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The diffusion of regulatory proteins within the nu-
cleus plays a crucial role in the dynamics of tran-
scriptional regulation. The standard model assumes
a 3D plus 1D diffusion process: regulatory proteins
either move freely in solution or slide on DNA. This
model however does not considered the 3D struc-
ture of chromatin. Here we proposed a multi-scale
stochastic model that integrates, for the first time,
high-resolution information on chromatin structure
as well as DNA-protein interactions. The dynam-
ics of transcription factors was modeled as a slide
plus jump diffusion process on a chromatin network
based on pair-wise contact maps obtained from high-
resolution Hi-C experiments. Our model allowed us
to uncover the effects of chromatin structure on tran-
scription factor occupancy profiles and target search
times. Finally, we showed that binding sites clus-
tered on few topological associated domains leading
to a higher local concentration of transcription fac-
tors which could reflect an optimal strategy to effi-
ciently use limited transcriptional resources.

Introduction

Gene expression is regulated by transcription fac-
tors (TFs) that recognize specific regulatory DNA
sequences [1]. The search strategies that TFs use
to find these regulatory target sites are key to un-
derstand the dynamics of transcriptional regula-
tion. The standard model assumes a 3D plus 1D
diffusion process: TFs either move freely in so-
lution or slide on DNA [2, 3, 4]. However re-
cent single molecule experiments have suggested
that 3D structure of chromatin influences the dif-
fusion process [5]. Here we proposed a new multi-
scale stochastic model that integrates, for the first
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Figure 1: Model of TF diffusion integrating chromatin
structure information. (A) Inter-chromosome inter-
actions produced by in-situ Hi-C method [6]. In-
tensity corresponds to normalized number of reads.
(B) Sequence motifs representing DNA-protein affin-
ity for three TFs [7]. (C) Diagram of the TF diffusion
multi-scale model. Chromatin is represented as a net-
work where nodes are genomic regions (5kb) and edges
are pair-wise chromatin interactions derived from Hi-C
contact maps. TF can jump from one genomic region
to another if there is an edge that connects both regions
or slide on DNA taking into account specific DNA se-
quence interactions according to the TF motif.

time, high-resolution information on the 3D struc-
ture of chromatin as well as DNA-protein interac-
tions. This model allowed us to provide genome-
wide testable predictions for TF occupancy and
target search time of any locus in the genome.

TF diffusion dynamics as a random walk on a
chromatin network

To model the dynamics of a TF within a chromatin
structure we proposed a jump and slide diffusion
model. We assumed that the diffusive protein can
slide on the DNA of a given genomic region or

1

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 25, 2016. ; https://doi.org/10.1101/050146doi: bioRxiv preprint 

https://doi.org/10.1101/050146
http://creativecommons.org/licenses/by-nc/4.0/


alternatively jump into a new region if both are
close in space. Hi-C method [8, 9, 6] provides pre-
cisely the information of which genomic regions
are likely to be physically in contact. Based on re-
cently published high-resolution contact maps of
the mouse genome [6], we built a network where
nodes represent genomic regions of 5kb and edges
are pair-wise chromatin interactions. The diffu-
sion process is then described as a random walk
on the resulting chromatin network where the dif-
fusive protein stays in each region a characteristic
residence time τi before jumping into a new one.
We assumed that the residence times τi are the
result of a sliding process at the base-pair reso-
lution within the 5kb regions where specific and
non-specific DNA-interactions were model based
on available position wight matrices (PWMs) [7]
(see supporting material).
Note that the key parameters of our diffusion

model are therefore the topology of the network,
which describes the chromatin structure, and the
residence times τi that encodes the sequence-
specific interactions. We believe this is the sim-
plest genome-wide model that is able, for the first
time, to incorporate all the information we have
on both the chromatin structure and on specific
DNA-protein interactions.

TF occupancy is proportional to residence time
and contact degree

The time-evolution of the probability of finding the
diffusive protein at a certain genomic region can
be described by a master equation (see support-
ing material). Interestingly, although the network
topology representing the chromatin structure can
be very complex the steady-state solution can be
solved analytically leading to a very simple expres-
sion. The occupancy of a region i is proportional
to the residence time τi and the contact degree di,
namely the number of physical contacts with other
regions. That is,

pi ∝ τidi, (1)

where the proportionality factor is just the normal-
ization constant. This nicely shows that the occu-
pancy of a region is the result of two independent
factors: the first summarizes the DNA-protein in-
teraction and the sliding process (τi); and, the sec-
ond describes the effects of the chromatin structure
(di). Remarkably, only a local structure property,
namely the number of contacts of a given region,
plays a role in determining its occupancy.
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Figure 2: TF occupancy is proportional to contact de-
gree and residence time. 2D histograms showing frac-
tion of genomic regions with certain TF occupancy and
contact degree. Blue and red histograms were obtained
using genomic regions with and without TFBSs mea-
sured by ChIP-seq. Left panels show TF occupancies
assuming bare DNA and right panels TF occupancies
when active histone marks are used to modulate resi-
dence times. 1D histograms after marginalization are
shown on top and right side of each panel. Regions with
TFBSs show a higher occupancy and contact degree
than regions without TFBSs. Active histone marks
cause a drastic increase in the expected occupancy level
of regions with TFBSs (h = 10−3).

To test our model we compared the predicted
genome-wide occupancy profiles of three different
transcription factors (RelA, TBP and CTCF) with
available ChIP-seq data [10]. As shown in Fig.
2 (left panels), TF occupancy strongly correlates
with contact degree. Indeed, contact degrees span
for one or two orders of magnitude causing a sim-
ilar span in occupancy levels. Interestingly, ge-
nomic regions with TF binding sites (TFBSs) show
a significantly large number of contacts compared
regions without sites. Indeed, we observed an in-
crease of 38%, 50% and 33% in the average contact
degree of regions with binding sites for RelA, TBP
and CTCF respectively.
Although the structural factor in Eq. 1 plays a
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Figure 3: Target search time is inversely proportional to contact degree. (A) Relationship between contact
degree d and search time ts, normalized by the average residence time on active chromatin 〈τA〉, of genomic
regions in chromosome 19 with (blue) and without (red) TFBSs (no histone marks were considered and therefore
〈τA〉 = 〈τI〉). In grey predicted search times when active histone marks are considered and 〈τA〉/〈τI〉 ≈ 103

leading to a 28% reduction. (B) Relationship between number of TF molecules R and the search time of a given
genomic region in chromosome 19 assuming bare DNA (blue) or active-marks modulation (grey). (C) Same as
in B but considering the whole genome at different cross-grained scales assuming bare DNA (dark blue: 75kb;
blue: 100kb; light blue: 200kb) or active-marks modulation (grey blue: 75kb; grey: 100kb; light grey: 200kb).
As an example: R = 104 molecules searching within a chromatin network of L = 5 · 105 genomic regions of
length 5kb find the target region in 1s if we assumed 〈τA〉 = 10s [11] (gray dashed lines).

significant role on determining the occupancy lev-
els comparable to the sequence factor, it does not
fully discriminate regions with and without TFBSs
(Fig. 2). To improve the predicted occupancy we
recalculated the residence times τi taking into ac-
count profiles of active histone marks (H3K4me1,
H3K4me3 and H3K27Ac) measured using ChIP-
seq [10]. We assume that DNA-protein interac-
tions are reduced by a factor h on DNA that shows
low levels of the three active marks. The new pre-
dicted occupancy for RelA and TBP clearly dis-
criminate between regions with and without bind-
ing sites for RelA and TBP (Fig. 2, right panels).

Chromatin structure reduces TF search time

Compared to previous thermodynamic approaches
[12], our stochastic model allowed us to go beyond
the steady-state solution. Indeed, we were able to
calculate the expected search time ts required for a
TF to find any given genomic region. In this con-
text, the search process is a random walk on the
chromatin network until the TF hits for the first
time the region of interest. The search time then
follows a phase-type distribution whose mean is re-
lated to the inverse of the transition rate matrix of
the random walk and the probability distribution
over regions where the search could be initiated
(see supporting material). First, it is easy to show
that ts is proportional to the average residence
time 〈τ〉. Intuitively, the stickier the TF-DNA in-
teraction is the longer the time is required to find
a particular locus. Note that average residence
times have been measured by single-molecule mi-

croscopy showing values for different TFs in the
range of seconds [13, 11].
The matrix inversion required to calculate ts can

be computationally very costly especially for large
matrices. Therefore we first considered a search
process only on chromosome 19, the smallest one.
The times required for RelA to find genomic re-
gions of chromosome 19 are shown in Fig 3A. Strik-
ingly, search times are inversely proportional to
the contact degree d of the searched region. There-
fore, regions with RelA binding sites are found
faster as they show larger contact degrees (blue
dots in Fig. 3A). Notice that the search time pre-
dicted by the 3D plus 1D diffusion model is the
same for all regions in the genome and, interest-
ingly, larger than the one obtained with our model
for most of the regions with TFBSs (dashed line
in Fig. 3A and supporting material). These re-
sults show that chromatin structure play a crucial
role in shaping the search process of transcription
factors.
Next, we investigated how active histone marks

affected the search process. Notice that the aver-
age residence time can be expressed as a weighted
sum of the average residence times in active and
inactive regions: 〈τ〉 = 〈τA〉fA + 〈τI〉fI , where the
weights fA and fI are the fraction of times that
the TF visits active and inactive regions respec-
tively (see supporting material). Assuming that
the affinity of the TF-DNA interactions on active
regions was three orders of magnitude larger than
on inactive region (〈τA〉/〈τI〉 ' 103) [14, 15], the
search time was reduced by 28% (see Fig 3A) as
〈τ〉 ' 〈τA〉fA. This speed up of the search process

3

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 25, 2016. ; https://doi.org/10.1101/050146doi: bioRxiv preprint 

https://doi.org/10.1101/050146
http://creativecommons.org/licenses/by-nc/4.0/


is caused by an effective chromosome length reduc-
tion due to the low affinity of non-active regions.
Up to now we considered the process of a single

TF searching for a given region. A more relevant
biological scenario is to consider R molecules that
perform the search independently. In this case, it
is easy to show that the resulting search time is the
probability that R − 1 molecules did not find the
region after certain time ts and one molecule did
find it at precisely ts (see supporting material).
The relationship between the search time ts and
the number of molecules R is shown in Fig. 3B for
a region of the chromosome 19 that contains RelA
sites. Consistently with what one would obtained
from reaction kinetics based on the law of mass
action, ts is inversely proportional to the number
of molecules R. Strikingly, when we took into ac-
count active mark profiles we found a regime for
large number of molecules (R > 103 ) at which
the search time decreases faster with the number
of searching molecules. This results indicates that
the combination of chromatin structure and his-
tone marks increases the efficiency of the search
process. This has an important consequence on
how the kinetics of gene activation depends on the
concentration of the regulatory proteins.
To extend our model to consider the whole

genome in a tractable manner we coarse-grained
the chromatin network at different resolutions to
effectively reduce its size. Remarkably, different
resolutions (200kb, 100kb and 75kb) lead to com-
parable results when we considered the concentra-
tion of molecules respect to the chromatin net-
work size L instead of absolute molecules num-
bers (see Fig. 3C). This allowed us to extrapolate
our results and obtain search times considering the
whole genome at high resolution. For instance,
the genomic region considered in Fig. 3B is found
on average in 10 seconds when 104 molecules are
searching in parallel in the whole chromatin net-
work with approximately 5 · 105 genomic regions
of 5kb length.
The previous results, all together, lead to the

following expression for the search time:

ts ' α
fA〈τA〉
d

L

R
(2)

where the structure constant α encodes global
properties of the chromatin network topology,
however does not depend on the searched region
(see supporting material). Notice that when a
promoter region is considered, the inverse of the
search time can be interpreted as an effective ’on’
rate: kon = 1/ts, which incorporates the influence

of the chromatin structure on TF binding rates.

Asymmetric distribution of TFBSs among
TADs traps TF diffusion

Large local chromatin interaction domains, termed
topological associated domains (TADs) have been
identified across cell types and organism [9]. Next
we studied the role of these higher order chromatin
structures on the diffusion dynamics. In order to
do that, first, we computed the distribution of
binding sites across TADs of 25 TFs involved in
the immune response [10]. Remarkably, Fig 4A
shows that the number of TFBSs is strongly over-
represented in few TADs compared with a ran-
dom distribution. Furthermore, histograms show-
ing the frequency of TADs with certain number of
TFBSs show that domains both with few or many
bindings sites occur more often than expected by
a random model (See Fig. 4B-C and Fig. S[#]).
These results suggest that the concentrations of
TFs is not homogenous across the nucleus as TADs
with large number of binding sites trap TFs for
longer times. To test this we calculated using our
diffusion model the escaping time te of RelA from
2970 TADs previously identified [6]. As expected
domains with many binding sites show 3 fold in-
crease in the escaping time on average (Fig. 4D).
This difference disappeared when we randomized
the residence times τi (Fig. 4E).
Conversely, the diffusion process can be used to

study the chromatin structure at different scales.
This idea has been already applied to identify hi-
erarchical structures and communities in a wide
variety of networks [16]. We defined diffusion as-
sociated domains (DADs) as chromatin structures
from which a diffusive molecule is not likely to
scape after certain time. In Fig. 4F and 4G we
showed the obtained DADs at three different time
scales. These results revealed in a clear an intu-
itive manner the hierarchical and fractal nature of
the chromatin structure [17].

Conclusions

We presented a stochastic model of TF diffusion
that for the first time integrates high-resolution
information on the 3D structure of chromatin and
DNA-protein interaction. Notably, the multi-scale
structure of our model allowed us to extend the de-
scription of the DNA-protein interaction by intro-
ducing easily genome-wide information on histone
post-transcriptional modifications. Our model al-
lowed us to uncover the effects of chromatin struc-
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Figure 4: Asymmetric distribution of TFBSs across TADs traps TF diffusion. (A) Heat-map showing the
overrepresentation (blue) or underrepresentation (red) of TFBSs across TADs. TFBSs cluster in few TADs.
(B and C) Histograms showing the frequency of TADs with certain number of TFBSs (blue) compared with
a random distribution (gray). Notably, TADs with small number of sites or with large number of sites occur
significantly more often than expected by a random model. (D) Distribution of normalized escaping times
te/〈τ〉 from TADs with one or zero sites (red) or with more than 15 sites of RelA. (E) Same as in D but with
randomized residence times τi. (F) Diffusive associated domains (DADs) for different time scales (white, grey
and dark grey) obtained from stability analysis of a diffusion process on the chromatin network with non-specific
DNA-interactions.
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ture on transcription factor occupancy profiles and
target search times. Finally, we showed that TF-
BSs clearly clustered preferentially in few TADs
which leads to a higher local concentration of TFs
as they are trapped in those TADs for longer times.
We hypothesized this could be an optimal strat-
egy to efficiently use the limited cellular transcrip-
tional resources.
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