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Abstract 

The phage shock protein (Psp) is a part of the Psp operon, which assists in safeguarding the 

survival of bacterium in stress and shields the cell against proton motif force challenge. It is 

strongly induced by bacterium allied phages, improperly localized mutant porins and various 

other stresses. Master effector of the operon, PspA has been modeled and simulated, 

illustrating how it undergoes significant conformational transition at the far end in 

Mycobacterium tuberculosis. Association of this key protein of the operon influences action 

of Psp system on the whole. We are further working on the impact of phosphorylation 

perturbation and changes in the structure of PspA during complex formation with other 

moieties of interest. 

Keywords: Mycobacterium tuberculosis, Phage shock protein, Structure modeling, 

Dynamics simulation. 
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We hereby report ab initio structure model of the Mycobacterium tuberculosis phage shock 

protein A (PspA). PspA is the central constituent of bacterial stress response machinery, 

encoded by phage shock operon (Huvet et al., 2010). PspA, regulates not only it’s own 

transcription but that of the whole operon as well (Elderkin et al., 2005; Male et al., 2014). 

PspA is inferred to be a dual-function protein (Guegwen et al., 2009; Jovanovic et al., 2014) 

and localized amid cytoplasmic and inner membrane interface of the bacterium (Engl et al., 

2009). It is responsible for maintaining the cell membrane integrity along with restoration of 

the proton motive force (Male et al., 2014; Engl et al., 2009; Wan et al., 2015). 

Mycobacterium tuberculosis is a pathogenic bacterium responsible for causing disease in 

humans and veterinary species (Sakamoto, 2012). A lot of work has been carried out on 

Mycobacterium phages for therapeutic purpose. However, to the best of our knowledge, no 

report of the phage shock protein analysis for this pathogen exists at the moment. We 

retrieved PspA protein sequence of Mycobacterium tuberculosis from the Uniprot database 

with Accession number: R4M912 and analyzed the sequence and the structure using 

computational tools. Although, PspA belongs to the highy conserved PspA/IM30 family but 

Mycobacterium tuberculosis PspA shared a very low sequence homology with Escherichia 

coli PspA, revealed using Clustal Omega (Fig. 1) with seeded guide trees and HMM profile-

profile technique for alignment generation at the backend (Sievers et al., 2011). The 

secondary structure analyzed by PROMOTIF tool (Hutchison and Thornton, 1996) revealed 

that the protein consisted of 9 helices, 6 helix-helix interacs, 14 β-turns and 3 �-turns (Fig. 

2A).  

Due to low homology with experimentally determined structures available in the RCSB 

Protein databank, 3D structure (Fig. 2B) was modeled by I-TASSER (Roy et al., 2010; Yang 

et al., 2015) using Escherichia coli PspA as a template (PDB ID: 4WHE). The C-score based 

on the significance of template alignment threading and simulations of the structure assembly 
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convergence parameters of the model chosen for analysis was -1.29 (lies between ideal range 

of -5 to 2), indicating good quality model. Estimated root mean square deviation of the 

predicted model from the Escherichia coli model was 7.8±4.4Å. The constructed structure 

resembled a helical bundle with important binding site residues predicted to occur at position 

66, 69, 70, 73, 92, 96, 99, 100, 102 and 103. Despite low sequence conservation, the structure 

is however, well conserved due to the underlying fact that the protein folds remain conserved 

in similar function proteins. PspA structure in Escherichia coli is known to self-assemble into 

ring (Standar et al., 2008) or striated and indented rod-shaped complexes (Male et al., 2014) 

based on electron microscopy and helical rods based on X-ray crystallography analysis 

(Osadnik et al., 2015). PspA homologue LiaH in Bacillus subtilis (Wolf et al., 2008) and 

holins of bacteriophage lambda (Savva et al., 2010) have also been reported to self-assemble 

to rod-like structures from ring shaped protein complexes. The Mycobacterium tuberculosis 

PspA is also rod shaped and it is implied that these rod-like structures could form a support 

framework and aid in the maintenance of membrane integrity during phage shock response 

(Male et al., 2014). 

CABS-flex procedure based on the well-established coarse-grained CABS protein model 

(Fraga et al., 2014) was employed for the fast simulation of near-native dynamics of PspA. 

CABS is a computationally efficient alternative to classical all-atom molecular dynamics 

(Jamroz et al., 2013). The 3D modeled structure was input and used as a starting point for the 

all-atom, explicit water, 10-nanosecond dynamic simulation. Analysis was carried out at the 

backend and automatically analyzed trajectory (Fig. 3) was obtained to study the dynamic 

behaviour of protein. A set of eight (all-atom) protein model sets were obtained with global 

distance test score ranging from 0.6-0.7. Most dominant structural fluctuations appeared at 

the last beta turn region including 8th and 9th helix. Relative propensity of protein residues to 

deviate from an average dynamics structure increased substantially at the ending helices with 
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fluctuation increasing from 100 Å at residue 160 to to >600 Å at residue 172. Understanding 

of flexibility of PspA can be of aid in research areas as molecular evolution (Boehr et al., 

2009).  

Phage infection has also been demonstrated to induce substantial fluctuations in host protein 

phosphorylation (Rieul et al., 1987; Russel and Model, 2006) and this was suggestive of 

PspA potential for phosphorylation as well. NetPhos Bac 1.0 (Miller et al., 2009) was used 

for prediction of possible phosphorylation residues. Seven serine residues (S144, S149, S156, 

S157, S158, S164, S166) were predicted to have phosphorylation potential based on neural 

network approach. However, none of these exhibited a knack to occur on predicted binding 

residues and hence, their exact role in PspA function of Mycobacterium tuberculosis yet 

remains to be elucidated.  

Our findings pave way for further experimental studies and are of aid in understanding the 

Mycobacterium tuberculosis PspA response to the extracytoplasmic stresses that may damage 

the cytoplasmic membrane. We have used computational approach for the prediction of 3D 

structure of this protein but to furthur understand the function of the rod-like structure of 

Mycobacterium tuberculosis PspA, additional studies are required which can confirm and 

enhance the reported information along with elucidation of in depth biological function and 

interactions of Mycobacterium tuberculosis PspA.   
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Figure Legends 

Figure 1. Multiple sequence alignment of the Escherichia coli and Mycobacterium 

tuberculosis PspA. Conserved residues are shown  in  red color. Helices are denoted by 

squiggles at the top of the alignment. Solvent accessibility is depicted by a bar below the 

sequence (blue = accessible, cyan  =  intermediate,  white  =  buried).  

Figure 2. (A) Secondary structure of Mycobacterium tuberculosis PspA (helices labelled H1, 

H2…H9).  depicts beta turn and  is for gamma turn. (B) 3D structure of Mycobacterium 

tuberculosis PspA. 

Figure 3. (A) Structural flexibility profile of simulated Mycobacterium tuberculosis PspA 

with fluctuations for individual protein residues shown via red line. The output is based on 

all-atom model via trajectory clustering. (B) Refinement of the model and superpositioning 

(Provided 3D model as base) is centred on maximum likelihood superposition method of 

THESEUS (Theobald and Wuttke, 2006).  
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Fig 1. 
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Fig 2A. 
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Fig 2B. 
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Fig 3A 
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Fig 3B. 
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