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Received: December, 2015 / Accepted: date

Abstract Although genome-wide association studies (GWAS) have been suc-
cessful at finding thousands of disease-associated genetic variants (GVs), iden-
tifying causal variants and elucidating the mechanisms by which genotypes in-
fluence phenotypes are critical open questions. A key challenge is that a large
percentage of disease-associated GVs are potential regulatory GVs located in
noncoding regions, making them di�cult to interpret. Recent research e↵orts
focus on going beyond annotating GVs by integrating functional annotation
data with GWAS to prioritize GVs. However, applicability of these approaches
are challenged by high dimensionality and heterogeneity of functional anno-
tation data. Furthermore, existing methods often assume global associations
of GVs with annotation data. This strong assumption is susceptible to vio-
lations for GVs involved in many complex diseases. To address these issues,
we develop a general regression framework, named Annotation Regression for
GWAS (ARoG). ARoG is based on finite mixture of linear regression mod-
els where GWAS association measures are viewed as responses and functional
annotations as predictors. This mixture framework addresses heterogeneity of
impacts of GVs by grouping them into clusters and high dimensionality of
the functional annotations by enabling annotation selection within each clus-
ter. ARoG employs permutation testing to evaluate the significance of selected
annotations. Computational experiments indicate that ARoG can discover dis-
tinct associations between disease risk and functional annotations. Application
of ARoG to autism and schizophrenia data from Psychiatric Genomics Con-
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sortium led to identification of GVs that significantly a↵ect interactions of
several transcription factors with DNA as potential mechanisms contributing
to these disorders.

Keywords Finite mixture of regressions, Functional genomic data, Genome-
wide association studies, Integrative analysis, Regularized variable selection

1 Introduction

Although genome-wide association studies (GWAS) have successfully iden-
tified thousands of genetic loci associated with human diseases, design and
analysis of these studies are challenged in two critical aspects. First, existing
GWAS have revealed that for many common disorders, the typical genetic
architecture encompasses many genetic variants (GV) with individually small
e↵ects on the phenotype [28], indicating the need for larger sample sizes to reli-
ably identify them. Second, roles of a large proportion of identified GVs remain
elusive since they reside in non-coding regions. Today, with the availability of
a↵ordable whole genome sequencing, our ability to elucidate the mechanisms
by which genotypes influence phenotypes is far behind our ability to identify
phenotype-associated variants.

In parallel to the rapid developments in the design and analysis of GWAS,
large consortia projects such as the Encylopedia of DNA Elements (ENCODE
[14, 34]), Roadmap Epigenome Mapping Consortium (REMC [24]), the Genotype-
Tissue Expression Consortium (GTEx [29]), and the International Human
Epigenome Consortium (IHEC [3]) as well as many investigator-driven projects
are generating diverse data types of RNA transcription (RNA-seq), DNA ac-
cessibility (DNase-seq), DNA methylation (Methyl-seq), protein-DNA inter-
actions (ChIP-seq/exo), protein-RNA interactions (CLIP-seq), and chromatin
state (Histone ChIP-seq) across diverse cell/tissue types. Although there is
a growing literature on methods for utilizing one or more classes of these
functional annotation data to support GWAS results, these data have rarely
played more than an indirect role in assessing evidence for association in these
approaches. They are commonly used to follow up identified significant GVs
or prioritize them for causality [10, 13, 17, 21]. Specifically, [15, 21, 30] used
annotations to model prior probabilities of association of GVs under Bayesian
framework or hierarchical modeling. [10, 17] developed models to integrate
binarized functional annotation data and GWAS summary statistics such as
p-values and z-scores of GVs. [13] correlated annotations with GWAS asso-
ciation status, and used the estimated odds of association to estimate the
posterior odds of association of GVs for prioritization. A significant shortcom-
ing of these methods is that they aim to globally relate associations of GVs to
functional annotation data despite the fact that the same disease mechanism
might be governed by distinct functional annotations. For example, disruption
of an important pathway may arise by GVs in coding regions of the genes
and/or in one or more of their regulatory mechanisms. Regulatory GVs may
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Annotation regression for GWAS 3

have a variety of mechanisms such as transcription factor (TF) binding, hi-
stone modifications, enhancer activity through chromatin architecture, DNA
methylation, and alternative splicing [20]. Another significant shortcoming is
that these approaches use functional annotation in an agnostic manner by ig-
noring the relevance of the tissue/cell type that the annotation is drawn from
to the tissue/cell type that is most relevant to disease etiology. In other words,
they are not equipped to automatically select important annotations. Further-
more, several of them can only use annotation data in specific formats (e.g.,
most recent genetic analysis incorporating pleiotropy and annotation (GPA)
[10] requires binary annotation variables) due to computational impediments.
A useful common key feature of many existing methods is that they use popu-
lation level GWAS data in the form of summary statistics of GVs from GWAS
[10, 13, 17, 30] as opposed to individual subject-level data which is not imme-
diately available publicly [32].

To overcome these challenges, we develop a regression framework named
Annotation Regression for GWAS (ARoG) and integrate GWAS and func-
tional annotation data. ARoG models GWAS association measures, e.g., z-
scores from univariate analysis of GWAS, as a linear function of functional
annotations. It employs a mixture of linear regressions framework to accom-
modate the heterogeneity of associations between GWAS association measures
and functional annotations. It aims to capture locally distinct associations that
would not be revealed with an analysis that assumes homogeneity of these
associations. A critical aspect of ARoG is that it can automatically select rele-
vant annotations among a large number of annotations with penalization tech-
niques. ARoG works with all the commonly used functional annotation types
captured by categorial or continuous variables. The rest of the paper is orga-
nized as follows. Section 2 presents empirical observations regarding GWAS
association measures and functional annotations using Psychiatric Genomics
Consortium (PGC) data. Section 3 develops ARoG and discusses implementa-
tion details. In Section 4, we analyze PGC autism and schizophrenia data and
identify GVs that are associated with these diseases and have the potential
to modulate TF-DNA interactions. Section 5 presents computational experi-
ments with a wide variety of settings including a PGC analysis-driven one. In
Section 6, we provide concluding remarks and discuss extensions.

2 Exploring Psychiatric Genomics Consortium Data with

Functional Annotations

PGC has conducted analysis of combined GWAS data from separate studies.
Specifically, they examined five psychiatric disorders: attention deficit/hyperactivity
disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BIP),
major depressive disorder (MDD), and schizophrenia (SCZ) [4, 11]. As a re-
sult, they identified 4 genome-wide significant loci for BIP [22], and more
than 100 genome-wide significant loci for SCZ [25, 26]. However, this analysis
did not lead to any reproducible genome-wide significant loci for ADHD and
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MDD, and the analysis on ASD is in progress. Their GWAS summary datasets
are publicly available at http://www.med.unc.edu/pgc/downloads. In what
follows, we focus on AUT and SCZ data.

2.1 Autism GWAS

We generated a set of candidate SNPs by starting with the intersection of
SNPs genotyped in all five disorder datasets from the PGC cross-disorder
study [11]. After lifting the original genomic coordinates from hg18 to hg19,
we obtained 1,219,561 SNPs common to all five disorders. We next selected
the subset of the SNPs with a Benjamini-Hochberg (BH) adjusted association
p-value smaller than or equal to 0.1 in any of the five disorders [6]. This led
to a total of 1, 430 SNPs. Next, we included 761 linkage disequilibrium (LD)
partners of these SNPs as identified by the SNAP tool [16] with an r

2 � 0.8 to
one or more of the 1, 430 SNPs. As part of pre-processing, we discarded SNPs
with more than one nucleotide on the reference genome, SNPs with nucleotide
mismatches between the PGC dataset and the SNP Database dbSNP [2], and
SNPs not listed in dbSNP [2]. This resulted in a total of 2,191 SNPs for ARoG
analysis. Supplementary Figure 1(a) displays the histogram of the autism z-
scores for these sets of SNPs and illustrates that, as expected, LD partners
tend to contribute z-scores around zero to the overall distribution since they
had BH adjusted p-values larger than 0.1 in the initial selection step. The
manhattan plot of the p-values in Figure 1(a) indicates that the SNPs with
the strongest association are on chr 5 (6 of them) and chr 6 (3 of them) with
p-values ranging from 5.37 ⇥ 10�7 to 1.93 ⇥ 10�7. All of these have raw p-
values less than 10�6; however, they make neither the conventional GWAS
p-value cuto↵ of 5 ⇥ 10�8 nor the Bonferroni cuto↵ of 4.1 ⇥ 10�8 specific for
this study, indicating that common practice for GWAS analysis would not
confidently identify significant SNPs from this study.

Currently, most integrative analysis methods consider functional annota-
tions enabled by the large scale analysis results of consortia projects such as
ENCODE (e.g., [10, 17, 21]). In our exposition, we consider a specific class
of functional annotation, namely, impact of single nucleotide polymorphisms
(SNPs) on TF binding. Specifically, we used atSNP [36] to create an annota-
tion score matrix for the 2,191 SNPs. atSNP quantifies the impact of SNPs,
i.e., the likelihood that a given SNP disrupts or enhances the binding sites
from a given set of position weight matrices (PWMs) characterizing the class
of sequences TFs recognize. atSNP operates by scanning through subsequences
overlapping with the SNP position with reference and SNP alleles for the best
matches of both to a given PWM. It quantifies the significance of the best
matches with the reference and SNP alleles by p-values. Then, the log ratio of
the two p-values are defined as the atSNP annotation score, which empirically
reflects the change in the ranks of the PWM matches of the alleles. SNPs likely
to enhance or disrupt binding of given TF have large absolute atSNP scores for
the corresponding PWM while SNPs with little potential impact on binding
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Fig. 1: (a) Manhattan plot for autism association p-values across all 2,191
SNPs. ARoG SNPs identified in Section 4.1 are marked with purple diamonds.
(b) Heatmap of -log10 p-values from marginal regressions of z-scores on an-
notation scores. (c) Manhattan plot for SCZ2 association p-values across all
11,386 SNPs. ARoG SNPs identified in Section 4.3 are marked with purple
diamonds. Blue and red horizontal lines depict the Bonferroni cut-o↵ at sig-
nificance level of 0.05 and the conventional p-value cuto↵ of 5 ⇥ 10�8. (d)
Ranking of transcription factors based on marginal regressions of the SCZ2 z-
scores on annotations scores for each TF. Transcription factors FOXL1, Klf4,
and Arnt::Ahr that are identified as associated with the z-scores in Section 4.3
are labeled. The dashed vertical line depicts the BH cut-o↵ at significance level
0.1.
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have scores close to zero. We refer to [36] for further computational details. We
considered the JASPAR CORE database [18] for vertebrates with 205 PWMs
as our motif library and scored the SNP set. atSNP evaluates the impact of
SNPs on the binding a�nities of the TFs by evaluating and comparing the
best sub-sequence matches overlapping the SNP position to the PWM with
both SNP and the reference alleles. Large positive and negative atSNP scores
indicate enhancement and disruption of TF binding, respectively. Supplemen-
tary Figure 1(b) displays the heatmap of the resulting annotation score matrix
along with the z-scores. Here, only SNPs colored as dark green or red are likely
to lead to significant changes (as assessed by atSNP p-values) in TF binding.
As part of our exploratory analysis, we first regressed z-scores from each of
the five disorders on each annotation score separately. Figure 1(b) displays the
-log10 transformed p-values from these marginal regressions. We note that the
overall association of the z-scores and functional annotations for some diseases
are apparent (e.g., MDD). However, for autism, none of the annotations can
be deemed as contributing to the variation in the autism z-scores based on
this global marginal analysis as all BH adjusted p-values are greater than 0.1
(Supplementary Figure 1(c)).

2.2 Schizophrenia GWAS

PGC provides two mega analyses of schizophrenia GWAS. We will refer to
the first study, results of which are included in the above five disorder ex-
ploratory analysis as SCZ1 [25] and the second as SCZ2 [26]. SCZ1 and SCZ2
have genotypes for 1,252,901 and 9,444,230 SNPs, respectively. Intersection of
these two leads to 1,179,262 SNPs. We filtered out SNPs with BH adjusted
p-values larger than 0.01 for both studies, and retained 8,029 SNPs. Similar
to the autism analysis, we also excluded SNPs with multiple reference alleles,
with allele mismatches between PGC dataset and dbSNP, and SNPs that are
not in dbSNP. We next extended this set by including their LD partners with
r

2 � 0.8. Our final set of SNPs for this analysis included 11,386 SNPs. z-scores
of the 11,386 SNPs from both SCZ1 and SCZ2 have a bimodal distribution
(Supplementary Figure 1(d)). However, SCZ2 has many more statistically sig-
nificant SNPs as evidenced by long tails of the z-score distribution. This can
be viewed as increased precision since the sample size of SCZ2 is four times
as large as that of SCZ1. In what follows, we perform ARoG analysis on
SCZ2 dataset, and use SCZ1 dataset for validation. The manhattan plot in
Figure 1(c) indicates that genome-wide significant SNPs from SCZ2 spread
throughout the genome.

We next generated an 11, 386 ⇥ 205 annotation score matrix using at-
SNP with the JASPAR PWM library. Supplementary Figure 1(e) displays the
heatmap of the resulting annotation score matrix along with the SCZ1 and
SCZ2 z-scores and indicates that only a small proportion of SNPs change the
binding a�nities of TFs, and only a few TFs have noticeable binding a�nity
changes due to the SNPs. Marginal regressions of z-scores on annotation scores
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identify 40 annotations which are significant when adjusted for multiple test-
ing by the BH procedure at level 0.1 (Figure 1(d)). However, given the large
sample size, i.e., the number of SNPs, in this marginal analysis, we view these
associations as suggestive and turn our attention to developing a framework
that can identify subgroups of SNPs with association measures explained by
a subgroup of functional annotations.

3 A Mixture of Linear Regressions Framework for Incorporating

Functional Annotations into GWAS Analysis

In the ARoG framework, both the predictors and the response measure e↵ects
of SNPs: the predictors capture e↵ects on transcription factor binding a�ni-
ties and the response on disease/trait. ARoG associates them in a regression
framework, and aims to increase the detection power for association SNPs with
this additional functional information.

3.1 Basic Annotation Regression for GWAS (ARoG(I))

Let zi 2 R, i = 1, · · · , n denote z-scores for n SNPs from a GWAS and, xi =
(xi0, · · · , xip) 2 Rp+1 denote a vector for p functional annotations of the i-
th SNP with the first element of 1 as the intercept term. ARoG assumes
that n SNPs can be partitioned into K clusters with finite mixture of linear
regression models. Following the notation of FMRLasso developed by [27], we
denote the prior probability of the k-th cluster as ⇡k, its regression parameters
as �k = (�k0, · · · ,�kp)T , and its variance as �2

k. The z-score of a SNP from the
kth cluster with a functional annotation vector, x, is assumed to be normally
distributed with mean x

T
�k and variance �2

k. The conditional density function
of z given x is then

f

⇠

(z|x) =
KX

k=1

⇡k
1p
2⇡�k

exp

✓
� (z � x

T
�k)

2

2�2

k

◆
, (1)

where ⇠ = (�
1

, · · · ,�K ,�

1

, · · · ,�K ,⇡

1

, · · · ,⇡K�1

) 2 RK·(p+1)⇥RK
>0

⇥⇧, and

⇧ = {⇡ : ⇡k > 0 for k = 1, · · · ,K � 1, and
PK�1

k=1

⇡k < 1} with ⇡K =

1�
PK�1

k=1

⇡k. [27] considered a reparametrized form of this density for scale-
invariant estimation and e�cient computation. Specifically, they reparametrized
the regression parameters and the variances as follows:

�k = �k/�k, ⇢k = �

�1

k , k = 1, · · · ,K.

We can rewrite equation (1) with the new parameters as

f

✓

(z|x) =
KX

k=1

⇡k
⇢kp
2⇡

exp

✓
�1

2

�
⇢kz � x

T
�k

�
2

◆
,
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where ✓ = (�
1

, · · · ,�K , ⇢

1

, · · · , ⇢K ,⇡

1

, · · · ,⇡K�1

) 2 Rk·(p+1) ⇥ Rk
>0

⇥⇧ and

⇧ is the same set as above with ⇡K = 1�
PK�1

k=1

⇡k.
FMRLasso penalizes the negative log-likelihood with an l

1

norm penalty
[31]:

� 1

n

l

pen,�(✓) = � 1

n

l(✓) + �

KX

k=1

⇡k||�k||1

= � 1

n

nX

i=1

log

 
KX

k=1

⇡k
⇢kp
2⇡

exp

✓
�1

2
(⇢kzi � x

T
i �k)

2

◆!
+ �

KX

k=1

⇡k||�k||1,

where � is a tuning parameter and ||�k||1 =
Pp

j=1

|�kj |. The penalty term
weighs the contributions from each cluster by the corresponding prior probabil-
ities. For a given number of clusters,K, and a given tuning parameter, �, we de-
fine the FMRLasso estimator as ✓̃�,K = (�̃

1

, · · · , �̃K , ⇢̃

1

, · · · , ⇢̃K , ⇡̃

1

, · · · , ⇡̃K�1

).
[27] also suggested an unweighted penalty term

P
k ||�k||1 along with another

weighted penalty term of the form
P

k ⇡
0.5
k ||�k||1. The unweighted penalty

term tends to perform poorly in unbalanced cases, where the numbers of ob-
servations across clusters di↵er significantly [27]. Therefore, ARoG utilizes the
weighted penalty term with ⇡k, which performs well in both the balanced and
unbalanced cases.

A key issue in the mixture linear regression model is the selection of the op-
timal number of clusters and the optimal tuning parameter. We use a modified
Bayesian Information Criteria (BIC), defined by [27] as

BIC = �2l(✓̂�,K) + log(n)de,

where de = K+(K�1)+
P

r=1,··· ,K;j=1,··· ,p 1{⇡̂r,j 6=0} is the e↵ective number of
parameters. We perform a grid search over a set of (�,K) and find the optimal
combinations, (�̂, K̂), achieving the smallest modified BIC. [27] showed that
single cluster model with �

max

= max
{j=1,··· ,p}

<y,xj>p
n||Y || selects no variables and

suggested �

max

as the upper bound for the value of the tuning parameter.
ARoG increases this upper bound three to six times since multiple clusters may
require a larger tuning parameter to avoid selecting false positive annotations.
With a slight abuse of notation, we denote the ARoG(I) parameter estimates
as ✓̃ ⌘ ✓̃

ˆ�, ˆK . The annotation coe�cient for the kth cluster is obtained with

�̃k = �̃k/⇢̃k and the variance for the kth cluster is estimated with �̃k = 1/⇢̃k.
We obtain the posterior probability that SNP i belongs to the kth cluster as

�̃ik ⌘ P (k|xi, zi, ✓̃) =

⇡̃k
⇢̃kp
2⇡

exp

✓
�1

2

⇣
⇢̃kzi � x

T
i �̃k

⌘
2

◆

KX

k=1

⇡̃k
⇢̃kp
2⇡

exp

✓
�1

2

⇣
⇢̃kzi � x

T
i �̃k

⌘
2

◆ .

ARoG assigns the SNPs to the clusters for which they have the largest posterior
probabilities for. This generates K SNP sets with members Ck = {i : k =
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argmax
m

�̃im} and the set sizes are |Ck| = nk, k = 1, · · · ,K. We denote the

annotation set of each cluster as Sk = {j 2 {1, · · · , p} : �̃kj 6= 0} with numbers
of annotations |Sk| = pk  p and define the annotations selected by the model
as the union of the selected annotations across all the clusters, S = [kSk ✓
{1, · · · , p}.

3.2 Permutation Testing for ARoG

The ARoG framework follows up the penalized likelihood-based selection with
a permutation testing to evaluate the significance of the selected annotations,
which typically have small e↵ect sizes based on our data analysis results in
Section 4. We specifically test whether the maximum absolute value of the
coe�cient of each functional annotation across all the clusters can arise by
chance association. We randomly permute the z-scores of the SNPs a large
number of times (at least 1000 times), and refit ARoG to each permuted
dataset. At each fit, we record the maximum absolute value of the estimated
coe�cients for each annotation across all the clusters. This collection generates
functional annotation specific null distributions. Then the p-value for the j-
th annotation is defined as the proportion of datasets with the maximum
absolute values of the estimated coe�cients larger than max

k
|�̃kj |. We utilize

the Benjamini-Hochberg false discovery rate (FDR) procedure [7] at level 0.1
to account for the multiplicity of the annotations.

3.3 Two-step ARoG (ARoG(II)

Basic ARoG filters false positive annotations with a global penalization across
all clusters; however, it is still prone to selecting a nonignorable number of
false positive variables as both the simulations of [27] and our computational
experiments in Section 5 illustrate. To reduce this e↵ect and thereby increase
specificity, we propose and study two-step ARoG. The two-step ARoG im-
plements a cluster level penalization and a refit estimation after the initial
global penalization by ARoG(I). The additional penalization further screens
out false positives. The refit step aims to improve parameter estimation by
alleviating the shrinkage e↵ect towards small coe�cients and large standard
deviations led by FMRLasso. This step is similar to relaxed Lasso of [19] which
employs another level of Lasso in the context of standard multivariate linear
regression model. Both two-step ARoG and relaxed Lasso aim to filter out
false positive variables resulting from the initial penalization and thereby lead
to better or comparable prediction with more accurate variable selection. Re-
fitting has been widely used as a simple but practical tool to overcome the
biased estimation of Lasso [9].

In two-step ARoG, after the initial FMRLasso, we consider a standard
multivariate linear regression model for each cluster with its corresponding
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selected annotation set. First, the two-step ARoG adds an l

1

penalty term to
the residual sum of squares within each cluster as follows:

�̂

Sk

�k,k = argmin
�

Sk
k

1

nk

X

i2Ck

⇣
zi � x

SkT
i �

Sk
k

⌘
2

+ �k||�Sk
k ||

1

, (2)

where �

Sk
�k,k

2 Rpk+1

,x

Sk
i = [1;xij;j2Sk ] 2 Rpk+1. The tuning parameter

selection for each cluster is through BIC and the coe�cients estimated with
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ˆ�k,k. Next, based
on the clusterwise Lasso, we obtain a smaller annotation set, Mk = {j 2 Sk :
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kj 6= 0}, with size |Mk| = dk < pk, and refit a least squares regression with

this annotation set:
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where x

Mk
i = [1;xij;j2Mk ] 2 Rdk+1. We then have the two-step ARoG anno-

tation score coe�cients for the k-th cluster as

�̂kj =

(
�̂

Mk
kj j 2 Mk,

0 j 2 {1, · · · , p}/Mk.
(4)

Similar to ARoG(I), we define ARoG(II) annotations as the union of selected
annotations over the clusters, M = [kMk ⇢ S. There is a trade-o↵ between
basic ARoG and two-step ARoG since cluster-level Lasso tends to gain speci-
ficity and lose sensitivity with more aggressive annotation screening. The level
of the trade-o↵ varies on a case by case basis. We further discuss this issue
with computational experiments in Section 5.1. The permutation testing de-
scribed in Section 3.2 is also part of two-step ARoG. We denote basic ARoG
as ARoG(I) and two-step ARoG as ARoG(II) in the remainder of this paper.

3.4 Numerical Implementation

We implement ARoG with publicly available R packages fmrlasso and glmnet.
The fmrlasso package fits FMRLasso with a block coordinate descent gener-
alized expectation-maximization algorithm (BCD-GEM) proposed by [27]. It
alternates between an expectation step (E-step) and a generalized maximiza-
tion step (generalized M-step), which updates the prior probabilities, � at
once, then updates the reparametrized regression coe�cients, ⇡ and standard
deviations, ⇢. Each cluster is decoupled into K distinct optimization problems,
and the BCD-GEM applies coordinate updates to each optimization problem
separately. For the initialization of the E-step, we first summarize the anno-
tation score vector for each SNP by its l

2

norm and then use hierarchical
clustering with the distance between two SNPs as the l

1

norm between their
z-scores and the summarized annotation scores. This distance criterion en-
sures that SNPs with similar z-scores and similar variability in the functional

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 25, 2016. ; https://doi.org/10.1101/049932doi: bioRxiv preprint 

https://doi.org/10.1101/049932
http://creativecommons.org/licenses/by-nc/4.0/


Annotation regression for GWAS 11

annotations are more similar to each other. Using this hierarchical clustering,
we then assign each SNP to a single cluster for any given K. We set the pos-
terior probabilities of the SNPs for their assigned clusters as 9/(K + 8), and
the posterior probabilities for the other clusters as 1/(K +8). For the M-step,

we initialize �

(0)

kj = 0, ⇢(0)k = 2, ⇡(0)

k = 1/K, k = 1, · · · ,K, and j = 1 · · · , p.
Finally, we implement the cluster level Lasso of ARoG(II) with a coordinate
descent algorithm using glmnet.

4 ARoG Analysis of PGC Data

4.1 PGC Autism GWAS

We next fit ARoG(I) and ARoG(II) to the autism dataset described in Sec-
tion 2 and varied the number of clusters as K = 1, · · · , 10. ARoG resulted
in K̂ = 3 as the optimal number of clusters. Table 1 presents parameter esti-
mates from both ARoGs. Refitting for ARoG(II) is performed after each SNP
is assigned to the cluster for which it has the highest posterior probability for
based on ARoG(I) and leads to reestimation of both the regression parameters
and the cluster-specific variances. Both ARoGs have the first and the second
clusters as intercept-only models and select FOXL1 and Nkx2-5 for the third
cluster. We kept the ARoG(I) intercept estimate for the first cluster since no
other SNPs were assigned to this cluster. Estimated coe�cients for both TFs
of the cluster 3 indicate that the SNP-driven increases in binding a�nities
for FOXL1 and Nkx2-5 associate with the increased autism risk in cluster 3.
We further support the significance of these associations with a permutation
test described in Section 3.2 (Supplementary Figure 2(a)). The third cluster
has a total of thirteen SNPs, nine of which constitute the most genome-wide
significant SNPs depicted in the Manhattan plot Figure 1(a). As an alter-
native multivariate approach to ARoG, we also used ordinary least squares
(OLS) and Lasso regression to select the most relevant annotations from the
set of 205. OLS did not select any annotations with a BH adjustment on the
OLS p-values at level 0.1 and had unadjusted p-values of 0.332 and 0.014 for
FOXL1 and Nkx2-5, respectively. We utilized 5-fold cross-validation to tune
the l

1

penalty parameter for Lasso and obtained 11 Lasso-selected annotations
including Nkx2-5 and FOXL1. However, neither of these survived the permu-
tation testing implemented in a way similar to that of ARoG’s (Section 3.2)
(Supplementary Figure 2(a)). This analysis suggests that ARoG is indeed ex-
ploiting associations detectable only when appropriate subgroups of SNPs are
considered.

Next, we investigated the e↵ects of the selected annotations, FOXL1 and
Nkx2-5, on autism z-scores of cluster 3. Figure 2(a) highlights significant pos-
itive associations of the z-scores with FOXL1 and Nkx2-5 annotation scores,
respectively, for SNPs of cluster 3. Considering all the SNPs lead to weak
positive associations without statistical support from marginal regressions.
Figure 2(b) displays the heatmap of the z-scores and FOXL1 and Nkx2-5
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Fig. 2: (a) Autism z-scores vs. annotation scores for TFs FOXL1 and Nkx2-5
selected for cluster 3 along with the marginal linear regression line fit and
ARoG estimates (intercept and slopes for FOXL1 and Nkx2-5). (b) Hierar-
chical clustering of ARoG selected annotations and SNPs in Cluster 3 with
their AUT z-scores. (c) Composite sequence logo of SNP rs17597926 with the
FOXL1 position weight matrix. The middle two rows represent best matching
genomic subsequences to the FOXL1 PWM with the reference (G) and SNP
rs17597926 alleles (A), respectively. The dashed box marks the SNP location.
Top and bottom rows display FOXL1 PWM sequence logos aligned to the best
reference and SNP allele matches.
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Table 1: ARoG parameter estimates with PGC AUT data.

Cluster 1 2 3

Estimated prior prob. (⇡̃k) 0.0929 0.8724 0.0347

ARoG(I)
SSD (�̃k) 0.1739 1.0153 2.3258
(Intercept) -0.0686 0.0253 -0.0580
FOXL1 0 0 0.2639
Nkx2-5 0 0 0.1171

ARoG(II)
SSD (�̂k) 0.1739 0.9926 3.7191
(Intercept) -0.0686 0.0183 -0.5724
FOXL1 0 0 1.2075
Nkx2-5 0 0 1.3215

annotation scores of cluster 3 SNPs organized by hierarchical clustering and
supports that the variation in z-scores is well explained by these two annota-
tion scores. We note that atSNP further quantifies the annotation scores by
testing whether the observed change in TF binding a�nity due to SNP is sig-
nificant and reports corresponding p-values. We used these p-values to along
with raw GWAS association p-values to further refine the SNPs in cluster 3
and define ARoG SNPs as SNPs leading to significant TF binding a�nity
changes and having marginal association with the disorder. Specifically, we
considered the subset of cluster 3 SNPs with raw GWAS p-value of at most
0.005 and atSNP p-value of at most 0.01 for FOXL1 or Nkx2-5, resulting in
a single ARoG SNP, rs17597926. The unadjusted p-value of this SNP from
autism GWAS is 0.0017 and the resulting atSNP FOXL1 p-value is 0.0008.
The composite logo plot in Figure 2(c) indicates that rs17597926 is creating
a potential FOXL1 binding site. rs17597926 is located within the 5th intron
of the TCF4 gene, known to interact with helix-loop-helix proteins and reg-
ulate neurodevelopment [12]. Furthermore, this SNP has been identified as a
cis-eQTL for TCF4 in a recent brain expression GWAS [35]. This provides
additional support for potential regulatory role of rs17597926 as a mediator of
TCF4 gene in psychiatric disorders.

4.2 Comparison with GPA

In addition to the ARoG analysis, we also applied the GPA approach of [10] to
the autism data. We would like to emphasize that GPA and ARoG approaches
utilize functional annotations from di↵erent angles: GPA goes after global sig-
nals utilizing all the SNPs genotyped whereas ARoG aims to identify local
signals by focusing on a smaller set of signals with potential significance. GPA
is based on a joint generative model of association p-values of the SNPs and
annotation data and aims to identify annotations that the disease-associated
SNPs are enriched for. It aims to simultaneously identify null (SNPs not associ-
ated with the phenotype) and non-null (SNPs associated with the phenotype)
and quantify the enrichment of a given annotation within these SNP sets. It
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specifically tests whether equal proportions of non-null and null SNPs carry
the annotation. Although it can handle multiple annotations simultaneously,
our results from two application schemes of “one annotation at a time” versus
“all annotations simultaneously” showed extreme di↵erences which could po-
tentially be attributable to the violation of the GPA independent assumption
of the annotations conditional on the SNPs null versus non-null status. As a
result, we focus on applying GPA one annotation at a time. GPA works with
binary annotations; therefore, we first created a binary annotation score ma-
trix by running atSNP [36] on all the 1,210,570 SNPs and thresholding atSNP
p-values at 0.05. These SNPs are a subset of the 1,219,561 genotyped SNPs
in the PGC study that were also in the dbSNP database. We applied GPA
to each of the 205 annotations separately and estimated the proportions of
null and non-null SNPs associated with each annotation. Results from GPA
hypothesis testing for annotation enrichment did not identify any annotation
as significantly enriched for autism-associated SNPs (Supplementary Figure
4). This is consistent with our marginal analysis in Section 2 where none of
the annotations exhibited significant marginal associations with the autism
z-scores. The estimated fold enrichments of FOXL1 and Nkx2-5 in the GPA
analysis were 1.003 (s.e. 0.113) and 0.912 (s.e. 0.146), respectively. Both of
these levels were too small to be detected with this analysis that considered
only two global classes of SNPs (null and non-null).

4.3 PGC Schizophrenia GWAS

ARoG application to the SCZ2 dataset described in Section 2 with numbers
of clusters K = 1, · · · , 10 led to best BIC values with K = 6 and K = 7, and
with only a 0.01% di↵erence between the two. We carried out the rest of the
analysis with K = 6. ARoG did not select any annotations for clusters 1-4.

ARoG(I) selects FOXL1, Klf4, Prrx2, and NKX3-1 annotations for clus-
ter 5, and Arnt::Ahr, E2F1, FOXL1, Klf4, Foxq1, Prrx2, ARID3A, and E2F4
annotations for cluster 6. Among the selected annotations, the pair of E2F1
and E2F4 and the pair of Prrx2 and ARID3A share similar sequence logos,
respectively, thus, they have relatively high correlations of 0.8096 and 0.6234
within each other in the annotation score matrix. ARoG(II) retains FOXL1
and Klf4 for cluster 5 and Arnt::Ahr and FOXL1 for Cluster 6 (Table 2).
ARoG(II) tends to have regression coe�cients increased and standard devia-
tion estimates decreased compared to ARoG(I). Overall, both cluster 5 and
6 are populated with the most genome-wide significant SNPs depicted in the
Manhattan plot of Figure 1(c). Permutation testing results for ARoG(I) and
ARoG(II) indicate significance of the selected annotations with BH adjust-
ment at level 0.1 (Supplementary Figure 2(b)). OLS analysis of this dataset
selected 15 annotations with unadjusted permutation p-values smaller than
0.05; however, none of these survived the multiple testing correction with the
BH adjustment at level 0.1. In contrast, Lasso with cross validation tuning se-
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Fig. 3: (a) SCZ1 p-values for multiple SNP sets generated based on the SCZ2
data: The SNP sets include ARoG: ARoG SNPs; All: All the 11, 386 SNPs;
BH0.01: SNPs with SCZ2 BH-adjusted p-values less than or equal to 0.01;
BF0.05/BF0.01: SNPs with SCZ2 Bonferroni adjusted p-values less than or
equal to 0.05/0.01. (b) SNPs ranked based on their SCZ1 significance levels.
ARoG SNPs are marked with asterisks. The vertical dashed line depicts Bon-
ferroni cut-o↵ of SCZ1 analysis under significance level of 0.05. (c) Composite
sequence logo of rs11191580 with the Arnt::Ahr PWM: the SNP enhances the
binding of Arnt::Ahr. (d) Composite sequence logo of SNP rs732998 with the
Arnt::Ahr PWM.

lected 17 annotations, of which only two (Foxq and Zfx annotations) survived
the same multiple testing adjustment (Supplementary Figure 2(b)).

The scatter plots of the SCZ2 z-scores against the selected annotations
exhibit associations in clusters 5 and 6 with a similar global trend across the
whole SNP set (Supplementary Figure 3). Next, we defined a set of ARoG
SNPs as the SNPs with Bonferroni corrected p-values less than 0.05 and at-
SNP p-values less than 0.01. As a result, ARoG SNPs included 14 SNPs from
cluster 5 and 30 SNPs from cluster 6. Supplementary Table 1 presents ge-
nomic locations, GWAS p-values, and RegulomeDB scores [8] of the ARoG
SNPs. RegulomeDB scores range from 1 to 7. SNPs with score 1 are likely to
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Table 2: ARoG parameter estimates with PGC SCZ2 data

Cluster 1 2 3 4 5 6

Estimated prior prob. (⇡̃k) 0.2335 0.2173 0.2202 0.2084 0.0615 0.0591
Membership dist. 3533 3307 2066 1859 309 312

ARoG(I)

SSD (�̃k) 0.4122 0.3825 0.8805 0.9001 1.7423 1.8453
(Intercept) 4.1206 -4.1117 -4.5537 4.6279 -5.7453 5.8446
Arnt::Ahr 0 0 0 0 0 0.0859
FOXL1 0 0 0 0 -0.2335 -0.1394
Klf4 0 0 0 0 0.1027 0.0653

ARoG(II)

SSD (�̂k) 0.3336 0.2941 0.9605 0.9427 1.5425 1.6721
(Intercept) 4.0791 -4.0776 -4.8039 4.9482 -7.0816 7.1786
Arnt::Ahr 0 0 0 0 0 0.1814
FOXL1 0 0 0 0 -0.2879 -0.4295
Klf4 0 0 0 0 0.2654 0

a↵ect TF binding and linked to expression of a gene target. SNPs with score 2
are likely to a↵ect binding, those with score 3 are less likely to a↵ect binding,
and those with score 4 to 6 have minimal binding evidence. We refer Table
2 of [8] for further details. RegulomeDB scores of 15 ARoG SNPs indicate
a high likelihood of impact on TF binding and gene expression, further pro-
viding evidence for potential importance of these SNPs to schizophrenia. We
next compared the SCZ1 association measures (p-values) of ARoG SNPs to
other SNP sets one could have identified from the initial set of 11,386 SNPs to
evaluate which SNP sets are more supported by the SCZ1 study (Figure 3(a)).
The other SNP sets one could define without using additional functional an-
notation are BH0.01 (SNPs defined by BH correction at level 0.01 on the
SCZ2 p-values), BF0.05 (SNPs defined by Bonferroni correction at level 0.05
on the SCZ2 p-values), and BF0.01 (SNPs defined by Bonferroni correction
at level 0.01 on the SCZ2 p-values). ARoG SNPs are on average more sig-
nificant (more reproducible in the SCZ1) than the SNP sets. Comparison of
ARoG SNPs with a randomly selected SNP set of the same size from BF0.05
also indicated that ARoG SNPs are on average more significant, illustrating
that the use of the functional annotation information is biasing the selection
towards SNPs with reproducible associations. Figure 3(b) displays ranking of
SCZ1 p-values of all the 11,386 SNPs and illustrates that most ARoG SNPs
are located near the most significant SNPs with respect to SCZ1. Four of these
SNPs reach genome-wide significance with Bonferroni adjustment at level 0.05
in the SCZ1 study.

Next, we assessed whether any of the ARoG SNPs were among the schizophre-
nia associated SNPs from dbGaP [1]. dbGaP harbors 249 SNPs associated with
schizophrenia and 42 of these are among the 11,386 SNPs we utilized. Two
of the ARoG SNPs (rs11191580 and rs10224497, located at chr10:104,906,211
and chr7:2,149,967) are among the dbGaP SNPs. SNP rs11191580 leads to en-
hancement of Arnt::Ahr binding while rs10224497 seems to disrupt Arnt::Ahr
binding. Since, overall, we observed that enhanced Arnt::Ahr binding associ-
ated with increased schizophrenia risk in clusters 5 and 6 of the ARoG results,
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we further investigated rs11191580. rs11191580 is located within the 3rd in-
tron of Nt5C2 and has rs732998, located within the 4th intron of Nt5C2, as a
perfect LD partner. Their composite logo plots support that these SNPs might
indeed enhance the binding of Arnt::Ahr (Figure 3(c), (d)). Furthermore, the
association of rs11191580 is also validated in SCZ1 with p-value of 2.23⇥10�8.
Although rs732998 does not quite make the genome-wide significance cut-o↵,
it also exhibits significant association in SCZ1 with p-value of 9.50⇥ 10�8. In
summary, these two SNPs that are in perfect LD and both lead to sequence
changes that are likely to improve the binding of the Arnt/Ahr complex. This
complex regulates genes in response to the carcinogenic environmental con-
taminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). [5] showed that tran-
scription factor Ahr is frequently detected in brain and over-expression of AhR
causes neural di↵erentiation of Neuro2a cells. Furthermore, recent studies sup-
port that dioxins and related chemicals influence neural development, and the
AhR-signaling pathway might mediate the impact of dioxins on the nervous
system [33].

Finally, as we have done for the autism dataset in Section 4.2, we also
applied GPA to the schizophrenia dataset using all 1,175,307 SNPs that were
in the dbSNP database out of the 1,179,262 genotyped SNPs. This analy-
sis identified non-null SNPs as significantly depleted for Zfp423 annotation
(Supplementary Figure 5) under Bonferroni adjusted significance level of 0.1.
However, the probability that a SNP is non-null is estimated as 0.3157, there-
fore the estimated non-null set is likely to include a large number of SNPs
unassociated with schizophrenia. This implies that the Zfp423 depletion is
likely to be a false positive finding.

5 Simulation Studies

We evaluated ARoG(I) and ARoG(II) with synthetic datasets and PGC data-
driven simulated datasets. As alternative multivariate methods, we included
Lasso regression, and OLS with BH correction on the regression coe�cient
p-values at level of 0.05. Both ARoGs enable clustering of SNPs and hetero-
geneous annotation coe�cients across the clusters while both Lasso regression
and OLS assume the homogeneity of the annotation e↵ects. Our simluation
scheme focues on detection of relevant annotations among the many weak
annotation scores. We may implement GPA also by taking sparse binary an-
notations after binarizing the scores. However, from our experiments, GPA
fittings were unstable or sometimes failed as the severe sparsity of annota-
tions lets their estimators located near or in the boundary of the parameter
space. We generated 100 simulated datasets under each scenario, where each
simulated dataset consisted of training data, validation data, and test data.
The validation dataset was used for selection of the optimal tuning parameter,
and its sample size was increased 100 times compared to that of the training
dataset. The test error was calculated as the negative log-likelihood on the
test dataset with the same sample size as the training dataset.
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Table 3: Simulation settings for Section 5.1.

Model n Cluster � � ⇡

Sparse (I) 100
1 (0, 3, · · · , 3

| {z }
5 repetitions

, 0, · · · , 0
| {z }

100 repetitions

) 0.5 0.5

2 (0,�1, · · · ,�1
| {z }
5 repetitions

, 0, · · · , 0
| {z }

100 repetitions

) 0.5 0.5

Intermediate (I) 1000
1 (0, 1.5, · · · , 1.5

| {z }
55 repetitions

, 0, · · · , 0
| {z }

50 repetitions

) 1 0.5

2 (0,�0.5, · · · ,�0.5
| {z }
55 repetitions

, 0, · · · , 0
| {z }

50 repetitions

) 1 0.5

Dense (I) 1000
1 (0, �1, · · · ,�1

| {z }
30 repetitions

, 1, · · · , 1
| {z }

30 repetitions

, 0, · · · , 0
| {z }

45 repetitions

) 0.5 0.5

2 (0, �1, · · · ,�1
| {z }
30 repetitions

, 0, · · · , 0
| {z }

30 repetitions

, 1, · · · , 1
| {z }

30 repetitions

, 0, · · · , 0
| {z }

15 repetitions

) 0.5 0.5

We report for each method the test error, numbers of true (TPs) and false
positives (FPs), adjusted rand index (ARI) [23], receiver operating charac-
teristic (ROC) curves, and precision recall curves. TPs and FPs for ARoG
are defined by pooling selected annotations across the identified clusters. We
use adjusted rand index (ARI) to measure the similarity between the true
SNP clusters and estimated SNP clusters. ROC curves and precision-recall
curves present the performance of annotation selection in thresholds (cut-o↵
for p-values for OLS, tuning parameters for Lasso and both ARoGs) agnostic
manner. In these curves, we plot the average values of true positive rate (TPR),
false positive rate (FPR), and precision across 100 simulation replications.

5.1 Synthetic Data

We generated data from several Gaussian finite mixture regression models
varying the sparsity level of annotation signals as sparse, intermediate, and
dense (Table 3). The columns of the predictor matrix X are generated from
an independent standard normal distribution. Supplementary Figures 6 and 7
and Figure 4 present the results of these simulations.

The Sparse (I) setting is a small n, large p setting; hence, our comparisons
only include AroG(I), ARoG(II), and Lasso. Supplementary Figure 6 shows
that ARoG(I) has the smallest test error and both ARoGs have a median ARI
of about 0.7. ARoG(I) and ARoG(II) have the same ARI by design since they
share the same clustering assignment and Lasso has ARI of 0 since it does
not perform clustering. Both ARoGs have high true positive rates; however;
ARoG(I) has an inflated false positive rate with an average of 10 more false
positives compared to ARoG(II). Lasso tends to underselect annotations and
on average has four false negatives. ROC and precision-recall curves indicate
that ARoGs outperform Lasso significantly. We note that Lasso, ARoG(I),
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Fig. 4: Simulation results for Dense(I) setting of Table 3.

and ARoG(II) do not select annotations in the sequentially augmenting order
as tuning parameters decreasing; thus, the ROC cuves are not monotonically
increasing. We also investigated this sparse setting by increasing the sample
size to 1000 and observed almost perfect performance by all methods with an
area under the curve of 1.

Supplementary Figure 7 presents the simulation results from the interme-
diate annotation setting of Table 3, where almost half of the regression pa-
rameters are set as zero. The test error evaluation, ROC curves, and precision
recall curves clearly indicate that ARoGs outperform OLS and Lasso. Both
ARoG(I) and ARoG(II) have perfect TP rate with the optimal tuning pa-
rameters; however their numbers of FPs are substantially di↵erent. ARoG(II),
on average, selects 2 false positives whereas ARoG(I) selects more than 45
false positives. This emphasizes the significance of the cluster-level Lasso ap-
plication of ARoG(II) for reducing the numbers of false positives. In the ROC
curves, ARoG(II) has competitive performance with ARoG(I), and performs
marginally better in the top left corner, where both accurately identify all the
the true positives. This region is also where the optimal tuning parameters
based on the validation set resides in and where ARoG(II) filters out many
false positives.

Figure 4 presents the results for the Dense (I) setting. These results also
highlight superior performance of ARoGs in terms of prediction error. This
setting also highlights the contrast between two implementations of ARoG.
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ARoG(I) tends to select all annotations by essentially failing to do variable
selection whereas ARoG(II) is able to filter out false positives. OLS tends to
underselect annotations and Lasso tends to select more compared to OLS;
however, can only partially recover the true positives. ARoG(II) has the best
ROC curve and precision-recall curve performances. This setting includes 60
annotations that are not shared between clusters in contrast to the previous
settings where the annotations were shared by multiple clusters. The selection
performances on these cluster-specific variables are less stable; as a result,
the TPRs of both ARoGs heavily fluctuate between 0.4 and 1 in the top left
corner of the ROC curves where both have small false positive rates. Over-
all, we conclude that the di↵erences between ARoG(I) and ARoG(II) become
more pronounced as the sparsity level decreases and ARoG(II) outperforms
ARoG(I) in dense settings where ARoG(I) tends to have much higher FPR
than ARoG(II).

These computational experiments involved completely simulated datasets
where the predictor matrix had independent columns and was not designed to
be sparse. Supplementary Figure 8 presents results from a sparse setting where
the actual annotation predictor matrix from the PGC autism GWAS is used to
simulate data (Supplementary Table 2). This predictor matrix is sparse com-
pared to the randomly generated predictor matrix in the above simulations.
The overall conclusions from this setting agree well with the Sparse (I) setting.

5.2 PGC Analysis-Driven Data

We next evaluated the performance of ARoG in two simulation settings based
on the AUT and SCZ2 data analyses of Sections 4.1 and 4.3. Each setting had
the annotation score matrix from each application as the predictor matrix
and the ARoG(II) estimates of prior probabilities, standard deviations, and
regression slopes as the parameters. These data-driven simulation studies aim
to capture the typical signal to noise levels observed in these type of studies.
Figure 5 displays the results for the AUT simulation setting. Both ARoGs
reduce the prediction error by about 8%. ARoG(I) and ARoG(II) tend to select
at least one annotation 86 and 78 times out of 100 repetitions, respectively.
Specifically, FOXL1 is selected 71 and 61 times and Nkx2-5 is selected 49 and
42 times by ARoG(I) and ARoG(II), respectively. ARoG(II) on average filters
out 2 false positives more compared to ARoG(I). Both OLS and Lasso tend
to miss true positives and thus fail to recover the underlying associations.
Based on the ROC and precision-recall curves, ARoG(I) has the best tuning
parameter-free performance followed by ARoG(II). OLS performs almost the
same as random guess with an ROC curve on the 45 degree line.

Supplementary Figure 9 presents the results for the SCZ2 simulation set-
ting. Both ARoGs perform very well in terms of prediction error. Similar to the
AUT simulations, both OLS and Lasso fail to select any annotations. ARoG(I)
and ARoG(II) tend to recover the true positives to some extent by selecting at
least one correct annotation except in one simulated dataset with ARoG(II).
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Fig. 5: Simulation results for autism data analysis driven setting.

In this setting, a trade-o↵ between two ARoGs is clear since ARoG(I) seems
better at identifying all the true positives, namely, Arnt::Ahr, FOXL1, and
Klf4, whereas ARoG(II) more aggressively eliminates false positives. ARoG(I)
has a median of 11 FPs, with more than 25 FPs in 13 of the simulated datasets.
In contrast, ARoG(II) has a median of 2 FPs, with less than 10 FP annota-
tions in almost all simulated datasets. In terms of the ROC and precision-recall
curve comparisons, ARoG(I) exhibits a better tuning parameter-free perfor-
mance compared to ARoG(II). Both OLS and Lasso perform similar to random
guesses.

6 Discussion

We presented an integrative framework, named ARoG, for incorporating func-
tional annotation data into GWAS analysis. The key idea behind ARoG is that
even when a set of SNPs disrupt a global mechanism, e.g., pathway, that lead
to disease, they might be achieving this by disrupting various sub-mechanisms.
Some might be disrupting coding sequences, some transcription factor binding
sites, some methylation profile or chromatin accessibility. ARoG capitalizes
on this idea and aims to identify clusters of SNPs for which GWAS associa-
tion measures can be explained by a subset of functional annotations. ARoG
utilizes FMRLasso [27] which enables selection among large numbers of func-
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tional annotations. We illustrated ARoG with an application to PGC data
focusing on autism and schizophrenia disorders and by utilizing the impact of
SNPs on transcription factor binding a�nities as functional annotations. Our
analysis led to identification of SNPs which do not quite make the genome-
wide significance cut-o↵s; however, potentially worthy of following up since
their GWAS associations are supplemented by their significant e↵ects on TF
binding a�nities. This versatile framework provides many directions for use-
ful extensions. First, the fact that it can select among annotations makes it
applicable with larger sets of functional annotations including TF ChIP-seq,
DNase I-accessibility, Histone ChIP-seq, and DNA methylation. Second, we
have currently focused our analysis on one disorder at a time; however, ARoG
framework can be easily extended to consider multiple disorders-related GWAS
simultaneously.
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