
  

  

Abstract—Cancer is not solely a disease of the genome, but is 
a systemic disease that affects the host on many functional 
levels, including, and perhaps most notably, the function of the 
immune response, resulting in both tumor-promoting 
inflammation and tumor-inhibiting cytotoxic action. The 
dichotomous actions of the immune response induce significant 
variations in tumor growth dynamics that mathematical 
modeling can help to understand. Here we present a general 
method using ordinary differential equations (ODEs) to model 
and analyze cancer-immune interactions, and in particular, 
immune-induced tumor dormancy. 

I. INTRODUCTION TO CANCER-IMMUNE INTERACTIONS  

Tumor growth within a host is defined by the interactions 
the cancer cells have with the local environment, including 
many functionally different immune cells. The intercellular 
signaling between cancer and stromal cells creates an ever-
evolving milieu of cytokines that determine whether the 
immune cell function will be tumor-promoting or tumor-
inhibiting [1]-[6] – and thus the overall tumor growth 
dynamics. Indeed, growth dynamics vary among lesions 
within a host [7], across hosts, and following treatments [8], 
depending on inherent variability in factors such as the 
sensitivity of cancer cells or the response of host cells to 
communication signals [9], [10]. 

Immune-induced tumor dormancy is a transient state of 
cancer progression during which the abnormal cells and 
microenvironment may evolve over time, but tumor mass 
remains constant [11]-[13]. Dormancy can occur at any stage 
and may terminate in either tumor elimination or regrowth 
[14]. In some instances, the dormancy may persist throughout 
the patient’s lifespan, resulting in an asymptomatic cancer 
[15]. Immunotherapy aims to boost the cytotoxic immune 
response to eliminate the disease, but can result in variable 
and non-intuitive response dynamics, including dormany or 
even increased tumor mass prior to regression [8]. 

An analogy to aid understanding of these complex tumor 
dynamics lies in the motion of a tumor mass rolling within an 
immune “potential well”, where escape to one side represents 
tumor elimination, escape to the other represents tumor 
progression, and the “trapped” motion within the well 
represents tumor dormancy [16], see Fig. 1. Understanding 
the dynamics of tumor growth within a patient is important 
for treatment planning, especially for secondary or tertiary 
treatments where environmental regulation is aberrant [9]. 
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Figure 1.  Visualization of cancer-immune dynamics as motion within a 
potential well (derived from Fig. 10.1 in [16]). 

II. RESULTS AND INSIGHTS FROM APPLYING THIS METHOD 

With this model we demonstrate how tumor dormancy is 
a transient state that necessarily ends in either tumor 
elimination or escape [9], see Fig. 2. This result agrees with 
real world observations and contrasts the standard 
(mathematical) view of dormancy as a stable equilibrium 
[16]-[21] that persists for a long time. This model also 
captures known non-intuitive tumor dynamics such as 
accelerated repopulation [22]-[24] and anomalous periods of 
growth prior to regression that have been observed post 
tumor treatment [8]. 

The model also demonstrates the effect of cell-level 
sensitivity to environmental regulation, showing how 
inherent variability of response to signals can explain 
disparate patient outcomes for similar treatment protocols [9], 
[10]. The method is proposed as a proxy to help analyze 
patient variability and treatment outcomes to improve 
understanding of why specific treatments work for some 
patients but not others. 

Figure 2.  Possible tumor growth profiles including elimination, escape, 
and transient periods of tumor dormancy. 
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Figure 3.  Diagram of cancer-immune interactions that modulate growth 
dynamics for both cell populations. 

III. QUICK GUIDE TO THE METHODS 

The method of applying ODEs to study cancer-immune 
dynamics requires, in the most basic form, prescribing 
equations for the rate of change over time of the cancer cell 
and immune cell populations, thus creating a system of two 
ODEs that are solved simultaneously. Several reviews can be 
found in the literature [16], [25]. 

In this approach [9] we do not model specific cytokine 
concentrations, but rather prescribe functional forms that 
encompass the net result of many cytokines on the bulk 
population. This allows for a minimally parameterized 
model that is easier to validate and more amenable to 
demonstrating the fundamental dynamics governing the 
cellular interactions. 

Fig. 3 depicts the main mechanisms by which the cancer 
and immune cells interact. Each population has a net growth 
rate that is defined as the birth rate less the death rate for that 
population. Immune cells can promote cancer growth 
through inflammatory processes that increase blood flow and 
stimulate angiogenesis, bringing growth factors and nutrients 
to the tumor site [3]. They can also induce apoptosis through 
cytotoxic action [4], [26]. Cancer cells, on the other hand, 
can inactivate immune cells and develop mechanisms to 
evade immune detection [12], [27], [28]. They also recruit 
immune cells to the tumor by disrupting tissue architecture 
and producing chemokines and cytokines [3]. 

In what follows, we prescribe equations to describe the 
growth of two cell populations over time, cancer cells C(t) 
and immune cells I(t). The main assumption of this model is 
that the cell populations are homogenous, allowing any 
spatial dependence to be neglected. Each population is 
assumed to grow in a self-limited logistic manner with 
carrying capacities (or maximum possible population sizes) 
KC  for cancer and KI  for immune. 

A. The Governing Equations 
A simple translation of cancer-immune interactions into 

mathematical form could be along the lines of: the rate of 
change of the cancer population consists of a net growth 
term, less an immune-induced predation term, plus an 
immune-induced stimulation term. Such an additive 
formulation, however, does not account for the manner in 
which predation and stimulation occur – which can be tied 
directly to the ability of cells to sense signals from their 
environment and proliferate, quiesce, or die accordingly. We 
thus propose an integrated approach that allows immune 
actions to modify the net growth term through the following 
form: 
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Here µ and α are parameters that describe the growth and 
sensitivity of cancer cells to environmental regulatory 
signals, and Ψ is a function that can describe both immune 
inhibition or stimulation of cancer growth. An example of a 
predatory / inhibitory functional form is 
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where θ, β, φ, and ε are immune predation parameters. 

The immune population is also described by a modified 
logistic growth formulation, 
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where λ is the growth rate and r is a recruitment parameter. 

An extension of this model allows the cancer to modify 
its own carrying capacity via [9], [29] 
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where p and q are growth stimulation and inhibition 
constants, respectively. We may further extend this model to 
allow carrying capacities to depend on both populations [10], 
(capturing, for example, immune stimulation through 
inflammation and angiogenesis) and generally describe them 
by dKC dt = f (I ,C)  and dKI

dt = g I ,C( ) . 

Parameter values should be determined by fitting the 
model to experimental or clinical data. Sensitivity analyses 
can then be used to identify significant determinants of the 
dynamics in question and ‘prune’ the formalism of less 
informative parameters. 

B.  When this method is useful 
We have described how ODEs can be used to track the 

evolution over time of two populations of cells as they grow 
within a host. These methods can be used to describe any 
time evolution, ranging from cellular mass to protein 
concentration and beyond. Using ODEs to model a biological 
question requires that there is only one independent variable 
(such as time) and that all others (such as space) can be 
neglected. In this case, the structure can simplify over the 
alternative partial differential equation framework that would 
be needed if space and time were important, and provide 
rapid and efficient insights into how the complex immune-
cancer dynamic might respond in the clinical context. 
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