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Abstract 

Capabilities for generating and storing large amounts of data relevant to individual 

health and performance are rapidly evolving and have the potential to accelerate 

progress toward quantitative and individualized understanding of many important 

issues in health and medicine. Recent advances in clinical and laboratory 

technologies provide increasingly complete and dynamic characterization of 

individual genomes, gene expression levels for genes, relative abundance of 

thousands of proteins, population levels for thousands of microbial species, 

quantitative imaging data, and more – all on the same individual.  Personal and 

wearable electronic devices are increasingly enabling these same individuals to 

routinely and continuously capture vast amounts of quantitative data including 

activity, sleep, nutrition, environmental exposures, physiological signals, speech, 

and neurocognitive performance metrics at unprecedented temporal resolution and 

scales. While some of the companies offering these measurement technologies have 

begun to offer systems for integrating and displaying correlated individual data, 

these are either closed/proprietary platforms that provide limited access to sensor 

data or have limited scope that focus primarily on one data domain (e.g. 

steps/calories/activity, genetic data, etc.). The Integrated Biomedical System is 

being developed to demonstrate an adaptable open-source tool for reducing the 

burden associated with integrating heterogeneous genome, interactome, and 

exposome data from a constantly evolving landscape of biomedical data generating 

technologies.  The Integrated Biomedical System provides a scalable and modular 

framework that can be extended to include support for numerous types of analyses 

and applications at scales ranging from personal users, communities and groups, to 

large populations.  

Disclaimer 

This work is sponsored by the Assistant Secretary of Defense for Research & 

Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, 

interpretations, recommendations and conclusions are those of the author and are 

not necessarily endorsed by the United States Government. 

Introduction 

Human health and performance is understood to be affected by both nature 

(genome) and nurture (activities & environment).  One notable example of the 

combined effects of genetics and the environment on health is the identification that 

the GRIN2A gene significantly modulates risk for developing Parkinson’s disease, 

but only in heavy coffee-drinkers [1].  This study provides proof that inclusion of 

quantitative measures of environmental factors can help identify important genes 
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that would be otherwise missed in GWAS studies that ignore exposures.  However, 

the challenges associated with designing and implementing broad quantitative 

studies of complex interactions at scales sufficient to achieve sufficient statistical 

power are considerable.  

 

There are multiple efforts underway that are making progress toward addressing 

the challenges of integrating genome, interactome, and exposome[2] data to support 

focused scientific studies.  The Institute of Systems Biology’s Hundred Person 

Wellness Project[3] and 100K Project[4] are integrating genomics, monitors, and 

blood sampling to build on the pioneering N-of-one work conducted by Larry 

Smarr[5] and Michael Snyder[6, 7] to articulate the vision and promise of predictive, 

preventative, personalized, and participatory (P4) medicine[8].  Orion 

Bionetworks[9] is combining traits, genetics, and interactome with a focus on brain 

disorders.  Sanchez et al. [10] has also proposed exposome informatics integrating 

the genome, phenome, and exposome.  Systems integrating personal sensors and 

exposome have been developed by Doherty & Oh[11] and Nieuwenhuijsen et al. 

[12].  Other relevant available resources include PhysioNet[13] and MOPED[14].  

The Human Longevity project[15] is examining genome, microbiomes, and 

metabolites of volunteers.  While these projects all share the common elements of 

longitudinal integration of heterogeneous biomedically relevant data, each either 

focuses on a relatively narrow set of measurements or relies on custom data storage 

and analysis architectures that do not provide a scalable foundation for larger-scale 

integration across studies to enable meta-analysis of data from multiple studies.   

 

The Integrated Biomedical System is being developed as an open source platform 

for integrating genome, interactome, and exposome data (see Figures 1 & 2) that 

provides a unifying model to promote more open data sharing and analysis.  The 

software architecture with multi-scale operability design intended to scale from 

running on a single laptop/workstation as a standalone system with an embedded 

private local database, to a study platform, to large-scale implementations all using 

standard scalable web technology stacks. 

 

Methods 

Protocol design & approvals 

The Integrated Biomedical System description and written consent form was 

reviewed and approved by the MIT Committee on the Use of Humans as 

Experimental Subjects (COUHES) for volunteers.   

Integrated Biomedical System (iBio) 

The Integrated Biomedical System was developed on the Ruby on Rails[16] platform 

with Ruby gems and JavaScript plugins.  The Rails platform supports multiple SQL 

relational databases including MySQL and no SQL databases such as Mongo DB.  

MySQL, Oracle, Mongo DB, etc. all scale to over a billion records in a single table.  

The underlying architecture and approach can be extended to handle a variety of 
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additional data sources.  The Integrated Biomedical System and Rails can be 

installed on computers ranging from stand-alone on a laptop/desktop to servers 

running Windows OS, Mac OS, Linux, or Unix.  Individuals can install and run this 

system for personal use without needing to set up a web service; to facilitate this the 

default configuration uses the Sqlite3 database, which installs with the Rails setup.  

Switching to MySQL or Oracle requires database software installation and a 5 line 

update to the Rails database.yml configuration file with updated database instance 

details.  To facilitate bulk loading of large numbers of data files, command line 

interfaces for each ETL module are included in the app/utilities folder. 

 

Extract, transform, and load (ETL) modules were developed for 23andMe SNPs[17] 

files, SwissProt[18] dat file, DrugBank[19] XML file, NCBI Gene[20] gene file, 

PharmGKB pathways[21], and Protein Data Bank (PDB) protein structures [22].  

After SwissProt sequences and PDB protein structures were loaded, the structure 

coordinates were mapped to sequence residues with the included 

app/utilities/align_pdb.rb tool; this enables the visualization of residues and 

variants on structures.   Interface modules were developed to allow individual or 

pooled variants to be visualized on protein structures with the integrated Jmol[23] 

structure viewer.   

Interactome 

Interactome data included in the pilot collection described herein includes heart 

rate, interbeat interval (IBI), and electrocardiogram (ECG), skin temperature, skin 

conductance, galvanic skin response, and respiratory rate.  These aggregated data 

were collected by a diverse collection of commercially available wearable 

physiological monitoring devices.  All volunteers were offered a Basis B1 watch[24] 

and Polar Loop H7 heart rate monitor[25].  A subset of volunteers are evaluating 

Hildago Equivital EQ-02-SEM[26], Empatica E3[27], Mio Link[28], and Zephyr 

BioHarness 3[29] devices.  Data logging functionality was not built in for the Polar 

Loop and Mio Link heart rate monitors, so these data streams were wirelessly 

synced and stored continuously on co-worn Actigraph Actisleep device.  ETL 

modules were developed for Basis B1 json files[30], Actigraph heart rate csv or dat 

files (including Polar Loop and Mio Link), Empatica E3 zip files, Hidalgo Equivital 

SEM2 persisted summary csv files, Zephyr BioHarness summary csv files, vocal 

recordings and associated Matlab .mat files.  Data displays include Ruby gems and 

JavaScript plugins: Google Maps[31], jQuery[32], lazy_high_charts[33], 

Highstocks[34], Data-Drive Documents (D3)[35], FullCalendar[36], rails3-jquery-

autocomplete[37], and more.  The graphical user interface for “Data Loading” 

provides the ability to download data from the Basis web site and drag and drop 

interfaces for easy file uploads for each of the device ETL modules. 

Exposome 

Activity and sleep were monitored continuously using wearable and personal 

electronic devices that used algorithms to process raw data provided by built-in 3-

axis accelerometers. Data describing daily nutrition, prescriptions, and over-the-

counter medications were collected manually and provided by a subset of 
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volunteers.  Devices used by volunteers for continuous data collection included the 

Fitbit Flex, the Basis B1 watch, Actigraph ActiSleep monitors, basic Actigraph 

activity monitors GT3X+, Jawbone Up, and smart-phone apps including MyTracks, 

and Sleep Cycle.  ETL modules were developed for Fitbit csv files, Jawbone csv files, 

Actigraph[38] sleep csv files, MyTracks app[39] csv files, and Sleep Cycle app[40] 

csv files.  Additionally to demonstrate the ability to integrate other publicly available 

data, modules were developed for integration of EPA AirData (daily and hourly csv 

files[41]), and foods[42].   Graphical user interfaces were developed for entering 

activities, events, meals, drinks, prescriptions, and over-the-counter medicines.  

Multiple volunteers submitted oral swab samples for metagenomics sequence 

analysis when sick (cued data collection). 

Results 

Interactome 

Heart Rate Monitoring 

Heart rate monitoring devices provide heart rate, interbeat interval (IBI), and 

electrocardiogram (ECG) measurements.  Heart rate measurements for multiple 

devices for an individual are shown in Figure 3.  Hidalgo Equivital SEM2 and Zephyr 

BioHarness were typically worn only during more active periods.  Lower Zephyr 

heart rate values observed on Aug. 29 likely resulted from the contact pads drying 

out during a period of extended wearing with low activity level.  Some data gaps 

result from the need for device battery recharging (Empatica E3 - daily and Mio Link 

every 8 to 10 hours).  Higher correlations of results are observed for periods of 

sleeping and light activity.  This observation is consistent with previous anecdotal 

observations of data accuracy and coverage decreases for many wearable sensors 

during periods of high activity.   

Exposome 

Sleep Monitoring 

Multiple devices tested provide top-level estimates of nightly time asleep and 

number of sleep interruptions.  Some devices also attempt to break down the sleep 

time into sleep phases (light, deep, and rapid eye movement - REM sleep).  This data 

was integrated to enable comparisons of sleep classifications assigned by these 

devices (investigation of the accuracy of these estimates vs. gold-standard 

polysomnography was beyond the scope of the present work).  Example 

longitudinal measurements from a single individual collecting data in parallel using 

Jawbone Up, Basis B1, Fitbit, and ActiSleep are shown in Figure 4.  Analytical 

modules enabling pairwise comparisons of unfiltered nightly time asleep estimates 

between different devices were developed and integrated into the Integrated 

Biomedical System.   Simple comparisons of daily total time asleep reported across 

the range of devices revealed a lack of correlation for most device pairs as measured 

by Pearson r statistics. Likewise, finer-grained estimates of light sleep (provided by 

Basis and Jawbone) and deep sleep (Jawbone) compared to deep sleep plus REM 

sleep (Basis) were also poorly correlated.  Only the two Actigraph algorithms, Sadeh 
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and Cole-Kripke, which were run on the same raw Actigraph sensor data produced 

highly correlated results (r of 0.97).  

 

Exposures 

Global Position System (GPS) tracking of outside activities available in the 

Integrated Biomedical System from smartphone or GPS data can provide continuous 

localization for an individual.  This data enables a range of potentially useful 

correlations to be determined including correlations with data from nearby EPA or 

other air quality monitoring station(s) as an initial step toward quantitative tracking 

of individual exposures.  Inferred exposure levels can be estimated from nearby 

sensors for a wide variety of measured pollutants, particulates[41], and pollen 

levels[43].  Figure 5 illustrates NO2, PM2.5, and PM10 exposures for an afternoon 

walk.  

Discussion 

Vision 

Genome, interactome, and exposome all influence an individual’s wellness.  The 

Integrated Biomedical System was developed to demonstrate the ability to begin 

integrating these heterogeneous data sources in near real-time for individuals. This 

was accomplished using an architecture that can operate on a stand-alone laptop or 

desktop personal computer (PC) to provide additional privacy and security and can 

be connected seamlessly to voluntarily transfer selected data to centralized highly 

scalable systems built on the same data architecture that can integrate data from 

many thousands or even millions of individuals.  This approach could provide a path 

to developing new crowd-sourced models for large-scale prospective/retrospective 

studies of how individual combinations of genomic and environmental factors 

correlate with a range of human health and performance traits. Individual 

monitoring devices, genetic data, blood biochemistries, nutrition, exposures, 

illnesses, vocal and additional data have been organized and integrated into a 

unified system (see Figure 2).  Using the same tools and architectures, additional 

quantitative lab results and diagnostic data like images and physiological 

monitoring system data can be added to further increase the research scope of the 

system.  Incorporation of additional natural language processing tools and data 

architecture modifications can enable text-based metadata collections (e.g. regular 

symptoms logging from personal health blogs, social interaction details from social 

media platforms, information from electronic health records) to be included in 

future versions of the system.  Furthermore, these personal datasets can be 

combined with relevant public datasets and other non-public data to provide new 

insights into health-associated effects to support detailed N-of-1 and population 

retrospective analyses.   

Genome 

As large scale DNA sequencing costs continue to decrease, sequencing an individual’s 

DNA becomes more affordable and practical.  While tools exist to characterize variants 
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(Polyphen2, SIFT, etc.), the potential to correlate variants with protein 

structure/function, physiology, molecular biomarkers, etc. typically is done manually 

and within studies with a single focus.  Integrating genomic data with interactome and 

exposome data will help create new opportunities for turning data into new discoveries 

and knowledge.  As advances in DNA sequencing technology enable more 

widespread access to genomic data for individuals, the ability to correlate that data 

with quantitative interactome and exposome data will become increasingly 

important. Together, these data can broadly enable efforts to elucidate the interplay 

between genomic and environmental factors that contribute to complex individual 

human traits and health.   

Interactome 

Cognitive performance and health phenotypes can be assessed through a variety of 

indirect methods including analysis of biomarkers in blood, psychomotor vigilance 

task (PVT), profile of mood states (POMS), automated neuropsychological 

assessment metrics (ANAM), speech analysis, facial and eye movement tracking, 

electroencephalography (EEG), and similar approaches.  These assessments and 

others have been developed and used quantitatively define progressions of 

important traits/symptoms in individuals experiencing a number of conditions 

including depression[44], posttraumatic stress disorder (PTSD), and traumatic 

brain injury (TBI), as well as environmental stressors including sleep disruption, 

etc.  Data streams produced from these assessments combined with traditional 

measurements of traits, molecular biomarkers, and clinical data to provide a new 

platform for gaining insight into the underlying physiology individual health, fitness, 

and well being.  Retrospective analysis of large-scale collections will provide future 

biomedical discoveries.  Increasing proportions of future biomedical discoveries will 

be driven by the ability to effectively collect, manage, and interpret massive 

amounts of heterogeneous data.  Enhancements to integrate additional interactome 

data types and analysis tools are currently underway and these features will be 

included in future releases. 

Exposome 

Asthma and COPD affect 18.7 and 6.8 million individuals in the United States[45].  

Environmental exposures can exacerbate these conditions[46].  Asthma can be 

triggered by particulate matter, ozone, sulfur dioxide, nitrogen oxide, and 

pollens[47].    Devices, including smart phones, with GPS tracking ability enable the 

possibility of data integration with environmental monitoring data.  Nearby 

monitoring stations and mobile monitoring devices provide weather and exposure 

estimates that can be correlated using time stamped GPS positional information.  

Monitoring stations track a rich variety of environmental exposure data[41].  While 

the current system provides incomplete coverage, it demonstrates a viable path to 

incorporation of additional sensor streams (including indoor air quality sensors, UV 

exposures, etc.) and activity-based estimates of indoor vs. outdoor exposures.  It will 

be possible to provide increasingly complete individualized and integrated 

quantitative estimates of specific exposures that can be correlated with possible 

health effects, symptoms, and well-being.  Larger and more complete data sets 
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enabled by integrated systems like the one described here, can play a key enabling 

role for more quantitative genome vs. environment studies in the future. 

 

Looking Forward 

 

Health and fitness are impacted by genetics, interactome, and exposome.  Solutions 

that combine relevant data across these data domains will lead to new health and 

fitness insights.  The data infrastructure to collect and aggregate data across these 

domains is currently lacking but large corporations are moving rapidly in this 

direction with cloud-based private solutions.  These corporate solutions provide 

access to summary data (steps walked, hours slept, etc.), but rarely access to the 

underlying raw data.  Typically, these systems require users to consent to granting 

data ownership to the corporation and not themselves.  Open data architectures 

with open source solutions can provide alternatives to individuals and 

organizations for personal health, fitness, and wellness promotion and also 

longitudinal studies to facilitate data exploitation for research and discoveries and 

decision support for leaders and medical personnel.  The Integrated Biomedical 

System is available on GitHub [https://github.com/doricke/IBio]. 
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Figures 

 

Figure 1.  Integrated Biomedical System Vision.  Integrating genome, interactome, 

and exposome heterogeneous data to create an open data system to promote health, 

wellness, and future biomedical discoveries. 

 
 

Figure 2.  Data Integration and Analysis.  Our vision of organizing data from 

individuals, electronic health records, and public data sources into a platform for 

integrating heterogeneous data sources for data analysis and correlation mining. 

 

 
 

Figure 3.  Heart Rate Monitoring.  (a) Screen shot of heart rate beats per minute 

measurements for a volunteer wearing Basis B1 watch, Empatica E3, Zephyr 

BioHarness, Hildago Equivital SEM2, and Mio Link devices.  SEM2 values were 

filtered for minimum quality values of 70 with selection of median value. (b) 

Zoomed in view of heart rates illustrating measurements at different activity levels. 

(c) Bland-Altman plots comparing measurements from the heart rate tracking 

devices with corresponding Pearson r correlation values. 
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Figure 3.a. 

 

 
 

Figure 3.b. 
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Figure 3.c 

 
 

Figure 4.  Sleep Monitoring. (a) Screen shot of daily total sleep measurements for a 

volunteer for Fitbit Flex, Jawbone Up, Basis B1 watch, and Actisleep.  (b) Bland-

Altman plots comparing measurements from the sleep tracking devices for this 

volunteer. 
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Figure 4.a. 

 
 

Figure 4.b. 
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Figure 5.  Outdoor walk and Integration with EPA AirData.  Example visualization of 

activity data with estimated exposure levels from nearby EPA AirData monitoring 

site. 
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