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Abstract 
 
Small non-coding RNAs are highly abundant molecules that regulate essential cellular 
processes and are classified according to sequence and structure. Here we argue that read 
profiles from size-selected RNA sequencing capture the post-transcriptional processing specific 
to each RNA family, thereby providing functional information independently of sequence and 
structure. We developed SeRPeNT, the first unsupervised computational method that exploits 
reproducibility across replicates and uses dynamic time-warping and density-based clustering 
algorithms to identify, characterize and compare small non-coding RNAs (sncRNAs) by 
harnessing the power of read profiles. We applied SeRPeNT to: a) generate an extended 
human annotation with 671 new sncRNAs from known classes and 131 from new potential 
classes, b) show pervasive differential processing between cell compartments and c) predict 
new molecules with miRNA-like behaviour from snoRNA, tRNA and long non-coding RNA 
precursors, potentially dependent on the miRNA biogenesis pathway. Furthermore, we validated 
experimentally four predicted novel non-coding RNAs: a miRNA, a snoRNA-derived miRNA, a 
processed tRNA and a new uncharacterized sncRNA. SeRPeNT facilitates fast and accurate 
discovery and characterization of small non-coding RNAs at unprecedented scale. SeRPeNT 
code is available under the MIT license at https://github.com/comprna/SeRPeNT.  
 

Background 
 
Small non-coding RNAs (sncRNAs) are highly abundant functional transcription products that 
regulate essential cellular processes, from splicing or protein synthesis to the catalysis of post-
transcriptional modifications or gene expression regulation (1). Major classes include micro-
RNAs (miRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and transfer 
RNAs (tRNAs). Developments in high-throughput approaches have facilitated their 
characterization in terms of sequence and structure (2–4) and have led to the discovery of new 
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molecules in diverse physiological and pathological contexts. However, the function of many of 
them remains unknown (5, 6); hence their characterization is essential to understand multiple 
cellular processes in health and disease.  
 
Sequence and structure are traditionally used to identify and characterize small non-coding 
RNAs (7, 8). Although sequence is a direct product of the sequencing technology, structure 
determination is still of limited accuracy and requires specialized protocols (3, 4, 9). On the 
other hand, extensive processing is a general characteristic of non-coding RNAs (10–12). The 
best-characterized cases are miRNAs, which are processed from precursors and preferentially 
express one arm over the other depending on the cellular conditions (13, 14). Furthermore, 
snoRNAs and tRNAs can be processed into smaller RNAs, whose function is often independent 
of their precursor (10, 15–18). These findings suggest that a new path to systematically 
characterize RNA molecules emerges through the genome-wide analysis of their sequencing 
read profiles.  
 
Here we argue that sequencing profiles can be used to directly characterize the function of 
small non-coding RNAs, in the same way that sequence and structure have been used in the 
past. We report here on SeRPeNT, a fast and memory efficient software for the discovery and 
characterization of known and novel classes of small non-coding RNAs exploiting their 
processing pattern from small RNA sequencing experiments. SeRPeNT is the first unsupervised 
algorithm to classify and characterize sncRNAs. As opposed to previous supervised methods 
that necessarily rely on known annotations, SeRPeNT is capable of grouping sncRNAs into 
families without the need of previous annotation, and therefore has the potential to discover new 
classes of sncRNAs. We applied SeRPeNT to generate an extended human annotation with 
671 new RNAs from known classes and 131 from new potential classes. We further showed 
these sncRNAs to have pervasive differential processing between cell compartments and 
predict new miRNA-like molecules that are potentially processed from different RNA precursors, 
including snoRNAs, tRNAs and long non-coding RNAs. Finally, we validated experimentally four 
novel non-coding RNAs predicted by SeRPeNT, highlighting the power of SeRPeNT for the 
discovery and characterization of small non-coding. 
 

Methods 
 
Using multiple size-selected small  (<200nt) RNA sequencing (sncRNA-seq) experiments 
mapped to a genome reference, SeRPeNT enables the discovery and characterization of known 
and novel small non-coding RNAs (sncRNAs) through three operations: profiler, annotator and 
diffproc, which can be used independently or together in a pipeline (Fig. 1). Initially, sncRNA 
read profiles are calculated from the mapped sncRNA-seq reads, and filtered according to the 
reproducibility between replicates, and to the length and expression constraints given as input 
(Fig. 1A). Pairwise distances between profiles are calculated as a normalized cross-correlation 
of their alignment calculated using a time-warping algorithm (Fig. 1B). Profiles are clustered into 
families according to pairwise distances using an improved density-based clustering algorithm 
(Fig. 1B). Novel profiles are annotated using the class label from known profiles in the same 
cluster if available by majority voting (Fig. 1C). Additionally, SeRPeNT allows the identification 
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of differential processing of sncRNAs between two conditions, independently of their expression 
change (Fig. 1D).  
 
Profile building from aligned short RNA-Seq reads 
 
The tool profiler uses as input one or more small RNA sequencing replicates in BAM format. 
Consensus read contigs are built by pooling reads that overlap on a genomic region and that 
are at a distance smaller than a user-defined threshold. Each contig is scored per individual 
replicate by counting the number of reads mapped within its boundaries and reproducibility is 
measured across all the biological replicates using either a non-parametric irreproducibility 
detection rate (NP-IDR) (19) or the simple error ratio estimate (SERE) (20). NP-IDR determines 
the reproducibility of a contig in one or more replicates with similar sequencing depths, whereas  
SERE compares the observed variation in the raw number of reads of a contig to an expected 
value, accounting for the variation in read depth across replicates. For all analyses of 
reproducibility in this work we used NP-IDR with cut-off of 0.01. Contigs that do not pass the 
user-defined cutoff of reproducibility are discarded from further analysis. For each of the 
remaining contigs, a profile is built by counting the number of reads per nucleotide in the 
genomic region delimited by the contig boundaries (Fig. 1A). SeRPeNT defines each sncRNA 
as a genomic region and a vector of raw read counts, or heights, of length equal to the number 
of nucleotides spanned by this genomic region. Profiles are additionally trimmed at the 3’-end 
positions when heights are either below 5 reads or below 10% of the highest position, but not 
when having more than 20 reads. Only profiles of lengths between 50 and 200 nucleotides, and 
of minimum height 100 in pooled replicates, were considered. All these parameters can be 
configured on SeRPeNT command line. The consistency of sncRNA profiles across multiple 
experiments is determined by calculating a normalized entropy of the different labels for the 
same sncRNA locus across experiments (Supplementary Materials and Methods).  
 
sncRNA profile clustering 
 
The annotator tool assigns a distance between each possible pair of profiles resulting from the 
previous step. This distance is computed with a novel algorithm (described in Supplementary 
Figure S1) based on dynamic time-warping (21, 22) (Fig. 1B). This algorithm finds the optimal 
alignment between two profiles by placing the heights of a pair of profiles along the axes of a 
grid, representing alignments as paths through the grid cells, and finding the path with maximum 
normalized cross-correlation score across them. Given a pair of profiles of the same length A = 
(a1, …, an) and B = (b1, …, bn), where ai and bi are the heights of nucleotide i in profile A and B, 
respectively, the cross-correlation score between A and B is defined as: 
 

A•B = ai ⋅bi
i=1

n

∑  (1) 

and the normalized cross-correlation score as: 
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rA,B =
A•B

(A•A)(B•B)
 (2) 

 
The optimal alignment maximizes the normalized cross-correlation score between the two 
profiles. Given two profiles S = (s1, …, sn) and Q = (q1, …, qm) of length n and m nucleotides 
respectively, each position (i, j) in the dynamic programming matrix D stores a vector of three 
values D(i,j) = (x, y, z) such that they maximize the value 𝑥/ 𝑦 ⋅ 𝑧  in formula (2) amongst all the 
possible partial alignments between Si and Qj, where Si = (s1, …, si) and Qj = (q1, …, qj) are the 
profiles spanning the first  i and j nucleotides of the profiles S and Q. The dynamic programming 
equation is then defined as: 

 D(i - 1, j)      + (si · ϕj , si · si , ϕ · ϕ) 
D(i,j) = (x, y, z) among       D(i - 1, j - 1) + (si · qj , si · si , qj · qj)   that maximizes 𝑥/ 𝑦 ⋅ 𝑧  (3)          
          D(i, j - 1)      + (ϕ · qj , ϕ · ϕ , qj · qj) 
 
where ϕ represents a negative Gaussian white noise function used to penalize an expansion or 
contraction in the alignment. When applied to a profile S, ϕ(S) returns a random negative value 
taken from a uniform distribution with mean and standard deviation defined by S.  
 
Once all the pairwise distances are calculated, profiles are clustered using a modified version of 
a density-based clustering algorithm (23) (described in Supplementary Figure S2A). The 
clustering algorithm is based on the assumption that clusters are formed by points surrounded 
by a high density of data points of lower local density and lie at large distance from other profiles 
of high local density. For each profile i we defined its local density ρi as follows: 

  (4) 

where dij is the distance between profiles i and j, and dc is an optimal distance that determines 
the size of the neighborhood of a profile. The optimal distance dc is calculated using a data field 
calculated from all profiles (24, 25) (algorithm described in Supplementary Figure S2B). Once 
the optimal dc is obtained, the profile with the highest local density is identified, and this profile 
and all the profiles that are within distance dc are assigned to a cluster. We introduced a novel 
step in the clustering in which all the profiles that have already been clustered are removed 
before the next iteration step. In the next step, a new dc value is then calculated with the 
remaining clusters and new local densities are calculated to identify the cluster with highest 
density, and so on. The algorithm stops when only singletons are produced or when the 
calculated optimal value for dc is higher than 0.02. This value represents the maximum distance 
we allow to start building a cluster from a profile with the highest local density. 
 
 
Profile annotation 
 
The annotator tool performs the sncRNA profile annotation. Every detected profile that overlaps 
an annotated short non-coding RNA is marked as known and labeled with the corresponding 
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class label (e.g. H/ACA snoRNA). The minimum overlap amount required between the sncRNA 
profile and the annotated RNA can be defined by the user. Profiles that do not overlap with any 
annotation or do not satisfy the overlapping requirements are marked as unknown. For each 
cluster with two or more profiles, the different labels from all the known profiles are counted, and 
all the unknown profiles within the cluster are labeled by majority vote with the most abundant 
label (Fig. 1C). In case of a tie, the label of the closest profile is assigned. All the remaining 
profiles are denoted as unlabeled. Clustered unlabeled profiles represent a coherent group of 
multiple profiles, and hence potentially indicate a novel sncRNA class.  
 
Differential processing analysis 
 
Differential processing is calculated for each sncRNA from the pairwise distance distributions 
with sister sncRNAs from the same cluster in either condition. Profiles are considered as 
differentially processed according to the fold-change and significance of the change. The 
diffproc tool assesses if a profile Pa in a particular condition C1 shows a different processing 
pattern Pb in another condition C2 (Fig. 1D). A pair of profiles Pa and Pb from conditions C1 and 
C2, respectively, such that their reference coordinates overlap as described above, are 
compared as follows. Given Ka the cluster in condition C1 that contains the profile Pa and Kb the 
cluster in condition C2 that contains the profile Pb, diffproc calculates all the pairwise distances 
Dab between Pa and all the profiles in Kb, and the pairwise distances Db between profiles in Kb 
(Fig. 1). These two distance distributions are then compared using a one-sided Mann-Whitney U 
test and a fold-change is calculated as the ratio of the medians between both distributions. The 
same method is applied to profile Pb and cluster Ka. Pa and Pb are then reported as differentially 
processed if both tests are significant according to the p-value and fold-change cutoffs defined 
by the user. When there are not enough cases to perform a Mann-Whitney U test, only the fold-
change is taken into account. 
 
Accuracy analysis and experimental validation 
 
Details about the accuracy analysis and the experimental validations are available in the 
Supplementary Material. 
 
Software 
 
SeRPeNT is written in C. The source code is available at https://github.com/comprna/SeRPeNT 
Code and makefiles to reproduce the analyses described in this manuscript are available at  
https://github.com/comprna/SeRPeNT-analysis 
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Results 
 
Fast and accurate discovery of small non-coding RNAs 
 
We assessed the accuracy of SeRPeNT by performing a comparison against BlockClust (26), 
an unsupervised method that also predicts known small non-coding RNA families from small 
RNA sequencing (sncRNA-seq) data. We evaluated the accuracy to detect known miRNAs, 
tRNAs, and snoRNAs from the Gencode annotation (27) using the same procedure and dataset 
used by Videm et al. (26) (Supplementary Materials and Methods). SeRPeNT shows overall 
similar precision for miRNAs (0.858) and tRNAs (0.855), and a dramatic improvement of the 
precision for snoRNAs (0.922)  (Supplementary Table S1A). Of note, although BlockClust was 
benchmarked by Videm et al. using only C/D-box snoRNAs only, we benchmarked SeRPeNT 
using also H/ACA-box snoRNAs. Notably, SeRPeNT analysis took ~3 minutes and less than 
200Mb of RAM in a single core AMD Opteron 64 with 4Gb of memory. In contrast, the same 
analysis with BlockClust, which included the execution of Blockbuster (28), took ~15 minutes 
and used nearly 30Gb of memory. Additionally, we compared the performance of SeRPeNT 
against the supervised version of BlockClust and against DARIO (27), using a cross-fold 
validation approach (Supplementary Figure S3). Using small RNA-Seq data from MCF-7 cells 
(8) (GSM769510) for the three methods, SeRPeNT shows overall higher precision in all tested 
sncRNA families (Supplementary Table S1B). Importantly, as opposed to the supervised 
methods, SeRPeNT did not use the annotation to group sncRNAs profiles. 
 
We also assessed the accuracy of SeRPeNT differential processing operation diffproc by 
analyzing the differential expression of miRNA arms and arm-switching events in miRNAs 
between normal and tumor liver tissues (29). From the 49 miRNAs tested, 41 passed our filters 
of reproducibility and clustered with other sncRNAs. Imposing a significance threshold of p-
value < 0.01 and a fold-change of at least 2.5 (Supplementary Figure S5), SeRPeNT identified 
as differentially processed 10 out of 24 miRNAs described to exhibit different 5’-arm to 3’-arm 
expression ratio (29), including 4 out of 5 arm-switching events (Supplementary Figure S6). 
Moreover, only 1 out of the remaining 17 miRNAs that did not exhibit a difference in 5’-arm to 3’-
arm expression ratio was identified as differentially processed by SeRPeNT. We further 
compared SeRPeNT against RPA (30), a recent method for differential processing analysis, 
using sncRNA-seq data from 9 cell lines (31). SeRPeNT detected many more differentially 
processed events, with a moderate overlap with RPA predictions (Supplementary Figure S7). 
Notably, for this analysis SeRPeNT took 2 hours in a single core AMD Opteron 64 with 4Gb of 
memory, whereas RPA took about 10 hours in a cluster of 32 cores each having 8 Gb of RAM.  
 
An extended annotation of small non-coding RNAs in human 
 
We decided to exploit SeRPeNT to produce an extended annotation of small non-coding RNAs 
in human. We applied SeRPeNT profiler and annotator tools to sncRNA-seq data from 9 cell 
lines (31) (Supplementary Table S2). We observed a higher proportion of known RNAs 
compared to novel sncRNAs, with an increase of novel sncRNAs in samples sequenced at a 
higher depth: A549, IMR90, MCF-7 and SK-N-SH (Fig. 2A). We further measured the accuracy 
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of SeRPeNT in recovering known sncRNA classes using cross-fold validation in these datasets 
and found an overall high accuracy consistently across all cell lines (Supplementary Table S3), 
except for snRNAs, probably due to their broad differences in structural features and processing 
patterns (12). Additionally, in the cross-fold validation SeRPeNT did not annotate on average 
about 30% of all the profiles detected in known scnRNAs from Gencode, as they either were in 
clusters with only unlabelled profiles or because they were singletons. Importantly, the accuracy 
values were robust when running SeRPeNT with different parameters for minimum expression, 
reproducibility value between replicates, minimum length of sncRNA profiles or spacing 
between profiles, and using different sequencing depths (Supplementary Table S4). 
 
We annotated new sncRNAs with SeRPeNT and obtained a total of 4,673 non-unique sncRNAs 
across all tested cell lines that were not in the Gencode annotation (Supplementary Table S5). 
We were able to assign a label to 2,140 of them. From the remaining 2,533 unlabeled sncRNAs, 
323 formed 92 clusters with three or more unlabeled profiles per cluster, suggesting possible 
new classes of non-coding RNAs with a coherent processing pattern. We called these clustered 
uncharacterized RNAs (cuRNAs) and kept them for further study. Interestingly, some known 
and predicted sncRNAs with the same class labels were grouped into different clusters, 
indicating subfamilies. For instance, SeRPeNT separated C/D-box and H/ACA-box snoRNAs 
according to their processing profiles (clusters 1 and 2 in Fig. 2B), and separated miRNAs into 
subtypes according to their different arm-processing patterns (clusters 5 and 11 in Fig. 2B). 
Thus SeRPeNT identifies functional families and subfamilies of non-coding RNAs in a scalable 
and robust way, independently of the granularity of the available annotation. 
 
We established the consistency of the sncRNAs across the multiple experiments using an 
entropy measure of the label assignment across cell lines (Supplementary Materials and 
Methods), producing a total of 929 unique novel sncRNAs, 787 from the major classes (79 
miRNAs, 475 snoRNAs, 82 snRNAs and 151 tRNAs) plus 142 cuRNAs, the majority of them 
being expressed in only one cell line (Supplementary Figure S7). These, together with the 
sncRNAs annotated in Gencode, conformed an extended catalogue of small non-coding RNAs 
in the human genome reference (Supplementary Table S6), also available in GTF format as 
Supplementary file.  
 
From the 79 newly predicted miRNAs, 37 (46.8%) were confirmed as potential miRNA 
precursors using FOMmiR (32) (Supplementary Table S7). Moreover, 39 (49.3%) of these novel 
miRNAs overlapped with AGO2-loaded small RNAs from HEK293 cells (33). In contrast, from 
3109 known miRNAs in the Gencode v19 annotation, 951 (30,59%) overlapped with AGO2-
loaded small RNAs (Fisher’s exact test p-value = 1.14e-3, odds-ratio = 2.01) (Supplementary 
Tables S6 and S7). To further characterize these miRNAs, we searched for sequence and 
secondary structure similarities in Rfam using Infernal (34, 35), with threshold e-value < 0.01 
(Supplementary Materials and Methods). We found that 23 of them had a hit to a known miRNA 
family (Supplementary Table S7). Repeating these analyses for the other new sncRNAs we 
found 47 snoRNA and 15 tRNAs with a hit to an Rfam family, from which 3 snoRNAs and 4 
tRNAs had a hit to a family of the same class predicted by SeRPeNT (Supplementary Table 
S6). The rest of predicted sncRNAs did not have any hit to Rfam. We further compared the 
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predicted sncRNAs from our extended annotation with DASHR (6), the most recently published 
database of human small non-coding RNAs, and with a compendium of human miRNAs from a 
recent study using multiple samples (36). We found that 802 out of the 929 predicted sncRNAs 
(51 miRNAs, 430 snoRNAs, 69 snRNAs, 121 tRNAs and 131 cuRNAs) were not present in 
those catalogues. In particular, four of the newly predicted miRNAs that had a hit to an Rfam 
miRNA family and were confirmed as potential miRNA precursors with FOMmiR were not 
present in these previous catalogues (6, 36) (Fig. 2C). We further checked the overlap of 
cuRNAs with CAGE data from The FANTOM5 project (37) (Methods). From the 142 cuRNAs in 
the extended annotation, 32 of them overlapped with CAGE profiles in the same strand. 
Moreover, for 27 of these 32 (84.3%) the 5’ end of the cuRNA overlaps with the CAGE profile 
(Supplementary Table S8).  
 
SeRPeNT uncovers new RNAs with potential miRNA-like function 
 
SeRPeNT analysis on individual cell lines identified a cluster that grouped together snoRNA 
SCARNA15 (ACA45) with 2 miRNAs in NHEK, and a cluster that grouped snoRNA SCARNA3 
with several miRNAs and a tRNA in A549 (Supplementary Table S9) in agreement with a 
previous study showing that these snoRNAs can function as miRNAs (15). The clusters 
obtained with SeRPeNT in cell lines provided additional evidence of 6 other snoRNAs that 
grouped with miRNAs: SNORD116, SNORA57, SNORD14C, SNORD26, SNORD60 and 
SNORA3 (Supplementary Table S9), suggesting new snoRNAs with miRNA-like function. 
Interestingly, we also found 7 clusters with a majority of miRNAs that included annotated tRNAs: 
tRNA-Ile-GAT, tRNA-Glu-GAA, tRNA-Gly-CCC, tRNA-Ala-AGC and tRNA-Leu-AAG. In 
particular, tRNA-Ile-GAT-1-1 clusters with miRNAs in 3 different cell lines: MCF-7, A549 and 
SK-N-SH, suggesting new tRNAs with miRNA-like function (10, 38). These results support the 
notion that sncRNA read-profiles facilitate the direct identification of functional similarities 
without the need to analyze sequence or structure. 
 
To search for new cases of miRNA-like non-coding RNAs in the extended annotation, we tested 
their potential association with components of the canonical miRNA biogenesis pathway, using 
sncRNA-seq data from controls and individual knockouts of DICER1, DROSHA and XPO5 (39) 
(Supplementary Materials and Methods). We validated the dependence of a number of known 
and predicted miRNAs on these three factors (Fig. 3A) (Supplementary Figures S9 and S10) 
and recovered the previously described dependence of ACA45 and SCARNA3 with DICER1 
(15). Additionally, we found 18 sncRNAs predicted as snoRNAs with similar behaviour upon 
DICER1 knockout (Fig. 3B). Interestingly, 14 out of 20 DICER1-dependent snoRNAs did not 
show dependence on DROSHA, including ACA45 and SCARNA3, in agreement with previous 
findings (15, 39) (Supplementary Figure S8) (Supplementary Table S7). We also found a strong 
dependence on DICER1 for 128 tRNAs, 82 of which changed expression in the direction 
opposite to most miRNAs, suggesting that they may be repressed by DICER (Fig. 3C). Further, 
4 cuRNAs showed similar results to miRNAs, suggesting some association with the miRNA 
biogenesis machinery (Supplementary Figure S10) (Supplementary Table S7). Although they 
were not confirmed as potential miRNA precursors using FOMmiR, 2 of these miRNA-like 
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cuRNAs overlapped with the protein-coding genes SEC24C and DHFR  (Supplementary Figure 
S10).  
 
Certain long non-coding RNAs (lncRNAs) are known to act as precursors of miRNAs (40, 41) 
and tRNAs (42). We thus analyzed whether the new sncRNAs could originate from lncRNAs. 
We found that 8 miRNAs, 16 snoRNAs, 7 tRNAs and 4 cuRNAs overlapped annotated lncRNAs 
(Supplementary Table S7). These lncRNAs included MALAT1, which we predicted to produc 2 
miRNAs, 2 tRNAs and 1 cuRNA. Additionally, 3 of the miRNAs predicted and confirmed with 
FOMmiR were found on the lncRNAs MIR100HG, CTD-23C24-1, and RP11-141B14.1. From 
these, the new miRNA in RP11-141B14.1 is not present in recent miRNA catalogues (Figs. 3D 
and 3E).  As the processing from lncRNAs is a recognized biogenesis mechanism for certain 
small non-coding RNAs, these results provide further support for the relevance of the newly 
predicted sncRNAs in our extended annotation. 
 
 
Pervasive differential processing of non-coding RNAs between cell compartments 
 
To further characterize the extended sncRNA annotation defined above, we studied their 
differential processing between four different cell compartments: chromatin, nucleoplasm, 
nucleolus and cytosol for the cell line K562 using replicated data (31) (Supplementary Table 
S2). The majority of sncRNAs from the extended annotation showed expression in one or more 
cell compartments: 599 in chromatin, 763 in cytosol, 554 in nucleolus and 651 in nucleoplasm. 
The majority of sncRNAs in cytosol are tRNAs (45%), followed by miRNAs (15%). Although 
tRNAs were enriched in the cytosol (Fisher’s one-sided test p-value < 0.001), they were 
abundant in all four cell compartments (Supplementary Table S10). This is compatible with 
tRNA biogenesis, which comprises early processing in the nucleolus and later processing in the 
nucleoplasm before export to the cytoplasm (43). In contrast, miRNA clusters appeared almost 
exclusively in the cytosol (Fisher’s one-sided test p-value < 0.001) and were coherently grouped 
into large clusters (Fig. 4A) (Supplementary Table S10). On the other hand, snoRNAs were 
enriched in the nucleolus (Fisher’s one-sided test p-value < 0.01), accounting for 38% of the 
found profiles. Interestingly, snoRNAs were also enriched in the chromatin compartment 
(Fisher’s one-sided test p-value <0.001) accounting for 23% of the sncRNAs found there, 
suggesting new candidates for their recognized role on establishing open chromatin domains 
(44). Finally, snRNAs and cuRNAs appeared at low frequency in most compartments 
(Supplementary Table S10). We applied SeRPeNT diffproc operation for each pair of 
compartments, using fold-change ≥ 2.5 and p-value < 0.01. A large proportion of snoRNAs 
showed differential processing from the nucleus and nucleolus, where they exert their function, 
to the rest of cellular compartments (Fig. 4B). On the other hand, only 4 of the cuRNAs 
identified showed expression in at least two compartments, nucleolus and cytosol, and 3 of 
them showed differential processing. Overall, tRNAs showed the largest proportion of 
differentially processed profiles between the cytosol and the different nuclear compartments 
(Fig. 4B and Supplementary Table S11). Many of these tRNAs showed a more prominent 
processing in the cytosol from the 30-35nt part of their 3’ part (Fig. 4C and Supplementary 
Figure S11), also called tRNA halves (45, 46).  
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Experimental validation of novel short non-coding RNAs 
 
To validate our findings, we decided to test experimentally four of the newly predicted sncRNAs 
that had no sequence similarity with any other genomic position using four different cell lines:  
SH-SY5Y, MCF7, MCF10 and HeLa (Fig. 5 and Supplementary Fig. S12) (Supplementary 
Tables S12 and S13) (Supplementary Methods). We selected a novel miRNA (chr17:57228820-
57228919:-) that we predicted in the intron of SKA2 (Fig. 2) (Supplementary Table S6). This 
candidate miRNA clustered with other miRNAs and was predicted to belong to the Rfam family 
RF00906. Using sequence specific primers we detected expression of this miRNA by qPCR in 
HeLa and SH-SY5Y cells (Fig. 5 and Supplementary Fig. S12). We detected this miRNA with 
SeRPeNT using small-RNA-seq from the same SH-SY5Y and MCF7 cells used for experimental 
validation (47) and using small-RNA-seq from ENCODE for HeLa (Fig. 5 and Supplementary 
Fig. S12). We also tested a novel miRNA that we predicted to be processed from the H/ACA 
snoRNA SNORA3 (chr16:2846409-2846473:-) (sno-miRNA in Fig. 5) (Supplementary  Table 
S9). Using sequence specific primers, we detected expression of this miRNA by qPCR in HeLa 
and SH-SY5Y cell lines (Fig. 5). This miRNA was also detected with SeRPeNT using small 
RNA-seq data for the same SH-SY5Y cells and from ENCODE HeLa cells (Fig. 5 and 
Supplementary Fig. S12). Additionally, we tested experimentally a clustered-uncharacterized 
RNA (cuRNA) (chr10:75526203-75526253:+) that we had detected in SK-N-SH and IMR90 cells 
(Supplementary Table S6), and which we measured to be dependent of DROSHA, DICER and 
XPO5 (Supplementary Table S7). This cuRNA was predicted with SeRPeNT to be lowly 
expressed in HeLa and SH-SY5Y, but it was only detected by qPCR in HeLa (Figure 5 and 
Supplementary Figure S12). Finally, we tested a processed tRNA  (p-tRNA) (chr1:145396847-
145396952:-) that was predicted to be cytosol-specific in K562 cells and had differential 
processing with respect to the nucleolus and chromatin compartments (Supplementary Table 
S11). We validated this p-tRNA in all four cell lines used for validation. Moreover, we detected 
the p-tRNA with SeRPeNT using small RNA-seq from the same SH-SY5Y, MCF7 and MCF10 
cells used for experimental testing (47) and from ENCODE HeLa cells (Figure 5 and 
Supplementary Figure S13).   
 
 

Discussion 
 
SeRPeNT provides a fast and accurate method to identify known and novel small non-coding 
RNAs exploiting read profiles from stranded size-selected RNA sequencing data. SeRPeNT 
does not depend on the annotation granularity and avoids many drawbacks inherent to 
sequence and secondary structure based methods, which may be affected by post-
transcriptional modifications or limited by the reliability of structure determination. Here we have 
shown that read profiles, by capturing the post-transcriptional processing that is specific to each 
sncRNA family, provide functional information independently of sequence or structure. In 
particular, a number of known snoRNAs and tRNAs clustered with miRNAs according to their 
profiles. We also expect that our dynamic-time warping algorithm can account for the 
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heterogeneity in the processing miRNAs (48) and other sncRNAs. Beyond the known cases, we 
detected new candidates of this dual behaviour. It remains to be determined whether these new 
sncRNAs can indeed function as miRNAs and associate with AGO2 (49). It is possible that they 
compete with more abundant miRNAs to be loaded on the RNA-induced silencing complex; 
hence they might become more prominent in specific cellular conditions. Incidentally, many 
sncRNAs increase expression when this is measured from the sequencing of AGO2-associated 
reads in DICER1 knocked-down cells (data not shown), suggesting a repression by DICER1 
(33) or an association to alternative biogenesis pathways (39). 
 
We have generated an extended annotation for human that includes hundreds of previously 
unannotated sncRNAs from known classes. These included new miRNAs, which we validated 
comparing to known families, confirming the structure of the precursor, and by measuring their 
expression dependence with the miRNA biogenesis machinery. We further observed the 
frequent differential processing of sncRNAs across cell compartments, especially for tRNAs. As 
differential processing of tRNAs has been observed in association to disease (50–52), the 
observed patterns may be indicative of relevant cellular processes that are worth investigating 
further.  
 
We also detected 131 new sncRNAs that could not be labeled, which we named clustered 
uncharacterized RNAs (cuRNAs), and which are not present in current sncRNA catalogues, 
hence could correspond to novel sncRNA species. Although cuRNAs did not show frequent 
differential processing across cell compartments, they showed dependencies on the miRNA 
processing machinery and overlapped with CAGE tags or lncRNAs; suggesting mechanisms of 
biogenesis. The role of lncRNAs as possible general precursors of multiple types of sncRNAs in 
fact suggests new possible ways to classify lncRNAs beyond the current proposed frameworks 
(53). A subset of lncRNAs may act as precursors of a wide variety of small non-coding RNAs, 
including those from known families. On the other hand, cuRNAs conform a small fraction from 
all the known classes of sncRNAs, indicating that there might be a very limited number of new 
sncRNA species. 
 
SeRPeNT is the first unsupervised tool for classifying and characterizing sncRNA processing 
profiles. Previous methods are supervised and need to rely on prior annotations in order to 
group and then classify novel sncRNAs. SeRPeNT does not need any annotation to cluster 
unknown sncRNAs and therefore is the only method capable of discovering novel sncRNA 
families and to group sncRNAs from newly sequenced organisms for which no phylogenetically 
close annotation exists.  
 
We validated our approach by obtaining experimental evidence for the expression of four 
predicted sncRNAs, with no similarity to any other genomic locus, and from four different 
classes: one intronic miRNA, an snoRNA-derived miRNA, a processed tRNA and a cuRNA. 
Although we could experimentally validate the specific expression of these sncRNAs, we did not 
always find an agreement between the experimental validation and the detection by SeRPNT in 
the same cells. Some of the filters used for SeRPeNT might have been strict, thereby limiting 
our level of detection. Nonetheless, the validation of these new sncRNAs demonstrates 
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SeRPeNT’s ability to detect RNA species that are experimentally reproducible. Further analyses 
and validations will be required to capture the extent and variability of the processing of these 
small RNAs across multiple conditions.  
 
We envision a wide variety of future applications of SeRPeNT, including the fast identification 
and differential processing of non-coding RNAs from size-selected RNA-sequencing from tumor 
biopsies, circulating tumor cells, or exosomes, as well as the rapid discovery and 
characterization of non-coding RNAs families in multiple organisms. SeRPeNT differential 
processing operation can also be very powerful at, for instance, discovering RNAs that are 
differentially processed in tumor cells, thus generating biomarkers and potential drug targets. In 
summary, SeRPeNT provides a fast, easy to use and memory efficient software for the 
discovery and characterization of known and novel classes of small non-coding RNAs.  
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Figures 
 

 
 
Figure 1. Overview of SeRPeNT. Overview of the operations performed by the SeRPeNT: (A) 
Building of profiles from short RNA-Seq reads mapped to the genome using reproducibility 
across replicates. A profile is a collection of reads overlapping over a given genomic locus and 
can be regarded as a vector where each component contains the number of reads at each 
nucleotide. (B) Density-based clustering of profiles based on pairwise distances calculated with 
a dynamic time-warping algorithm. (C) Annotation of novel profiles using majority vote in 
clusters. (D) Differential processing calculation. The distribution of distances between a profile 
and its cluster sisters in one condition cluster (C1) and across conditions (C2) are compared 
(panel below). Differential processing is determined in terms of a Mann-Whitney U test and a 
fold-enrichment (Supplementary Fig. 2). 
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Figure 2. Extended annotation derived from ENCODE cell lines. (A) Number of known and 
novel sncRNAs across 9 ENCODE cell line dataset. (B) Hierarchical clustering representation of 
the clusters obtained for the NHEK cell line. Distance between clusters is calculated by 
averaging all the distances between profiles from both clusters. Colored circles represent 
clusters of sncRNAs at the leaves of the tree labeled by class. Empty circles represent internal 
nodes of the tree. The read profiles in clusters 5 and 11 are for one of its members, for which 
we plot the number of reads per nucleotide in the sncRNA. (C) Genomic loci and graphical 
representation of the hairpins for four predicted novel microRNAs. The predicted mature 
microRNAs are highlighted in blue in the corresponding gene loci: miRNA chr17:57228820-
57228919:- (upper left) at the SKA2 locus, miRNA chr2:29352292 -29352349:- (upper right) at 
the CLIP4 locus, miRNA chr13:76258915-76258974:+ (lower left) at the LMO7 locus, and 
miRNA chr6:142308575-142308638:- (lower right) at an intergenic region.    
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Figure 3. Detection of miRNA-like sncRNAs. Differentially expressed sncRNAs (blue) from 
extended annotation in the comparison between DICER1 knockout and control experiments in 
human HCT116 cell lines for (A) miRNAs, (B) snoRNAs and (C) tRNAs. The analyses for the 
knockout of DROSHA and XPO5 are available as Supplementary Figures. (D) Representation 
of a novel miRNA detected by SeRPeNT (depicted as a read profile) whose precursor is the 
lncRNA RP11-141B14.1 (depicted as a green line). Profiles for both replicates are included. (E) 
Secondary structure prediction of the miRNA precursor by FOMmiR.  
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Figure 4. Differential processing across ENCODE cell compartments. (A) Representation 
of clusters containing 5 or more sncRNAs across all four ENCODE cell compartments. The size 
of the points represents the number of sncRNAs from the extended annotation contained in the 
cluster. The normalized entropy (y axis) represents the purity of a cluster (Supplementary 
Materials and Methods), the lower the entropy, the higher the purity of the cluster. (B) 
Proportion of profiles from the extended annotation that are differentially processed between 
cellular compartments separated by non-coding RNA family (y axis). Numbers at the top of the 
bars represent the total number of profiles detected in both compartments. (C) Representation 
of the read profiles for the tRNA-Leu-AAG transfer RNA showing abundant processing of the 3’-
half in the cytosol compared to the chromatin compartment. The plot represents the number of 
reads per nucleotide in the same scale for each compartment.   
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Figure 5. Experimental validation of novel sncRNAs. Experimental validation of four 
predicted sncRNAs in the cell lines HeLa, SH-SY5Y, MCF10A, MCF7, SH-SY5Y and HeLa. We 
tested a predicted miRNA (miRNA), a miRNA predicted to be derived from the H/ACA	snoRNA	
SNORA3	 (sno-miRNA),	 a	 clustered	 uncharacterized	 RNA	 (cuRNA)	 and	 a	 processed	 tRNA	 (p-
tRNA).	For	each	sncRNA	and	each	cell	line,	we	indicate	whether	it	was	detected	by	SeRPNeNT	
(black	circle),	whether	its	measured	expression	was	RPM	(reads	per	million)	>	1	(black	triangle),	
and	whether	it	was	validated	by	qPCR	(black	star),	or	in	gray	color	otherwise.	RPM	values	were	
calculated	 as	 the	 average	 of	 two	 small	 RNA-seq	 replicates	 from	 for	 the	 same	 SH-SY5Y, 
MCF10A and MCF7 cells, and from an ENCODE HeLa cells. RPM values and qPCR	values	 in	
ΔCt	scale	are	given	in	Supplementary	Tables	S12	and	S13.	The	qPCR	experiment	was	evaluated	
by	 comparing	 each	 RNA	 expression	 with	 respect	 to	 the	 expression	 endogenous	 control	 U6	
snRNA	in	each	sample. 
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