, we only consider the differences 381

on the y-axis of the LTT plots, while in the standard ABC using the coords set we also consider the differences 382

on the x-axis, which represents the time variable. 383

The accuracy of epidemiological parameter inference by ABC-LASSO (in red) is better for all parameters 384

with dated large phylogenies. This is not always the case for the BEAST2-BDSIR method. 385

The performances of all ABC methods are comparable when we consider small trees. For large trees, 386

ABC-FFNN is the sole method to provide highly variable results, which suggests that the regularization is 387

poorly controlled in the algorithm we used. 388

ABC-LASSO always gives better estimations than the standard ABC on large trees. It also gives reliable 389

results whatever the set of summary statistics used. This suggests that our LASSO implementation is robust 390

to the high number of explanatory variables. 391

We analysed which variables were selected in the LASSO regression models but we did not identify any 392

strong selection pattern. This might be explained by the fact that many variables are highly correlated (results 393

not shown). Since the importance of summary statistics from one set to another changes as a function of the 394

epidemiological scenario considered and since our ABC-LASSO is robust to large numbers of variables, we 395

recommend to infer epidemiological parameters using ABC-LASSO with all summary statistics. 396

Results concerning the BD model are presented in Supplementary Figure S6 and are globally similar to 397

what is observed for the SIR model, except that none of the ABC methods outperform BEAST2-BD. This 398

is consistent with the fact that BEAST2-BD is based on the exact likelihood function of the BD model. 399

Nevertheless, the accuracy of ABC-LASSO on large trees is very close to that of BEAST2-BD. 400

Inference error is a first way to assess the quality of a fit, but looking at the detailed posterior distribution 401
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Figure 6. Prior and posterior distributions for parameter estimations by ABC-FFNN, ABC-
LASSO and BEAST2-BDSIR. Gray violins correspond to the prior distributions, orange violins to the
posterior distributions obtained by ABC-FFNN, red violins by ABC-LASSO and the black violins by BEAST2-
BDSIR. All summary statistics were used for both ABC approaches. We displayed the results for one particular
epidemiological scenario (R0 = 10, dI = 30 and p = 0.5) and two different tree sizes: 100 leaves in A and 1,000
leaves in B. There are 100 replicates per panel. The dots represent the median of the merging of the posterior
distributions for all replicates. The horizontal black line represents the true value for each epidemiological
parameter.

is more informative. To illustrate this, Figure 6 gives the example of a particular SIR scenario (dense sampling, 402

high R0 and high dI). For small dated phylogenies (Fig. 6A), we see that posterior distributions of R0 and 403

di obtained from both ABC-FFNN and ABC-LASSO approaches and using all summary statistics are large 404

and similar to the prior distribution. We observe the same pattern for BEAST2-BDSIR, despite the fact that 405

the median of all replicates approximate the target value well. This suggests that there is not enough signal 406

in small trees for reliable estimation. For large dated phylogenies (Fig. 6B), the majority of the replicates of 407

ABC-LASSO converge towards a posterior distribution, which is adjusted and approximatively centered on 408

the target value. This is also true for the BD model (see Supplementary Figure S7). We find similar posterior 409

distributions for the likelihood-based approach except for the N parameter, where the posterior clearly reveals 410

a lack of convergence. 411

The major advantage of ABC approaches compared to BEAST2 models is that the computation time does 412

not necessary increase with model complexity. In fact, the computation time in our ABC mainly depends on 413

the simulations. For instance, in our simulation study, the ABC-LASSO method ran faster when considering 414

small trees assuming a high sampling proportion (approximately 10 minutes for the BD model and 15 minutes 415

for the SIR model) than when considering large trees assuming a low sampling proportion (approximately 4 416

hours for the BD model and 2 hours for the SIR model). This time can be considerably reduce if the simulations 417

are ran in parallel. In comparison, BEAST2-BD ran much faster (approximately 1 minute for small trees 418

and, for large trees, 8 minutes assuming high sampling proportion and 38 minutes assuming low sampling 419

proportion). Conversely, BEAST2-BDSIR ran much more slowly (at least 6 hours for small trees and 10 hours 420

for large trees), thus illustrating the limits of the likelihood-based methods for the more complex models. Note 421

that all methods (ABC and BEAST2) estimated the epidemiological parameters assuming a fixed phylogeny. 422

Influence of the scenario on inference accuracy 423

We then tested whether factors such as tree size, epidemiological model and parameter values of the target 424

data, affect the accuracy of the epidemiological parameter inference. 425

Fig. 7 shows that, as expected, ABC-LASSO infers epidemiological parameters of the SIR model more 426
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Figure 7. Ranking SIR scenarios based on the error of inference. On the x-axis, scenarios are
ordered ranging from the easiest to infer epidemiological parameters using ABC-LASSO, to the worst. Squares
represent the mean errors with their standard errors. Empty squares correspond to results obtained on trees of
100 leaves and filled squares to results on trees of 1,000 leaves. The errors generated by ABC-LASSO are in red
and that generated by BEAST2-BDSIR are in black.

Figure 8. Heat map and histograms of Spearman’s correlations between epidemiological pa-
rameters of the BDEI model and all sets of summary statistics for trees of 72 leaves simulated
assuming p ≈ 0.4. In panel A, the colors correspond to the bl (light green), topo (dark green) and ltt

(magenta) sets. Panel B show the coords set related to the LTT plot with x-axis (dark gray) and y-axis (light
gray) coordinates. On x-axis, summary statistics or coordinates are ranked from the most to the least correlated
to all epidemiological parameters. Bar heights in the histograms represent the mean absolute correlation of
each summary statistics to the whole set of parameters. Summary statistics and coordinates are ranked from
the most to the least correlated. Correlation values between each summary statistics (or coordinate) and each
epidemiological parameter are displayed in the heat map, where squares are colored according to a gradient
from red (highly positively correlated) to white (no correlation) and blue (highly negatively correlated).

easily from large phylogenies (1,000 leaves) than from small phylogenies (100 leaves). Surprisingly, the method 427

also performs better for long durations of infection. We expected the sampling proportion (p) to have an 428

effect because we thought that a more dense sampling would provide more precise knowledge of the underlying 429

dynamics of the epidemic. This effect was not observed, possibly because of the tight prior on p. 430

As mentioned before, the likelihood-based approach does not necessarily provides better estimations with 431

large trees, excepted for the R0. In fact, the worst scenarios for the likelihood-based method consist in large 432

trees simulated assuming R0 = 2 and p = 0.05. 433

Results concerning the BD model are available in Supplementary Figure S8. 434

Ebola phylodynamics 435

Fig. 8 shows the correlation results for trees of 72 leaves from the recent Ebola outbreak in Sierra Leone 436

assuming a BDEI model and p ≈ 0.4 (see Supplementary Figure S9 for p ≈ 0.7). As previously observed for the 437

SIR model, we see that the summary statistics computed on the Lineage-Through-Time (LTT) plot (ltt set) 438

and those computed on the branch lengths (bl set) are the most correlated to the epidemiological parameters 439

of the BDEI model. Conversely, the topological indexes (topo set) contain very few information about the 440

parameters. The bl set summary statistics are positively correlated to both the duration of infectiousness dI 441

and the duration of latency dE , excepted the ie BL median [1] statistics, which is negatively correlated to dE 442

while positively correlated to dI (see Supplementary Tables S10 and S11). The coordinates of the LTT plot 443

(coords set) are poorly correlated to dE (see also Supplementary Tables S12 and S13). 444

In this context of data analysis, it is important to assess the fitness of the summary statistics to infer 445

the epidemiological parameters from the ‘target’ phylogeny. We did this for the sumstats and coords sets 446
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Figure 9. Prior and posterior distributions of parameter estimations from the Ebola phylogeny.
We show the results for three different inference methods: ABC-LASSO (in red) and BEAST2-BDEI from
Stadler et al. (in black). Gray violins correspond to the prior distributions and red violins to ABC-LASSO
posterior distributions. The dots represent the median and the vertical lines the 95% highest posterior density
of each distribution.

together and separately. The goodness-of-fit test revealed that the coords set of summary statistics is not fit 447

to infer the epidemiological parameters of the Ebola phylogeny (p-value of the goodness-of-fit test lower than 448

0.05). Therefore we inferred parameters from the Ebola phylogeny using only the sumstats set of summary 449

statistics. 450

Fig. 9 shows that the median of the posterior distribution of R0 inferred by Stadler et al. using BEAST2- 451

BDEI, is close to the median of their prior distribution (in gray). The duration of latency seems very difficult 452

to infer using the BEAST2 approach, because the dE HPD 95% is almost as large as that of the prior. 453

Our parameter estimates slightly differ from Stadler et al.’s but they are biologically relevant according to 454

results obtained using different epidemiological methods. We find a longer incubation period (11.7 [HPD95%: 455

6.77− 17.74]) and a longer duration of infectiousness (4.5 [HPD95%: 1.41− 10.79]) than Stadler et al’s (4.92 456

[HPD95%: 2.11 − 23.20] and 2.58 [HPD95%: 1.24 − 6.98] respectively). Both of these are more in line with 457

the estimations from the WHO Ebola Response Team [65], which found that the fitted incubation period 458

was 9.9± 5.6 days and the mean duration of infectiousness in the community was about 4.6± 5.1 days. We 459

also infer a greater value for the R0 than Stadler et al (5.92 [HPD95%: 2.97− 11.12] instead of 2.18 [HPD95%: 460

1.24− 3.55]), which is probably driven by the longer duration of latency. Indeed, even if the duration of latency 461

does not appear in the deterministic formulation of the R0 for the BDEI model, in the stochastic setting it may 462

have an effect. Put differently, in our simulations, we have more infected individuals but a high proportion of 463

these individuals are still latent and do not propagate the disease. 464

Discussion 465

Extracting epidemiological information from pathogen phylogenies largely remains an open challenge, especially 466

for large phylogenies and complex models [13]. Here, we show that an Approximate Bayesian Computation 467

(ABC) approach based on a large number of summary statistics to describe the phylogeny offers a promising 468

alternative to existing methods. 469

There are two ways of performing ABC: either by using statistics to first summarize the data and then a 470

simple distance function to compare the summary statistics values, or by using a more sophisticated distance 471

function (sometimes called ‘functional distance’) to directly compare two datasets (observed and simulated). 472
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Summary statistics are sometimes viewed as ABC’s Achilles’ heel because the action of summarising suggests 473

a loss of information. Furthermore, complex objects such as phylogenies can contain information that is not 474

related to epidemiological parameters, which may dilute the inference signal. For instance, our results show 475

that the topological shape of the phylogeny does not contain much information about the epidemiological 476

parameters of both the BD and the SIR models, compared to the LTT plot and the branch lengths. This 477

suggests that selecting only the ‘relevant’ part of the information in the phylogeny using summary statistics, 478

could help improve the estimates of the epidemiological parameters. The problem is that selecting a few good 479

statistics is notoriously difficult [41,66–68]. Here, we show that recent machine learning techniques can be used 480

to perform variable selection on a large number of summary statistics, thus concentrating the inference signal. 481

Removing the delicate step of choosing a subset of summary statistics opens wide perspectives for ABC. 482

In our ABC approach, we compute Euclidean distances between vectors of 83 unweighted summary statistics, 483

some of which are highly correlated. We did consider weighting these summary statistics before calculating 484

distances. The problem is that coming up with such a weight is not trivial given that the importance of 485

each summary statistic for the inference can be affected by the epidemiological model or scenario considered. 486

This is illustrated by the LASSO regression. This method efficiently performs variable selection in our ABC 487

approach but when analysing the regression models, we were unable to identify sets of summary statistics 488

that were always selected or always discarded. Adaptive methods of distance weighting exist but they are 489

time consuming and tend to be replaced by sophisticated machine learning techniques. Finally, improving the 490

rejection step might not be necessary since we use machine learning techniques to subsequently adjust the 491

posterior distribution. 492

We compared two regression methods and concluded that regression using LASSO should be preferred to 493

FFNN when using numerous summary statistics that are potentially correlated. This conclusion was largely 494

driven by the fact that ABC-LASSO was more robust to summary statistics choice than ABC-FFNN. However, 495

this is highly dependent on the R packages used (glmnet and nnet) and we expect that a re-implementation of 496

a FFNN model with regularization tuning could give results at least comparable to that of the ABC-LASSO. 497

Another possibility for the regression step could be to use random forest algorithms, which are powerful 498

tools for clustering and non-linear regression [69]. The supervised classification algorithm has already been 499

used in an ABC context [70], and the regression algorithm could be used as a non-linear model for posterior 500

adjustment. There could be two advantages in using the random forests regression algorithm instead of FFNN: 501

first, as with LASSO, variable selection can readily be quickly optimized with random forests and, second, it 502

provides information about the retained variables and the resulting regression model, while FFNN is a ‘black 503

box’. 504
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Using robust machine learning techniques that perform non-linear regressions, questions the usefulness of 505

the initial rejection step. Indeed, why discard data if we can perform a non-linear regression using variable 506

selection? In fact, with those machine learning techniques, the larger the learning set size, the more accurate 507

the regression model. This is consistent with our result that ABC-FFNN results are more accurate when the 508

tolerance threshold is high (i.e. when rejection is minimal). Overall, new non-linear regression techniques may 509

challenge the canonical rejection step of the ABC, but this is beyond the scope of this study. 510

We compared our approach to methods implemented in the framework package BEAST2 because they are 511

based on the expression of the likelihood function, meaning that they are robust methods, and also because they 512

are popular and accessible. Several other interesting methods exist, either based on explicit likelihood functions 513

(e.g. coalescent approaches [20]) or ABC approaches (e.g. using a functional distance [42]). Comparing all 514

these methods would of course be valuable but is challenging because not all of them have been released as 515

stand alone packages. 516

Interestingly, we show that comparing posterior distributions is valuable because statistics such as the 517

relative error are not sufficient to evaluate the performance of an inference method and may lead to error-prone 518

conclusions. For instance, if the prior distribution is approximately centered on the targeted value, without any 519

selection on parameter values the posterior will not deviate from it. In fact, for the SIR model, the relative 520

error suggested that ABC-FFNN outperformed ABC-LASSO if only some of the summary statistics were used 521

(see Fig. 5). However, when we examined the posterior distributions, we found that ABC-LASSO posterior 522

distributions had deviated further from the prior distribution than ABC-FFNN distributions (results not 523

shown). More generally, the shape of the posterior distribution is extremely informative about the goodness of 524

the fit. 525

One of the major challenges in phylodynamics has been to extend simple epidemiological models to more 526

complex and realistic systems. However, many methodologies seem to rapidly reach their limits due to a 527

trade-off between model complexity and computation time. This trade-off becomes even more acute as the 528

phylogeny size increases. In this study, we show that ABC approaches are less limited by model complexity 529

and phylogeny size. Moreover, more complex models could be easily tested using ABC-LASSO, since the major 530

requirement of our approach is to be able to rapidly simulate data assuming such models. Indeed, we chose 531

summary statistics that are computable in linear-time complexity, so that their computation take little time 532

compared to simulation. 533

We show that topological statistics contain little information about the epidemiological parameters of BD 534

and SIR models. However recent studies reveal that these statistics may become useful for parameter inference 535

when considering more complex models such as models including spatial structure [41] or risk structure [42, 71]. 536
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It would therefore be interesting to re-analyse these models with our new approach. 537

With the constant decreasing cost of sequencing technologies, epidemiological studies of viruses provide 538

larger phylogenies and we need fast and effective methods to analyse them. Current methods all tend to reach 539

their limits for simple non-trivial models (e.g. the SIR model) when the size of the phylogeny increases. ABC 540

approaches involving many summary statistics and a regression step offer a promising and flexible alternative. 541

Not only do they allow to optimize the choice of summary statistics, but also their computing time seems to be 542

less limited by phylogeny size and model complexity than existing likelihood-based methods. 543

Finally, we have focused here on phylogenies of infections but this method could be extended to infer 544

parameters from phylogenies generated using ecological or evolutionary models [72,73]. 545
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Figures

Figure 1

The epidemiological models. (A) The Birth-Death (BD) model. (B) The Susceptible Infected Removed

(SIR) model. (C) The Birth-Death model including an Exposed class (BDEI). The four compartments

correspond to susceptible (S), exposed (E), infectious (I) and removed (R) individuals. In BD and BDEI

models, new infections arise at a constant (‘birth’) rate β per infectious individual. In the SIR model, the

number of new infections depends on the number of susceptible individuals, the transmission rate β and the

number of infectious individuals. In this latter model, the total host population size is assumed to be constant

(N). In all models, infections end (i.e. ‘die’) at a rate γ + ε.
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Figure 2

Simulated phylogenies of 100 leaves assuming a BD model and their corresponding LTT plot.

The red phylogeny was simulated assuming θ = (R0 = 10, dI = 5, p = 0.5) and the blue phylogeny was

simulated assuming θ = (R0 = 2, dI = 5, p = 0.5). Different R0s lead to different LTT plots and different tree

shapes.
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Figure 3

Heat map and histogram of Spearman’s correlations between the epidemiological parameters

of the SIR model and all sets of summary statistics for trees of 100 (A and C) or 1,000 (B and

D) leaves. In panels A and B, the colors correspond to the bl (light green), topo (dark green) and ltt

(magenta) sets. Panels C and D show the coords set related to the LTT plot with x-axis (dark gray) and

y-axis (light gray) coordinates. Bar heights in the histograms represent the mean absolute correlation of each

summary statistics to the whole set of parameters. Summary statistics and coordinates are ranked from the

most to the least correlated. Correlation values between each summary statistics (or coordinate) and each

epidemiological parameter are displayed in the heat map, where squares are colored according to a gradient

from red (highly positively correlated) to white (no correlation) and blue (highly negatively correlated).

0

0.2

0.4

R0

dI

N

A

0

0.2

0.4

R0

dI

N

B

0

0.2

0.4

R0

dI

N

C

0

0.2

0.4

R0

dI

N

D

32/38

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2016. ; https://doi.org/10.1101/050211doi: bioRxiv preprint 

https://doi.org/10.1101/050211


Figure 4

Influence of the tolerance parameter on the error for four ABC approaches used on all summary

statistics. The x-axis shows the tolerance value. Squares represent the mean errors for each tolerance value

with their standard errors. We show errors generated by ABC-D in turquoise, by ABC in blue, by ABC-FFNN

in orange and by ABC-LASSO in red. The gray horizontal lines correspond to the mean relative error of the

prior (i.e. expected error in rejection with a tolerance of 1). Results are displayed for both BD and SIR model

and both trees of 100 leaves and 1, 000 leaves.
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Figure 5

Inference errors on epidemiological parameters of the SIR model using ABC approaches with

different sets of summary statistics. The x-axis shows the sets of summary statistics used. Squares

represent mean errors with their standard errors. Empty squares correspond to results obtained on trees of 100

leaves and filled squares to results on trees of 1,000 leaves. We show errors generated by ABC-D in turquoise,

by ABC in blue, by ABC-FFNN in orange, by ABC-LASSO in red and by BEAST2-BDSIR in black. We show

the average errors (bottom row) and the error for each parameter of interest.
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Figure 6

Prior and posterior distributions for parameter estimations by ABC-FFNN, ABC-LASSO and

BEAST2-BDSIR. Gray violins correspond to the prior distributions, orange violins to the posterior dis-

tributions obtained by ABC-FFNN, red violins by ABC-LASSO and the black violins by BEAST2-BDSIR.

All summary statistics were used for both ABC approaches. We displayed the results for one particular

epidemiological scenario (R0 = 10, dI = 30 and p = 0.5) and two different tree sizes: 100 leaves in A and 1,000

leaves in B. There are 100 replicates per panel. The dots represent the median of the merging of the posterior

distributions for all replicates. The horizontal black line represents the true value for each epidemiological

parameter.
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Figure 7

Ranking SIR scenarios based on the error of inference. On the x-axis, scenarios are ordered ranging

from the easiest to infer epidemiological parameters using ABC-LASSO, to the worst. Squares represent the

mean errors with their standard errors. Empty squares correspond to results obtained on trees of 100 leaves

and filled squares to results on trees of 1,000 leaves. The errors generated by ABC-LASSO are in red and that

generated by BEAST2-BDSIR are in black.
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Figure 8

Heat map and histograms of Spearman’s correlations between epidemiological parameters of

the BDEI model and all sets of summary statistics for trees of 72 leaves simulated assuming

p ≈ 0.4. In panel A, the colors correspond to the bl (light green), topo (dark green) and ltt (magenta)

sets. Panel B show the coords set related to the LTT plot with x-axis (dark gray) and y-axis (light gray)

coordinates. On x-axis, summary statistics or coordinates are ranked from the most to the least correlated

to all epidemiological parameters. Bar heights in the histograms represent the mean absolute correlation of

each summary statistics to the whole set of parameters. Summary statistics and coordinates are ranked from

the most to the least correlated. Correlation values between each summary statistics (or coordinate) and each

epidemiological parameter are displayed in the heat map, where squares are colored according to a gradient

from red (highly positively correlated) to white (no correlation) and blue (highly negatively correlated).
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Figure 9

Prior and posterior distributions of parameter estimations from the Ebola phylogeny. We show

the results for three different inference methods: ABC-LASSO (in red) and BEAST2-BDEI from Stadler et

al. (in black). Gray violins correspond to the prior distributions and red violins to ABC-LASSO posterior

distributions. The dots represent the median and the vertical lines the 95% highest posterior density of each

distribution.
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