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Abstract Although genome-wide association studies (GWAS) have been suc-
cessful at finding thousands of disease-associated genetic variants (GVs), iden-
tifying causal variants and elucidating the mechanisms by which genotypes
influence phenotypes are critical open questions. A key challenge is that a
large percentage of disease-associated GVs are potential regulatory variants
located in noncoding regions, making them di�cult to interpret. Recent re-
search e↵orts focus on going beyond annotating GVs by integrating functional
annotation data with GWAS to prioritize GVs. However, applicability of these
approaches is challenged by high dimensionality and heterogeneity of func-
tional annotation data. Furthermore, existing methods often assume global
associations of GVs with annotation data. This strong assumption is suscep-
tible to violations for GVs involved in many complex diseases. To address
these issues, we develop a general regression framework, named Annotation
Regression for GWAS (ARoG). ARoG is based on finite mixture of linear
regression models where GWAS association measures are viewed as responses
and functional annotations as predictors. This mixture framework addresses
heterogeneity of e↵ects of GVs by grouping them into clusters and high dimen-
sionality of the functional annotations by enabling annotation selection within
each cluster. ARoG further employs permutation testing to evaluate the signifi-
cance of selected annotations. Computational experiments indicate that ARoG
can discover distinct associations between disease risk and functional annota-
tions. Application of ARoG to autism and schizophrenia data from Psychiatric
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Genomics Consortium led to identification of GVs that significantly a↵ect in-
teractions of several transcription factors with DNA as potential mechanisms
contributing to these disorders.

Keywords Finite mixture of regressions; Functional genomic data; Genome-
wide association studies; Integrative analysis; Regularized variable selection

1 Introduction

Although genome-wide association studies (GWAS) have successfully identi-
fied thousands of genetic loci associated with human diseases, the design and
analysis of these studies are challenged in two critical aspects. First, existing
GWAS have revealed that, for many common disorders, the typical genetic
architecture encompasses many genetic variants (GV) with individually small
e↵ects on phenotypes [29], indicating the need for larger sample sizes to re-
liably identify them. Second, roles of a large proportion of identified GVs
remain elusive since they reside in non-coding sequences within introns or in
regions between genes. Today, with the availability of a↵ordable whole genome
sequencing, our ability to elucidate the mechanisms by which genotypes in-
fluence phenotypes is far behind our ability to identify phenotype-associated
variants.

In parallel to the rapid developments in the design and analysis of GWAS,
large consortia projects such as the Encyclopedia of DNA Elements (ENCODE
[13, 35]), the Roadmap Epigenomics Mapping Consortium (REMC [23]), the
Genotype-Tissue Expression Project (GTEx [30]), and the International Hu-
man Epigenome Consortium (IHEC [1]) as well as many investigator-driven
projects are generating diverse data types of RNA transcription (RNA-seq),
DNA accessibility (DNase-seq), DNA methylation (Methyl-seq), protein-DNA
interactions (ChIP-seq/exo), protein-RNA interactions (CLIP-seq), and chro-
matin state (Histone ChIP-seq) across diverse cell/tissue types. There is a
growing literature on methods for utilizing one or more classes of these func-
tional annotation data to support GWAS results. In contrast to methods re-
quiring individual level GWAS data which are neither available publicly nor
immediately [14, 33], many existing methods have a useful key feature of using
population level data in the form of summary statistics of GVs [9, 12, 16, 31].
However, annotation data have rarely played more than an indirect role in
assessing evidence for association in both types of approaches. Specifically,
Iversen et al. [14], Pickrell [20] and Thompson et al. [31] used annotations
to model prior probabilities of association of GVs under Bayesian framework
or hierarchical modeling. Chung et al. [9] and Kichaev et al. [16] developed
models to integrate binarized functional annotation data and GWAS summary
statistics such as p-values and z-scores of GVs. Gagliano et al. [12] correlated
annotations with GWAS association status, and used Bayes factor for the
annotations to estimate the posterior odds of association of GVs for prioriti-
zation. A significant shortcoming of these methods is that they aim to globally
relate associations of GVs to functional annotation data despite the fact that
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the same disease mechanism might be governed by distinct functional annota-
tions. For example, disruption of an important pathway may arise by GVs in
coding regions of the genes and/or in their regulatory mechanisms. Regulatory
GVs may have a variety of mechanisms such as transcription factor (TF) bind-
ing, histone modifications, enhancer activity through chromatin architecture,
DNA methylation, and alternative splicing [19]. Another key shortcoming is
that they pre-select relevant annotations or use conveniently available annota-
tions ignoring disease etiology, because they are not equipped to automatically
select important annotations in a data-adaptive manner. Furthermore, several
of them can only use annotation data in specific formats (e.g., most recent
genetic analysis incorporating pleiotropy and annotation (GPA) [9] requires
binary annotation variables).

To overcome these challenges, we develop a regression framework named
Annotation Regression for GWAS (ARoG) and integrate GWAS and func-
tional annotation data. ARoG models GWAS association measures, e.g., z-
scores from univariate analysis of GWAS, as a linear function of functional
annotations. It employs a mixture of linear regressions framework to accom-
modate the heterogeneity of associations between GWAS association measures
and functional annotations. It aims to capture locally distinct associations that
would not be revealed with an analysis that assumes homogeneity of these
associations. A critical aspect of ARoG is that it can automatically select
relevant annotations among a large number of annotations with penalization
techniques. ARoG accommodates both categorical or continuous annotation
types, both of which are commonly available. The rest of the paper is orga-
nized as follows. Section 2 presents empirical observations regarding GWAS
association measures and functional annotations using Psychiatric Genomics
Consortium (PGC) data. Section 3 develops ARoG and discusses implementa-
tion details. In Section 4, we analyze PGC autism and schizophrenia data and
identify GVs that might influence these diseases with the potential to modu-
late TF-DNA interactions. Section 5 presents computational experiments with
a wide variety of settings including PGC analysis-driven simulations. In Sec-
tion 6, we provide concluding remarks and discuss extensions.

2 Exploring Psychiatric Genomics Consortium Data with

Functional Annotations

PGC has conducted mega analysis of GWAS data for five psychiatric disor-
ders: attention deficit/hyperactivity disorder (ADHD), autism spectrum dis-
order (AUT), bipolar disorder (BIP), major depressive disorder (MDD), and
schizophrenia (SCZ) [2, 10]. They identified 4 genome-wide significant loci for
BIP [21], and more than 100 genome-wide significant loci for SCZ [24, 25].
However, their analysis did not lead to any reproducible genome-wide sig-
nificant loci for ADHD and MDD, and the analysis on AUT is in progress.
Their GWAS summary datasets are publicly available at http://www.med.

unc.edu/pgc/downloads. In what follows, we focus on AUT and SCZ data.
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2.1 Autism GWAS

We generated a set of candidate SNPs by starting with the intersection of SNPs
genotyped in all five disorder datasets from the PGC cross-disorder study [10].
After lifting the original genomic coordinates from hg18 to hg19, we obtained
1,219,561 SNPs common to all five disorders. We next selected a subset of the
SNPs with a Benjamini-Hochberg (BH) adjusted association p-value smaller
than or equal to 0.1 in any of the five disorders [6]. This led to a total of 1, 430
SNPs. Next, we included 761 linkage disequilibrium (LD) partners of these
SNPs as identified by the SNAP tool [15] with an r2 � 0.8 to one or more
of the 1, 430 SNPs. As part of pre-processing, we discarded SNPs with more
than one reference allele, SNPs with nucleotide mismatches between the PGC
dataset and the SNP database dbSNP [4], and SNPs not listed in dbSNP [4]. As
a result, we obtained a total of 2,191 SNPs for analysis. Supplementary Figure
1(a) displays the histogram of the autism z-scores for these sets of SNPs and
illustrates that, as expected, LD partners tend to contribute z-scores around
zero to the overall distribution since they had BH adjusted p-values larger
than 0.1 in the initial selection step. The manhattan plot of the p-values in
Figure 1(a) indicates that the SNPs with the strongest association are on chr 5
(6 of them) and chr 6 (3 of them). All of these have raw p-values less than 10�6;
however, they make neither the conventional GWAS p-value cuto↵ of 5⇥10�8

nor the Bonferroni cuto↵ of 4.1⇥ 10�8 specific for this study, indicating that
common practice for GWAS analysis would not confidently identify significant
SNPs from this study.

Currently, most integrative analysis methods consider functional annota-
tions enabled by the large scale analysis results of consortia projects such as
ENCODE (e.g., [9, 16, 20]). In our exposition, we consider a class of functional
annotation which computationally quantifies e↵ects of SNPs on TF binding.
We used atSNP [37] for this quantification and created an annotation score
matrix for the 2,191 SNPs [37]. Specifically, atSNP computes the likelihood
that a given SNP disrupts or enhances the binding sites from a given set of
position weight matrices (PWMs) characterizing the class of sequences which
TFs recognize [28]. atSNP scans through subsequences overlapping with the
SNP position with reference and SNP alleles for the best matches of both to
a given PWM and quantifies the significance of the best matches with both
alleles by p-values. The natural logarithm of the ratio of the two p-values is
defined as the atSNP annotation score, which empirically reflects the change in
the ranks of the PWM matches of the alleles. SNPs likely to enhance or disrupt
binding of given TF have large absolute atSNP scores for the corresponding
PWM while SNPs with little potential impact on binding have scores close
to zero. We refer to Zuo et al. [37] for further computational details. We con-
sidered the JASPAR CORE database [17] for vertebrates with 205 PWMs as
our motif library and scored the SNP set. Supplementary Figure 1(b) displays
the heatmap of the resulting annotation score matrix along with the z-scores.
Here, most SNPs have relatively weak annotation scores and only SNPs col-
ored as dark green or red are likely to lead to significant changes (as assessed
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Fig. 1: (a) Manhattan plot for autism association p-values across all 2,191
SNPs. ARoG SNP identified in Section 4.1 is marked with a purple diamond.
Blue and red horizontal lines depict the Bonferroni cut-o↵ at significance level
of 0.05 and the conventional p-value cuto↵ of 5⇥ 10�8. (b) Heatmap of -log10
p-values from marginal regressions of z-scores for five psychiatric disorders on
annotation scores. (c) Manhattan plot for SCZ2 association p-values across
all 11,386 SNPs. ARoG SNPs identified in Section 4.3 are marked with pur-
ple diamonds. Blue and red horizontal lines depict the Bonferroni cut-o↵ at
significance level of 0.05 and the conventional p-value cuto↵ of 5 ⇥ 10�8. (d)
Ranking of annotations based on marginal regressions of the SCZ2 z-scores
on annotation scores for each TF. FOXL1, Klf4, and Arnt::Ahr TFs that are
identified as associated with the z-scores in Section 4.3 are labeled. The dashed
vertical line depicts the BH cut-o↵ at significance level of 0.1.
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by atSNP p-values) in TF binding. As part of our exploratory analysis, we
first regressed z-scores from each of the five disorders on each annotation score
separately. Figure 1(b) displays the -log10 transformed p-values from these
marginal regressions. We note that the overall association of the z-scores and
functional annotations for some diseases are apparent (e.g., MDD). However,
for autism, none of the annotations can be deemed as contributing to the vari-
ation in the autism z-scores based on this global marginal analysis as all BH
adjusted p-values are greater than 0.1 (Supplementary Figure 1(c)).

2.2 Schizophrenia GWAS

PGC provides analyses of two schizophrenia GWAS: a SCZ study from [24]
and a more comprehensive SCZ study from [25]. We refer to the first study
as SCZ1 and the second study as SCZ2. SCZ1 and SCZ2 have genotypes for
1,252,901 and 9,444,230 SNPs, respectively. We considered 1,179,262 SNPs
common to SCZ1 and SCZ2, filtered out SNPs with BH adjusted p-values
larger than 0.01 for both studies, and retained the remaining 8,029 SNPs.
Similar to the autism analysis, we excluded SNPs with multiple reference alle-
les or mismatches of alleles between the PGC datasets and dbSNP, and SNPs
that are not in dbSNP. We next extended this set by including their LD part-
ners with r2 � 0.8. Our final set of SNPs for the analysis included 11,386
SNPs. z-scores of these SNPs have bimodal distributions in both SCZ1 and
SCZ2 (Supplementary Figure 1(d)). Long tails of the z-score distribution of
SCZ2 indicate many more statistically significant SNPs from this study. This
may imply increased precision of SCZ2 over SCZ1, which is attributable to
the seven-fold increase in the sample size. The manhattan plot in Figure 1(c)
indicates that genome-wide significant SNPs from SCZ2 spread throughout
the genome. In what follows, we used SCZ2 as the main analysis dataset for
both marginal and ARoG analyses and SCZ1 as the validation dataset.

We generated an 11, 386⇥ 205 annotation score matrix using atSNP with
the JASPAR PWM library. Supplementary Figure 1(e) displays the heatmap
of the resulting annotation score matrix along with the SCZ1 and SCZ2 z-
scores and illustrates that only a small proportion of SNPs might impact
binding of a small subset of TFs. Marginal regressions of SCZ2 z-scores on
annotation scores identify 40 annotations which are significant when adjusted
for multiple testing by the BH procedure at level 0.1 (Figure 1(d)). However,
given the large sample size, i.e., the number of SNPs, we view the associations
from this marginal analysis as suggestive and turn our attention to developing
a framework to identify subgroups of SNPs whose association measures can
be explained by a subgroup of functional annotations.
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3 A Mixture of Linear Regressions Framework for Incorporating

Functional Annotations into GWAS Analysis

ARoG utilizes association measures of SNPs with disease/phenotype as re-
sponse and potential e↵ects of SNPs on TF binding as predictors as in Section
2. It exploits these functional annotations in a regression framework and aims
to simultaneously boost detection power of SNPs and select relevant annota-
tions.

3.1 Basic Annotation Regression for GWAS (ARoG(I))

Let zi 2 R, i = 1, · · · , n denote z-scores for n SNPs from a GWAS. Let X =
[Xi]i=1,··· ,n 2 Rn⇥(p+1) denote an annotation score matrix for the SNPs, where
Xi = (Xi0, · · · , Xip) 2 Rp+1 is a vector of p functional annotations for the i-th
SNP with the first element of 1 as the intercept term. ARoG assumes that n
SNPs are partitioned intoK clusters and uses finite mixture of linear regression
models (FMR) to relate the response zi and the predictor vector Xi for SNP i,
i = 1, · · · , n. Basic ARoG, denoted by ARoG(I), performs l

1

-norm penalized
maximum likelihood estimation for FMR (FMRLasso) proposed in Städler
et al. [27]. Following the notation of FMRLasso, we denote the prior probability
of the k-th cluster as ⇡k, its regression parameters as �k = (�k0, · · · ,�kp)T ,
and its variance as �2

k. The conditional density function of z-scores, that is z
given a functional annotation vector, X is then

f⇠(z|X) =
KX

k=1

⇡k
1p
2⇡�k

exp

✓
� (z �XT�k)

2

2�2

k

◆
, (1)

where ⇠ = (�
1

, · · · ,�K ,�
1

, · · · ,�K ,⇡
1

, · · · ,⇡K�1

) 2 RK·(p+1) ⇥ RK
>0

⇥ ⇧,

and ⇧ = {⇡ : ⇡k > 0 for k = 1, · · · ,K � 1, and
PK�1

k=1

⇡k < 1} is a pa-

rameter space of ⇡ with ⇡K = 1 �
PK�1

k=1

⇡k. Here, �k are cluster-specific
regression parameters specifying how z-scores relate to the annotation scores
within cluster k. Städler et al. [27] considered a reparametrized form of this
density for scale-invariant estimation and e�cient computation. Specifically,
they reparametrized the regression parameters and the variances as follows:

�k = �k/�k, ⇢k = ��1

k , k = 1, · · · ,K.

We can rewrite equation (1) with the new parameters as

f✓(z|X) =
KX

k=1

⇡k
⇢kp
2⇡

exp

✓
�1

2

�
⇢kz �XT�k

�
2

◆
,

where ✓ = (�
1

, · · · ,�K , ⇢
1

, · · · , ⇢K ,⇡
1

, · · · ,⇡K�1

) 2 Rk·(p+1) ⇥ Rk
>0

⇥⇧ is a

new parameter vector and ⇧ is the same set as above with ⇡K = 1�
PK�1

k=1

⇡k.
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FMRLasso penalizes the negative log-likelihood with an l
1

norm penalty
[32]:

� 1

n
l
pen,�(✓) = � 1

n
l(✓) + �

KX

k=1

⇡k||�k||1

=� 1

n

nX

i=1

log

 
KX

k=1

⇡k
⇢kp
2⇡

exp

✓
�1

2
(⇢kzi �XT

i �k)
2

◆!
+ �

KX

k=1

⇡k||�k||1,

where � is a tuning parameter and ||�k||1 =
Pp

j=1

|�kj |. The penalty term
weighs the contributions from each cluster by the corresponding prior proba-
bilities. For a given number of clusters, K, and a given tuning parameter, �,
we define a minimizer of the penalized negative log likelihood as the FMR-
Lasso estimator, denoted by ✓̃�,K = (�̃

1

, · · · , �̃K , ⇢̃
1

, · · · , ⇢̃K , ⇡̃
1

, · · · , ⇡̃K�1

).
Städler et al. [27] also suggested an unweighted penalty term

P
k ||�k||1 and

another weighted penalty term of the form
P

k ⇡
0.5
k ||�k||1. The unweighted

penalty term tends to perform poorly in unbalanced cases, where the numbers
of SNPs across clusters di↵er significantly [27]. Therefore, ARoG utilizes the
weighted penalty term with ⇡k, which performs well in both the balanced and
unbalanced cases.

A key issue in the mixture linear regression model is the selection of the op-
timal number of clusters and the optimal tuning parameter. We use a modified
Bayesian Information Criteria (BIC), defined by Städler et al. [27] as

BIC = �2l(✓̂�,K) + log(n)de,

where de = K + (K � 1) +
P

r=1,··· ,K;j=0,··· ,p 1{ˆ�r,j 6=0} is the e↵ective number

of parameters. We perform a grid search over a set of (�,K) and find the
optimal combinations, (�̂, K̂), achieving the smallest modified BIC. Städler
et al. [27] showed that a single cluster model selects no variables with �

max

=

max
j=0,··· ,p

|<z,Xj>p
n||z|| |, where Xj is the (j+1)-th column of X, and suggested �

max

as the upper bound for the value of the tuning parameter. ARoG increases this
upper bound three to six times since multiple clusters may require a larger
tuning parameter to avoid selecting false positive annotations. With a slight
abuse of notation, we denote the ARoG(I) parameter estimates as ✓̃ ⌘ ✓̃

ˆ�, ˆK .
The annotation coe�cient and the variance for the kth cluster are estimated
by �̃k = �̃k/⇢̃k and �̃k = 1/⇢̃k, respectively. The posterior probability that
SNP i belongs to the kth cluster is given by

�̃ik ⌘ P (k|Xi, zi, ✓̃) =

⇡̃k
⇢̃kp
2⇡

exp

✓
�1

2

⇣
⇢̃kzi �XT

i �̃k

⌘
2

◆

KX

k=1

⇡̃k
⇢̃kp
2⇡

exp

✓
�1

2

⇣
⇢̃kzi �XT

i �̃k

⌘
2

◆ .

ARoG assigns the SNPs to the clusters for which they have the largest pos-
terior probabilities. This generates K SNP sets with members Ck = {i 2
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{1, · · · , n} : k = argmax
m

�̃im} and set sizes |Ck| = nk, k = 1, · · · ,K. We denote

the selected annotation set of each cluster as Sk = {j 2 {1, · · · , p} : �̃kj 6= 0}
with numbers of the selected annotations, |Sk| = pk  p, and define the entire
annotations selected by the model as the union of the selected annotations
across all clusters, S = [kSk ✓ {1, · · · , p}.

3.2 Permutation Testing for ARoG

The ARoG framework follows up the penalized likelihood-based selection with
a permutation testing to evaluate the significance of the selected annotations,
which typically have small e↵ect sizes based on our data analysis results in
Section 4. We specifically test whether the maximum absolute value of the
coe�cients of each functional annotation across all clusters can arise by chance.
We randomly permute the z-scores of the SNPs a large number of times (at
least 1000 times), and refit ARoG to each permuted dataset. At each fit,
we record the maximum absolute value of the estimated coe�cients for each
annotation across all clusters, max

k
|�̃kj |, j = 1, · · · , p. This collection generates

functional annotation specific null distributions. Then the p-value for the j-
th annotation is computed as the proportion of datasets with the maximum
absolute value of the estimated coe�cients for the annotation larger than
max

k
|�̃kj |. We utilize the BH procedure [6] at level 0.1 to account for the

multiplicity of the annotations.

3.3 Two-step Annotation Regression for GWAS (ARoG(II))

Basic ARoG filters false positive annotations with a global penalization across
all clusters; however, it is still prone to selecting a nonignorable number of
false positive variables as both the simulations of Städler et al. [27] and our
computational experiments in Section 5 illustrate. To reduce this e↵ect and,
thereby, increase specificity, we propose and study two-step ARoG, denoted
by ARoG(II). ARoG(II) implements a cluster level penalization and a refit
estimation after the initial global penalization by ARoG(I). The additional
cluster level penalization is similar to relaxed Lasso of Meinshausen [18] which
employs another level of Lasso in the context of standard multivariate linear
regression model. Both ARoG(II) and relaxed Lasso aim to filter out false
positive variables resulting from the initial penalization and thereby lead to
better or comparable prediction with more accurate variable selection. Refit-
ting has been widely used as a simple but practical tool to overcome the biased
estimation of Lasso [8]. The refit step aims to improve regression parameter
estimation by alleviating shrinkage e↵ects towards zero due to penalization.

ARoG(II) starts with the optimal clusters selected by the initial FMRLasso
of ARoG(I), and considers a standard multivariate linear regression model for
each cluster with its FMRLasso selected annotation set. Specifically, ARoG(II)
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adds an l
1

penalty term to the residual sum of squares within each cluster,
thus obtains the following preliminary estimators:

�̂
Sk

�k,k = argmin
�

Sk
k

1

nk

X

i2Ck

⇣
zi �XSkT

i �Sk
k

⌘
2

+ �k||�Sk
k ||

1

, (2)

where �Sk
k 2 Rpk+1, XSk

i = [1;Xij;j2Sk ] 2 Rpk+1, k = 1, · · · ,K. The tuning
parameter selection for each cluster is through BIC [26] and the coe�cients

estimated with the optimal tuning parameter are denoted as �̂
Sk

k = �̂
Sk

ˆ�k,k.
Next, based on the clusterwise Lasso, we obtain a smaller annotation set,
Mk = {j 2 Sk : �̂Sk

kj 6= 0}, with size |Mk| = dk  pk, and refit a least squares
regression with this annotation set:

�̂
Mk

k = argmin
�

Mk
k

1

nk

X

i2Ck

⇣
zi �XMkT

i �Mk
k

⌘
2

, (3)

where �Mk
k 2 Rdk+1 XMk

i = [1;Xij;j2Mk ] 2 Rdk+1. We then have ARoG(II)
annotation score coe�cients for the k-th cluster as

�̂kj =

(
�̂Mk
kj j 2 Mk [ 0,

0 j 2 {1, · · · , p}/Mk.
(4)

Similar to ARoG(I), we define ARoG(II) annotations as the union of selected
annotations over the clusters, M = [kMk ✓ S. There is a trade-o↵ between
ARoG(I) and ARoG(II) since cluster-level Lasso tends to gain specificity and
lose sensitivity with more aggressive annotation screening. The level of the
trade-o↵ varies on a case by case basis. We further discuss this issue with
computational experiments in Section 5.1. The permutation testing described
in Section 3.2 is also part of ARoG(II).

3.4 Numerical Implementation

We implement ARoG with publicly available R packages fmrlasso and glmnet.
The fmrlasso package fits FMRLasso with a block coordinate descent gener-
alized expectation-maximization algorithm (BCD-GEM) proposed by Städler
et al. [27]. It alternates between an expectation step (E-step) and a generalized
maximization step (generalized M-step), which updates the prior probabili-
ties, ⇡ at once, then updates the reparametrized regression coe�cients, � and
standard deviations, ⇢. In the M-step, coordinate updates for � and ⇢ are per-
formed on decoupled K optimization problems for each cluster separately. We
use a hierarchical clustering strategy to initialize the BCD-GEM algorithm.
This clustering operates on a distance matrix where the distance between any
two SNPs is calculated as l

1

distance of their z-scores and summary annotation
scores, which is defined as the l

2

norm on the annotation score vector. This
distance criterion ensures that SNPs with similar z-scores and similar variabil-
ity in the functional annotations are more close to each other. As a result of
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this clustering each SNP has initial membership probabilities for the cluster it
belongs to and the remaining clusters with a ratio of 9 to 1. For the M-step,

we initialize �(0)

kj = 0, ⇢(0)k = 2, ⇡(0)

k = 1/K, k = 1, · · · ,K, and j = 1 · · · , p.
Finally, we implement the cluster level Lasso of ARoG(II) with a coordinate
descent algorithm using glmnet.

4 ARoG Analysis of PGC Data

4.1 PGC Autism GWAS

We fitted ARoG(I) and ARoG(II) to the autism dataset described in Sec-
tion 2.1 and varied the number of clusters as K = 1, · · · , 10. Table 1 presents
parameter estimates from both ARoGs with K̂ = 3 as the optimal number
of clusters. Refitting for ARoG(II) is performed after each SNP is assigned to
the cluster for which the SNP has the highest posterior probability based on
ARoG(I) to reestimate both the regression parameters and the cluster-specific
variances. Both ARoGs have the first and the second clusters as intercept-only
models and select FOXL1 and Nkx2-5 TFs for the third cluster. We kept the
ARoG(I) intercept estimate for the first cluster since no SNPs were assigned to
this cluster. Estimated coe�cients for both TFs of the cluster 3 indicate that
the SNP-driven increase in binding a�nities for FOXL1 and Nkx2-5 associate
with the increase in autism risk in cluster 3. We further support the signifi-
cance of these associations with a permutation test described in Section 3.2
(Supplementary Figure 2(a)). The third cluster has a total of thirteen SNPs,
nine of which constitute the most genome-wide significant SNPs depicted in
the Manhattan plot of Figure 1(a). As an alternative multivariate approach to
ARoG, we also used ordinary least squares (OLS) and Lasso regression to se-
lect the most relevant annotations from the set of 205. OLS did not select any
annotations with a BH adjustment on the OLS p-values at level 0.1 and had
unadjusted p-values of 0.332 and 0.014 for FOXL1 and Nkx2-5, respectively.
We obtained 11 Lasso-selected annotations including Nkx2-5 and FOXL1 with
5-fold cross-validation to tune the l

1

penalty parameter. However, neither of
these survived the permutation testing implemented in a way similar to that
of ARoG’s (Supplementary Figure 2(a)). This analysis suggests that ARoG is
indeed exploiting associations detectable only when appropriate subgroups of
SNPs are considered.

We investigated the e↵ects of the selected annotations, FOXL1 and Nkx2-
5, on autism z-scores of cluster 3. Figure 2(a) highlights significant positive
associations of the z-scores with FOXL1 and Nkx2-5 annotation scores, within
cluster 3. Considering the whole set of SNPs leads to weak positive associations
without statistical support from marginal regressions for both TFs. Figure 2(b)
displays the heatmap of FOXL1 and Nkx2-5 annotation scores of cluster 3
SNPs organized by hierarchical clustering along with their z-scores on top and
supports that the variation in z-scores is well explained by these two annotation
scores.
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Fig. 2: (a) Autism z-scores vs. annotation scores for FOXL1 and Nkx2-5 TFs
selected for cluster 3 along with the marginal linear regression line fit and
ARoG estimates (intercept and slopes for FOXL1 and Nkx2-5). (b) Hierarchi-
cal clustering of SNPs in Cluster 3 based on ARoG selected annotations with
their AUT z-scores. (c) Composite sequence logo of SNP rs17597926 with the
FOXL1 PWM. The middle two rows represent best matching genomic subse-
quences to the FOXL1 PWM with the reference and SNP rs17597926 alleles
respectively. The dashed boxes mark the SNP location. Top and bottom rows
display FOXL1 PWM sequence logos aligned to the best reference and SNP
allele matches.
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Table 1: ARoG parameter estimates with PGC autism data.

Cluster 1 2 3

Estimated prior prob. (⇡̃k) 0.0929 0.8724 0.0347

ARoG(I)

SSD (�̃k) 0.1739 1.0153 2.3258
(Intercept) -0.0686 0.0253 -0.0580
FOXL1 0 0 0.2639
Nkx2-5 0 0 0.1171

ARoG(II)

SSD (�̂k) 0.1739 0.9926 3.7191
(Intercept) -0.0686 0.0183 -0.5724
FOXL1 0 0 1.2075
Nkx2-5 0 0 1.3215

Next, we define ARoG driven candidate causal SNPs, i.e., ARoG SNPs, as
SNPs leading to significant TF binding a�nity changes and having marginal
association with the disorder. atSNP reports p-values assessing whether the
observed change in TF binding a�nity due to SNP is significant. We use
these p-values along with raw GWAS association p-values to refine the SNPs
in cluster 3 and create a set of ARoG SNPs. For the autism application, we
considered a subset of the cluster 3 SNPs with raw GWAS p-value of at most
0.005 and atSNP p-value of at most 0.01 for FOXL1 or Nkx2-5, resulting in
a single ARoG SNP, rs17597926. The unadjusted p-value of this SNP from
autism GWAS is 0.0017 and the resulting atSNP FOXL1 p-value is 0.0008.
The composite logo plot in Figure 2(c) confirms that rs17597926 is creating a
potential FOXL1 binding site. rs17597926 is located within the 5th intron of
the TCF4 gene, known to interact with helix-loop-helix proteins and regulate
neurodevelopment [11]. Furthermore, this SNP has been identified as a cis-
eQTL for TCF4 in a recent brain expression GWAS [36]. This is an additional
support for a potential regulatory role of rs17597926 as a mediator of TCF4
gene in psychiatric disorders.

4.2 Comparison with GPA on PGC Autism GWAS

In addition to the ARoG analysis, we also applied the GPA approach of Chung
et al. [9] to the autism data. We emphasize that GPA and ARoG approaches
utilize functional annotations from di↵erent angles: GPA goes after global sig-
nals using all SNPs genotyped whereas ARoG aims to identify local signals by
focusing on a smaller set of signals with potential significance. GPA is based
on a joint generative model of association p-values of the SNPs and annotation
data and identifies annotations that the disease-associated SNPs are enriched
for. It aims to simultaneously identify null (SNPs not associated with the phe-
notype) and non-null (SNPs associated with the phenotype) and quantify the
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enrichment of a given annotation within these SNP sets. It specifically tests
whether equal proportions of non-null and null SNPs carry the annotation.
Although it can handle multiple annotations simultaneously, our results from
two application schemes of “one annotation at a time” versus “all annota-
tions simultaneously” showed extreme di↵erences which could potentially be
attributable to the violation of the GPA independence assumption of the an-
notations given the SNPs null versus non-null status. As a result, we focus on
applying GPA one annotation at a time. Of the 1,219,561 genotyped SNPs in
the PGC cross-disorder study, we considered a subset of 1,210,570 SNPs that
were also in the dbSNP database. GPA works with binary annotations; there-
fore, we created a binary annotation score matrix by running atSNP [37] on
the SNPs and thresholding atSNP p-values at 0.05. We applied GPA to each
of the 205 annotations separately and estimated the proportions of null and
non-null SNPs associated with each annotation. Results of GPA hypothesis
testing for annotation enrichment did not identify any annotation as signifi-
cantly enriched for autism-associated SNPs (Supplementary Figure 3). This is
consistent with our marginal analysis in Section 2 where none of the annota-
tions exhibited significant marginal associations with the autism z-scores. The
estimated fold enrichments of FOXL1 and Nkx2-5 in the GPA analysis were
1.003 (s.e. 0.113) and 0.912 (s.e. 0.146), respectively. Both of these levels were
too small to be detected with this analysis that considered only two global
classes of SNPs (null and non-null).

4.3 PGC Schizophrenia GWAS

We applied ARoG to the SCZ2 dataset described in Section 2 with numbers
of clusters K = 1, · · · , 10. Best BIC values were achieved at K̂ = 6 and K̂ = 7
with only a 0.01% di↵erence between the two. We carried out the rest of the
analysis with K̂ = 6.

Neither ARoG(I) nor ARoG(II) selected any annotations for clusters 1-4.
ARoG(I) selected FOXL1, Klf4, Prrx2, and NKX3-1 annotations for cluster
5, and Arnt::Ahr, E2F1, FOXL1, Klf4, Foxq1, Prrx2, ARID3A, and E2F4
annotations for cluster 6. Among the selected annotations, the pair of E2F1
and E2F4 and the pair of Prrx2 and ARID3A share similar sequence logos,
respectively, thus, both pairs have relatively high correlations of 0.8096 and
0.6234 in the annotation score matrix. ARoG(II) retained FOXL1 and Klf4
for cluster 5 and Arnt::Ahr and FOXL1 for cluster 6 (Table 2). Overall, both
cluster 5 and 6 are populated with the most genome-wide significant SNPs
depicted in the Manhattan plot of Figure 1(c). Permutation testing results
for ARoG(I) and ARoG(II) support significance of the selected annotations
with BH adjustment at level 0.1 (Supplementary Figure 2(b)). OLS analysis
of this dataset selected 15 annotations with unadjusted permutation p-values
smaller than 0.05; however, none of these survived the multiple testing cor-
rection with the BH adjustment at level of 0.1. In contrast, Lasso with 5-fold
cross validation tuning selected 17 annotations, of which only two (Foxq and
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Fig. 3: (a) SCZ1 p-values for multiple SNP sets generated based on the
SCZ2 data: The SNP sets include ARoG: ARoG SNPs ; All: All 11, 386 SNPs;
BH0.01: SNPs with SCZ2 BH-adjusted p-values less than or equal to 0.01;
BF0.05/BF0.01: SNPs with SCZ2 Bonferroni adjusted p-values less than or
equal to 0.05/0.01. (b) SNPs ranked based on their SCZ1 significance levels.
ARoG SNPs are marked with asterisks. The vertical dashed line depicts Bon-
ferroni cut-o↵ of SCZ1 analysis under significance level of 0.05. (c) Composite
sequence logo of rs11191580 with the Arnt::Ahr PWM: the SNP enhances the
binding of Arnt::Ahr. (d) Composite sequence logo of SNP rs732998 with the
Arnt::Ahr PWM: the SNP also enhances the binding of Arnt::Ahr.

Zfx annotations) survived the same multiple testing adjustment. The scatter
plots of the SCZ2 z-scores against the ARoG(II) selected annotations exhibit
associations in clusters 5 and 6 with a similar global trend across the whole
SNP set (Supplementary Figure 4).

We next created a set of ARoG SNPs with Bonferroni corrected p-values
less than 0.05 and atSNP p-values less than 0.01. While the autism dataset
su↵ers from low power, SCZ2 dataset has many SNPs reaching genome-wide
significance. Thus, we used the more stringent rule based on Bonferroni cuto↵
of 0.05 on the SCZ2 GWAS association p-values. ARoG SNPs included 14
SNPs from cluster 5 and 30 SNPs from cluster 6. Supplementary Table 1
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Table 2: ARoG parameter estimates with PGC SCZ2 data

Cluster 1 2 3 4 5 6

Estimated prior prob. (⇡̃k) 0.2335 0.2173 0.2202 0.2084 0.0615 0.0591

ARoG(I)

SSD (�̃k) 0.4122 0.3825 0.8805 0.9001 1.7423 1.8453

(Intercept) 4.1206 -4.1117 -4.5537 4.6279 -5.7453 5.8446
Arnt::Ahr 0 0 0 0 0 0.0859
FOXL1 0 0 0 0 -0.2335 -0.1394
Klf4 0 0 0 0 0.1027 0.0653

ARoG(II)

SSD (�̂k) 0.3336 0.2941 0.9605 0.9427 1.5425 1.6721

(Intercept) 4.0791 -4.0776 -4.8039 4.9482 -7.0816 7.1786
Arnt::Ahr 0 0 0 0 0 0.1814
FOXL1 0 0 0 0 -0.2879 -0.4295
Klf4 0 0 0 0 0.2654 0

presents genomic locations, GWAS p-values, and RegulomeDB scores [7] of
these SNPs. RegulomeDB scores range from 1 for SNPs likely to a↵ect TF
binding and be linked to expression of a gene target to 7 for SNPs with no
supporting data. For details on RegulomeDB scoring scheme, we refer Table 2
of Boyle et al. [7]. Of the 44 ARoG SNPs, fifteen have RegulomeDB score of 1,
providing evidence for potential importance of these SNPs to schizophrenia.
We next compared the SCZ1 association measures (p-values) of ARoG SNPs to
those of other SNP sets one could have identified from the initial set of 11,386
SNPs without using additional functional annotation (Figure 3(a)). The other
SNP sets one could define are BH0.01 (SNPs defined by BH correction at level
0.01 on the SCZ2 p-values), BF0.05 (SNPs defined by Bonferroni correction
at level 0.05 on the SCZ2 p-values), and BF0.01 (SNPs defined by Bonferroni
correction at level 0.01 on the SCZ2 p-values). The intial SNP set was added
as a baseline. ARoG SNPs are on average more significant and reproducible
in the SCZ1 than the other SNP sets. Comparison of ARoG SNPs with a
randomly selected SNP set of the same size from BF0.05 also indicated that
ARoG SNPs are on average more significant, illustrating that the use of the
functional annotation information is biasing the selection towards SNPs with
reproducible associations. Figure 3(b) displays ranking of SCZ1 p-values of
all 11,386 SNPs and illustrates that most ARoG SNPs are among the most
significant SNPs with respect to SCZ1. Four of these SNPs reach genome-wide
significance with Bonferroni adjustment at level 0.05 in the SCZ1 study.

Next, we assessed whether any of theARoG SNPs were among the schizophre-
nia associated SNPs from dbGaP [3]. dbGaP harbors 249 SNPs associated with
schizophrenia and 42 of these are among the 11,386 SNPs we utilized. Two
of the ARoG SNPs (rs11191580 and rs10224497, located at chr10:104,906,211
and chr7:2,149,967) are among the dbGaP SNPs. SNP rs11191580 leads to en-
hancement of Arnt::Ahr binding while rs10224497 seems to disrupt Arnt::Ahr
binding. Since we observed that enhanced Arnt::Ahr binding overall associated
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with increased schizophrenia risk in clusters 5 and 6 of the ARoG results, we
further investigated rs11191580. rs11191580 is located within the 3rd intron of
Nt5C2 and has rs732998, located within the 4th intron of Nt5C2, as a perfect
LD partner. Their composite logo plots support that these SNPs might indeed
enhance the binding of Arnt::Ahr (Figures 3(c), (d)). Furthermore, the asso-
ciation of rs11191580 is also validated in SCZ1 with p-value of 2.23 ⇥ 10�8.
Although rs732998 does not quite make the genome-wide significance cut-o↵,
it also exhibits a significant association in SCZ1 with p-value of 9.50 ⇥ 10�8.
In summary, these two SNPs in perfect LD lead to sequence changes that are
likely to improve the binding of the Arnt::Ahr complex. This complex regu-
lates genes in response to the carcinogenic environmental contaminant 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD). Akahoshi et al. [5] showed that Ahr TF
is frequently detected in brain and over-expression of AhR causes neural dif-
ferentiation of Neuro2a cells. Furthermore, recent studies support that dioxins
and related chemicals influence neural development, and the AhR-signaling
pathway might mediate the impact of dioxins on the nervous system [34].

Finally, as we have done for the autism dataset in Section 4.2, we ap-
plied GPA to SCZ2 dataset using all 1,175,307 SNPs that were in the db-
SNP database out of the 1,179,262 genotyped SNPs. This analysis identified
non-null SNPs as significantly depleted for Zfp423 annotation (Supplementary
Figure 5) under Bonferroni adjusted significance level of 0.1. However, the
probability that a SNP is non-null is estimated as 0.3157, thus the estimated
non-null set is likely to falsely include a large number of SNPs unassociated
with schizophrenia. This implies that the Zfp423 depletion is likely to be a
false positive finding.

5 Simulation Studies

We evaluated ARoG(I) and ARoG(II) with synthetic datasets and PGC data-
driven simulated datasets. As alternative methods operating on multiple an-
notations, we included Lasso regression, and OLS with BH correction on the
regression coe�cient p-values at level of 0.05. Both ARoGs enable clustering of
SNPs and heterogeneous annotation coe�cients across the clusters while both
Lasso regression and OLS assume the homogeneity of the annotation e↵ects.
Our simluation-based evaluations focus on the detection of relevant annota-
tions from a large set of annotations with weak e↵ect sizes. Our application of
GPA under the settings enabled by binarizing the annotation scores behaved
unstably and failed in fitting the GPA model. This was mostly due to the
severe sparsity of the binary annotations making their estimators be near or
on the boundary of the parameter space. Therefore, we did not include GPA
as an alternative method in these simulation studies.

We generated 100 simulated datasets under each scenario, where each sim-
ulated dataset consisted of training data, validation data, and test data. The
validation dataset was used for selection of the optimal tuning parameter,
and its sample size was increased 100 times compared to that of the training
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Table 3: Simulation settings for Section 5.1.

� � ⇡
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n 100

Cluster
1 (0, 3, · · · , 3

| {z }
5 repetitions

, 0, · · · , 0
| {z }
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) 0.5 0.5
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| {z }
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| {z }
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| {z }

15 repetitions

) 0.5 0.5

dataset. The test error was calculated as the negative log-likelihood on the
test dataset with the same sample size as the training dataset. We report for
each method the test error, numbers of true (TPs) and false positives (FPs),
adjusted rand index (ARI) [22], receiver operating characteristic (ROC) curve,
and precision recall curve. TPs and FPs for ARoG are defined by pooling se-
lected annotations across the identified clusters. We use ARI to measure the
similarity between the true SNP clusters and estimated SNP clusters. ROC
curves and precision-recall curves present the performance of annotation se-
lection in a threshold (cut-o↵ for BH adjusted p-values for OLS, tuning pa-
rameters for Lasso and both ARoGs) agnostic manner. In these curves, we
plot averages of the true positive rate (TPR), false positive rate (FPR), and
precision across the 100 simulation replications.

5.1 Synthetic Data

We generated data from several Gaussian finite mixture regression models
varying the sparsity level of annotation signals as sparse, intermediate, and
dense models (Table 3). The columns of the predictor matrix X are generated
from an independent standard normal distribution. Supplementary Figures 6
and 7 and Figure 4 present the results of these simulations.

The Sparse(I) setting is a small n, large p setting; hence, our comparisons
only include ARoG(I), ARoG(II), and Lasso. Supplementary Figure 6(a) and
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(b) show that ARoG(I) has the smallest test error and both ARoGs have a me-
dian ARI of about 0.7. ARoG(I) and ARoG(II) have the same ARI by design
since they share the same clustering assignment and Lasso has ARI of 0 since
it does not perform clustering. Both versions of ARoG have high TPR with the
optimal tuning parameter (Supplementary Figure 6(c)); however; ARoG(I) has
an inflated FPR with an average of 10 more FPs compared to ARoG(II) (Sup-
plementary Figure 6(d)). Lasso underselects annotations and on average has
four false negatives. ROC and precision-recall curves (Supplementary Figures
6(e) and (f)) indicate that ARoGs outperform Lasso significantly. We remark
that the top left corner of the ROC curves for ARoGs roughly corresponds to
the results with the optimal tuning parameters presented in the boxplots of
TP and FP. We also note that Lasso, ARoG(I), and ARoG(II) do not select
annotations in a sequentially augmenting way as tuning parameters decrease;
thus, the ROC cuves are not monotonically increasing. We also investigated
this sparse setting by increasing the sample size to 1000 and observed almost
perfect performance by all methods with an area under the ROC curve of 1.

Supplementary Figure 7 presents the simulation results from the inter-
mediate models of Table 3, where almost half of the regression parameters
are set as zero. The test error evaluation, ROC curves, and precision recall
curves clearly indicate that ARoGs outperform OLS and Lasso. Both ARoG(I)
and ARoG(II) have the optimal number of TPs, 55, with the optimal tuning
parameters (Supplementary Figure 7(c)); however their numbers of FPs are
substantially di↵erent (Supplementary Figure 7(d)). ARoG(II), on average, se-
lects 2 FPs whereas ARoG(I) selects more than 45 FPs. This emphasizes the
significance of the cluster-level Lasso step of ARoG(II) for reducing the num-
bers of FPs. ROC curves (Supplementary Figure 7(e)) reveal that although
ARoG(I) and ARoG(II) overall have comparable performances, ARoG(II) per-
forms marginally better in the top left corner, where both accurately identify
all TPs, but only ARoG(II) succeeds in filtering out many FPs.

Figure 4 presents the results for the Dense (I) setting. These results agree
with the superior performances of both versions of ARoG in the previous
settings in terms of prediction error (Figure 4(a)). This setting also elucidates
the contrast between the two ARoGs: ARoG(I) tends to select all annotations,
essentially failing to achieve any variable selection whereas ARoG(II) is able to
filter out FPs (Figures 4(c) and (d)). OLS tends to underselect annotations and
Lasso tends to select more compared to OLS; however, still partially recovers
the TPs. ARoG(II) has the best ROC and precision-recall curve performances
(Figures 4(e) and (f)). This setting includes 60 annotations that are not shared
between clusters in contrast to the previous settings where the annotations
were shared by multiple clusters. The selection performances on these cluster-
specific variables are less stable; as a result, the TPRs of both ARoGs heavily
fluctuate between 0.4 and 1 in the top left corner of the ROC curves where both
have small FPR. Overall, we conclude that the di↵erences between ARoG(I)
and ARoG(II) become more pronounced as the sparsity level decreases, and in
such dense settings, ARoG(I) tends to have much higher FPR than ARoG(II).
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Fig. 4: Simulation results for Dense(I) setting of Table 3.

These computational experiments involved completely simulated datasets
where the predictor matrix had independent columns and was not designed to
have many weak signals. Supplementary Figure 8 presents results from a weak
signal setting where the actual annotation predictor matrix from the PGC
autism GWAS is used to simulate data with the parameters of Supplementary
Table 2. This predictor matrix has many more scores close to zero compared to
the randomly generated predictor matrix in the above simulations. The overall
conclusions from this setting agree well with the Sparse(I) setting.

5.2 PGC Analysis-Driven Data

We next evaluated the performance of ARoG in two simulation settings based
on the autism and SCZ2 data analyses of Sections 4.1 and 4.3. The data were
simulated based on the actual annotation score matrix from each application
and the ARoG(II) parameter estimates of regression slopes, standard devi-
ations, and prior probabilities. These data-driven simulation studies aim to
capture the typical signal to noise levels observed in these type of studies.
Figure 5 displays the results of the autism simulation setting. Both ARoGs
reduce the prediction error compared to OLS by about 8% (Figure 5(a)). Both
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Fig. 5: Simulation results for autism data analysis driven setting.

OLS and Lasso tend to miss TPs and thus fail to recover the underlying as-
sociations (Figure 5(c)). ARoG(I) and ARoG(II) tend to select at least one
correct annotation with 86 and 78 times out of 100 repetitions, respectively.
Specifically, FOXL1 is selected 71 and 61 times and Nkx2-5 is selected 49
and 42 times by ARoG(I) and ARoG(II), respectively. ARoG(II) on average
filters out 2 more FPs than ARoG(I) (Figure 5(d)). Based on the ROC and
precision-recall curves, ARoG(I) has the best tuning parameter-free perfor-
mance followed by ARoG(II) (Figure 5(e) and (f)). OLS performs almost the
same as random guess with an ROC curve on the 45 degree line.

Supplementary Figure 9 presents the results for the SCZ2 simulation set-
ting. Both ARoGs perform very well in terms of prediction error (Supplemen-
tary Figure 9(a)). Similar to the autism simulations, both OLS and Lasso
fail to select any annotations (Supplementary Figure 9(c) and (d)). ARoG(I)
and ARoG(II) tend to recover the TPs to some extent by selecting at least
one correct annotation except in one simulated dataset with ARoG(II). In this
setting, a trade-o↵ between two ARoGs is clear since ARoG(I) seems better at
identifying the TPs, namely, Arnt::Ahr, FOXL1, and Klf4, whereas ARoG(II)
is able to more aggressively eliminate FPs. ARoG(I) has a median of 11 FPs,
with more than 25 FPs in 13 of the simulated datasets. In contrast, ARoG(II)
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has a median of 2 FPs, with less than 10 FP annotations in almost all simulated
datasets. In terms of the ROC and precision-recall curve comparisons (Supple-
mentary Figure 9(e) and (f)), ARoG(I) exhibits a better tuning parameter-free
performance compared to ARoG(II). Both OLS and Lasso perform similar to
random guesses.

6 Discussion

We presented an integrative framework, named ARoG, for incorporating func-
tional annotation data into GWAS analysis. The key idea behind ARoG is
that even when a set of SNPs disrupts a global mechanism, e.g., pathway,
that leads to disease, they might be achieving this by disrupting various sub-
mechanisms. Some might be disrupting coding sequences, some binding sites
of TFs, some methylation profiles or chromatin accessibility. ARoG capitalizes
on this idea and aims to identify clusters of SNPs for which GWAS association
measures can be explained by a subset of functional annotations. ARoG uti-
lizes FMRLasso [27] which enables selection among large numbers of functional
annotations. We illustrated ARoG with an application to PGC data on autism
and schizophrenia disorders by utilizing the impact of SNPs on TF binding
a�nities as functional annotations. Our analyses led to identification of SNPs
which do not necessarily make the genome-wide significance cut-o↵s; however,
are potentially worthy of following up since their GWAS associations are sup-
plemented by their significant e↵ects on TF binding a�nities. This versatile
framework provides many directions for useful extensions. First, its annotation
selection capability makes it applicable with larger sets of functional annota-
tions including TF ChIP-seq, DNase I accessibility, Histone ChIP-seq, and
DNA methylation. Second, we focused our analysis on one disorder at a time;
however, ARoG framework can be easily extended to simultaneously consider
multiple related GWAS.
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