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Abstract 
 
Small non-coding RNAs are highly abundant molecules that regulate essential cellular 
processes and are classified according to sequence and structure. Here we argue that read 
profiles from size-selected RNA sequencing, by capturing the post-transcriptional processing 
specific to each RNA family, provide functional information independently of sequence and 
structure. SeRPeNT is a computational method that exploits reproducibility across replicates 
and uses dynamic time-warping and density-based clustering algorithms to identify, characterize 
and compare small non-coding RNAs, by harnessing the power of read profiles. SeRPeNT is 
applied to: a) generate an extended human annotation with 671 new RNAs from known classes 
and 131 from new potential classes, b) show pervasive differential processing between cell 
compartments and c) predict new molecules with miRNA-like behaviour from snoRNA, tRNA 
and long non-coding RNA precursors, dependent on the miRNA biogenesis pathway. SeRPeNT 
facilitates the fast and accurate discovery and characterization of small non-coding RNAs at 
unprecedented scale. 
 
 

Introduction 
 
Small non-coding RNAs (sRNAs) are highly abundant functional transcription products that 
regulate essential cellular processes, from splicing or protein synthesis to the catalysis of post-
transcriptional modifications or gene expression regulation1. Major classes include micro-RNAs 
(miRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and transfer RNAs 
(tRNAs). Developments of high-throughput approaches have facilitated their characterization in 
terms of sequence and structure2,3,4 and have led to the discovery of new molecules in diverse 
physiological and pathological contexts. However, the function of many of them remains 
unknown5,6 and their characterization may be essential to understand multiple cellular 
processes in health and disease.  
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Sequence and structure are traditionally used to identify and characterize small non-coding 
RNAs7,8. Although sequence is a direct product of the sequencing technology, structure 
determination is still of limited accuracy and requires of specialized protocols3,4,9. On the other 
hand, extensive processing is a general characteristic of non-coding RNAs10,11,12. The best 
characterized cases are miRNAs, which are processed from precursors and preferentially 
express one arm over the other depending on the cellular conditions13,14. Furthermore, 
snoRNAs and tRNAs can be processed into smaller RNAs, whose function is often independent 
of their precursor10,15,16,17,18. 
 
These findings suggest that a new path to systematically characterize RNA molecules emerges 
through the genome-wide analysis of their sequencing read profiles. Here we argue that 
sequencing profiles can be used to directly characterize the function of small non-coding RNAs, 
in the same way that sequence and structure have been used in the past. We report here on 
SeRPeNT (Small Rna ProfiliNg Toolkit), a fast and memory efficient software for the discovery 
and characterization of known and novel classes of small non-coding RNAs exploiting their 
processing pattern from small RNA sequencing experiments.  
 
 

Results 
 
Fast and accurate discovery of small non-coding RNAs 
 
Using multiple size-selected (<200nt) small RNA sequencing (sRNA-seq) experiments mapped 
to a genome reference, SeRPeNT enables the discovery and characterization of known and 
novel small non-coding RNAs (sRNAs) through three operations: profiler, annotator and diffproc, 
which can be used independently or together in a pipeline (Fig. 1). Initially, sRNA read profiles 
are calculated from the mapped sRNA-seq reads, and filtered according to the reproducibility 
between replicates, and to the length and expression constraints given as input (Fig. 1a and 
Online Methods). Pairwise distances between profiles are calculated as a normalized cross-
correlation of their alignment calculated using a time-warping algorithm (Fig. 1b and Online 
Methods). Profiles are clustered into families according to pairwise distances using an improved 
density-based clustering algorithm (Fig. 1b and Online Methods). Novel profiles are annotated 
using the class label from known profiles in the same cluster by majority voting (Fig. 1c and 
Online Methods). Additionally, SeRPeNT allows the identification of differential processing of 
sRNAs between two conditions that are independent of expression changes.This is calculated 
for each sRNA from the pairwise distance distributions with sister sRNAs from the same cluster 
in either condition. Profiles are considered as differentially processed according to the fold-
change and significance of the change (Fig. 1d and Online Methods). 
 
To assess the accuracy of SeRPeNT, we performed a comparison against two other methods 
that predict known small non-coding RNA families from sRNA-seq data, BlockClust19 and 
DARIO20. We evaluated the accuracy to detect known miRNAs, tRNAs and C/D-box snoRNAs 
from the Gencode annotation21, using cross-fold validation (Supplementary Fig. 1 and 
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Supplementary Methods). Using the same data8 for the three methods, SeRPeNT shows 
overall higher precision and a dramatic improvement of the recall in all tested sRNA families. In 
particular, miRNAs show the best accuracy (precision=0.99, recall=0.99), followed by tRNAs 
(precision=0.95, recall=0.96). For snoRNAs of C/D-box type, which proved hard to predict by 
the other methods (recall=0.39 and 0.52 by BlockClust and DARIO, respectively), SeRPeNT 
achieves 0.70 recall (Supplementary Table 1). Notably, SeRPeNT analysis took ~3 minutes 
and less than 200Mb of RAM in a single core AMD Opteron 64 with 4Gb of memory. In contrast, 
the same analysis for BlockClust, which includes the execution of Blockbuster22, took ~15 
minutes and used nearly 30Gb of memory.  
 
We also assessed the accuracy of SeRPeNT differential processing operation diffproc by 
analyzing the differential expression of miRNA arms and arm-switching events in miRNAs 
between normal and tumor liver tissues23. From the 49 miRNAs tested23, 41 passed our filters of 
reproducibility and clustered with other sRNAs. Imposing a significance threshold of p-value < 
0.01 and a fold-change of at least 2.5 (Supplementary Fig. 2), SeRPeNT identified as 
differentially processed 10 out of 24 miRNAs described to exhibit different 5’-arm to 3’-arm 
expression ratio23, including 4 out of 5 arm-switching events (Supplementary Fig. 3). Moreover, 
only 1 out of the remaining 17 miRNAs that did not exhibit difference in 5’-arm to 3’-arm 
expression ratio was identified as differentially processed by SeRPeNT. We further compared 
SeRPeNT against RPA24, a recent method for differential processing analysis, using data from 9 
cell lines25. SeRPeNT detects many more differentially processed events, with a moderate 
overlap with RPA predictions (Supplementary Fig. 4). Notably, SeRPeNT took 2 hours in a 
single core AMD Opteron 64 with 4Gb of memory, whereas RPA took about 10 hours in a 
cluster of 32 cores each having 8 Gb of RAM.  
 
 
An extended annotation of small non-coding RNAs in human 
 
We decided to exploit SeRPeNT speed and accuracy to produce an extended annotation of 
small non-coding RNAs in human. We applied SeRPeNT profiler and annotator to sRNA-seq 
data from 9 cell lines25 (Supplementary Table 2). There is a higher proportion of known RNAs 
compared to novel sRNAs, with an increase of novel sRNAs in samples sequenced at a higher 
depth: A549, IMR90, MCF-7 and SK-N-SH (Fig. 2a). We further measured the accuracy of 
SeRPeNT with these datasets and found an overall high accuracy consistently across all cell 
lines (Supplementary Table 3).  
 
We annotated new sRNAs with SeRPeNT and obtained a total of 4,673 non-unique sRNAs 
across all tested cell lines that are not in Gencode (Supplementary Table 4). We were able to 
assign a label to 2,140 of them. From the remaining 2,533 unlabeled sRNAs, 323 formed 92 
clusters with three or more unlabeled profiles per cluster, suggesting possible new classes of 
non-coding RNAs with a coherent processing pattern. We called these clustered 
uncharacterized RNAs (cuRNAs) and kept them for further study. Interestingly, some known 
and predicted sRNAs with the same class labels are grouped into different clusters, indicating 
subfamilies. For instance, SeRPeNT separates C/D-box and H/ACA-box snoRNAs according to 
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their processing profiles (clusters 1 and 2 in Fig. 2b), and separates miRNAs into subtypes 
according to their different arm-processing patterns (clusters 5 and 11 in Fig. 2b). Thus 
SeRPeNT identifies functional families and subfamilies of non-coding RNAs in a scalable and 
robust way, independently of the granularity of the available annotation. 
 
We established the consistency of the sRNAs across the multiple experiments using an entropy 
measure of the label assignment across cell lines and removed low mappability regions 
(Supplementary Methods), producing a total of 929 unique novel sRNAs, 787 from the major 
classes (79 miRNAs, 475 snoRNAs, 82 snRNAs and 151 tRNAs) plus 142 cuRNAs, the majority 
of them being expressed in only one cell line (Supplementary Fig. 5). These, together with the 
sRNAs annotated in Gencode, conform an extended annotation of the catalogue of small non-
coding RNAs in the human genome reference available in (Supplementary Data 1) and in GTF 
format in (Supplementary Data 2). Direct access to a UCSC track is available from 
http://regulatorygenomics.upf.edu/sessions/rgs005/serpent.html.  
 
From the 79 newly predicted miRNAs, 37 were validated as miRNA precursors using FOMmiR26 
(Supplementary Data 3). To further characterize these miRNAs, we searched for sequence 
and secondary structure similarities in Rfam using Infernal27,28, with threshold e-value < 0.01 
(Supplementary Methods). We found that 23 of them had a hit to a known miRNA family 
(Supplementary Data 1). Repeating these analyses for the other new sRNAs we found 47 
snoRNA and 15 tRNAs with a hit to an Rfam family, from which 3 snoRNAs and 4 tRNAs had 
the hit to a family of the same class predicted by SeRPeNT (Supplementary Data 1). The rest 
of predicted sRNAs did not have a hit in Rfam. We compared our extended annotation predicted 
sRNAs with DASHR6, the most recently published database of human small human non-coding 
RNAs, and with a compendium of human miRNAs from a recent study using multiple samples29. 
We found that 802 out of the 929 predicted sRNAs (51 miRNAs, 430 snoRNAs, 69 snRNAs, 
121 tRNAs and 131 cuRNAs) were not present in those sRNA catalogues. In particular, 4 
predicted miRNAs had a hit to an Rfam miRNA family, were validated with FOMmiR and were 
not present in previous catalogues6,29 (Fig. 2c). 
 
 
Pervasive differential processing of non-coding RNAs between cell compartments 
 
To further characterize the extended sRNA annotation defined above, we studied their 
differential processing between four different cell compartments: chromatin, nucleoplasm, 
nucleolus and cytosol for the cell line K562 using replicated data25 (Supplementary Table 2). 
The majority of sRNAs from the extended annotation showed expression in one or more cell 
compartments: 599 in chromatin, 763 in cytosol, 554 in nucleolus and 651 in nucleoplasm. The 
majority of sRNAs in cytosol are tRNAs (45%), followed by miRNAs (15%). Although tRNAs are 
enriched in the cytosol (Fisher’s one-sided test p-value < 0.001), they are abundant in all four 
cell compartments (Supplementary Table 5). This is compatible with tRNA biogenesis, which 
comprises early processing in the nucleolus and later processing in the nucleoplasm before 
export to the cytoplasm30. In contrast, miRNA clusters appear almost exclusively in the cytosol 
(Fisher’s one-sided test p-value < 0.001) and are coherently grouped into large clusters (Fig. 
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3a) (Supplementary Table 5). The nucleolus is enriched in snoRNAs accounting for 38% of the 
found profiles (Fisher’s one-sided test p-value < 0.01). Interestingly, snoRNAs are also enriched 
in the chromatin compartment (Fisher’s one-sided test p-value <0.001) accounting for 23% of 
the sRNAs found there, suggesting new candidates for their recognized role on establishing 
open chromatin domains31. Finally, snRNAs and cuRNAs appear at low frequency in most 
compartments (Supplementary Table 5). We applied SeRPeNT diffproc operation for each pair 
of compartments, using fold-change ≥ 2.5 and p-value < 0.01. A large proportion of snoRNAs 
show differential processing between the nucleus and nucleolus, where they exert their function, 
and the rest of cellular compartments (Fig. 3b). Only 4 of the cuRNAs identified show 
expression in at least two compartments, nucleolus and cytosol, and 3 of them show differential 
processing. Overall, tRNAs show the largest proportion of differentially processed profiles 
between the cytosol and the different nuclear compartments (Fig. 3b and Supplementary Data 
4). Many of these tRNAs show a more prominent processing in the cytosol from the 30-35nt part 
of their 3’ part (Fig. 3c and Supplementary Fig. 6), also called tRNA halves32,33.  
 
 
SeRPeNT uncovers new RNAs with potential miRNA-like function 
 
The analysis of the compartments showed that some clusters at the cytosol group together 
snoRNAs and miRNAs, suggesting similar processing patterns. Additionally, SeRPeNT analysis 
on individual cell lines identified a cluster that groups together snoRNA SCARNA15 (ACA45) 
with 2 miRNAs in NHEK, and a cluster that groups snoRNA SCARNA3 with several miRNAs 
and a tRNA in A549 (Supplementary Table 6), agreeing with a previous study showing that 
these snoRNAs can function as miRNAs15. SeRPeNT clusters in cell lines provide additional 
evidence of 6 other snoRNAs that group with miRNAs: SNORD116, SNORA57, SNORD14C, 
SNORD26, SNORD60 and SNORA3 (Supplementary Table 6). Interestingly, we also found 7 
clusters with a majority of miRNAs that included annotated tRNAs: tRNA-Ile-GAT, tRNA-Glu-
GAA, tRNA-Gly-CCC, tRNA-Ala-AGC and tRNA-Leu-AAG. In particular, tRNA-Ile-GAT-1-1 
clusters with miRNAs in 3 different cell lines: MCF-7, A549 and SK-N-SH, suggesting new 
tRNAs with miRNA-like function10,34. These results support the notion that sRNA read-profiles 
facilitate the direct identification of functional similarities without the need to analyze sequence 
or structure. 
 
To search for new cases of miRNA-like non-coding RNAs in the extended annotation, we tested 
their potential association with components of the canonical miRNA biogenesis pathway, using 
sRNA-seq data from controls and individual knockouts of DICER1, DROSHA and XPO535 
(Supplementary Methods). We validated the dependence of a number of known and predicted 
miRNAs (Fig. 4a) (Supplementary Figs. 7 and 8) and recovered the previously described 
dependence of ACA45 and SCARNA3 with DICER115. Additionally, we found 18 sRNAs 
predicted as snoRNAs with similar behaviour upon DICER1 knockout (Fig. 4b). Interestingly, 14 
out of 20 DICER1-dependent snoRNAs did not show dependence on DROSHA 
(Supplementary Fig. 7b), including ACA45 and SCARNA3, in agreement with previous 
findings15,35 (Supplementary Data 4). We also found a strong dependence on DICER1 for 128 
tRNAs, 82 of which changed expression in the direction opposite to most miRNAs, suggesting 
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that they may be repressed by DICER (Fig. 4c). Further, 4 cuRNAs showed similar results to 
miRNAs, suggesting some association with the miRNA biogenesis machinery (Supplementary 
Fig. 9a-c) (Supplementary Data 4). Although they were not confirmed as miRNA precursors 
using FOMmiR, 2 of these miRNA-like cuRNAs overlap with the protein-coding genes SEC24C 
and DHFR  (Supplementary Fig. 9d).  
 
Certain long non-coding RNAs (lncRNAs) are known to act as precursors of miRNAs36,37 and 
tRNAs38. We thus analyzed whether the new sRNAs could originate from lncRNAs. We found 
that 8 miRNAs, 16 snoRNAs, 7 tRNAs and 4 cuRNAs overlap annotated lncRNAs 
(Supplementary Data 4). These lncRNAs include MALAT1, which overlaps with 2 miRNAs, 2 
tRNAs and 1 cuRNA. Interestingly, 3 of the miRNAs predicted and validated by FOMmiR were 
found on lncRNAs MIR100HG, CTD-23C24-1, and RP11-141B14.1. From these, the new 
miRNA in RP11-141B14.1 is not present in recent miRNA catalogues (Figs. 4d and 4e).  As the 
processing from lncRNAs is a recognized biogenesis mechanism for certain small non-coding 
RNAs, these results provide further support for the relevance of the newly predicted sRNAs in 
our extended annotation. 
 
 

Discussion 
 
SeRPeNT provides a fast and accurate method to identify known and novel non-coding RNAs 
exploiting read profiles from stranded size-selected RNA sequencing data. SeRPeNT does not 
depend on the annotation granularity and avoids many drawbacks inherent to sequence and 
secondary structure based methods, which may be affected by post-transcriptional 
modifications or limited by the reliability of structure determination. Here we have shown that 
read profiles, by capturing the post-transcriptional processing that is specific to each sRNA 
family, provide functional information independently of sequence or structure. In particular, a 
number of known snoRNAs and tRNAs clustered with miRNAs according to their profiles. 
Beyond the known cases, we detected new candidates of this dual behaviour. It remains to be 
determined whether these new sRNAs can indeed function as miRNAs and associate with 
AGO239. It is possible that they compete with more abundant miRNAs to be loaded on the RNA-
induced silencing complex, hence they might become more prominent in specific cellular 
conditions. Incidentally, many sRNAs increase expression when this is measured from the 
sequencing of AGO2-associated reads in DICER1 knocked-down cells (data not shown), 
suggesting a repression by DICER140 or an association to alternative biogenesis pathways35. 
 
We have generated an extended annotation for human that includes hundreds of previously 
unannotated sRNAs from known classes. These included new miRNAs, which we validated 
comparing to known families, confirming the structure of the precursor, and by measuring their 
expression dependence with the miRNA biogenesis machinery. We further observed the 
frequent differential processing of sRNAs across cell compartments, especially for tRNAs. As 
differential processing of tRNAs has been observed in association to disease41,42,43, the 
observed patterns may be indicative of relevant cellular processes that are worth investigating 
further.  
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We also detected 131 new sRNAs that could not be labeled, which we named clustered 
uncharacterized RNAs (cuRNAs), and which are not present in current sRNA catalogues, hence 
could correspond to novel sRNA species. Although cuRNAs did not show frequent differential 
processing across cell compartments, they showed dependencies with the miRNA processing 
machinery and overlap with lncRNAs; suggesting some form of biogenesis. The role of lncRNAs 
as possible general precursors of multiple types of sRNAs in fact suggests new possible ways 
to classify lncRNAs beyond the current proposed frameworks44. A subset of lncRNAs may act 
as precursors of a wide variety of small non-coding RNAs, including those from known families.  
 
We envision a wide variety of future applications of SeRPeNT, including the fast identification 
and differential processing of non-coding RNAs from size-selected RNA-sequencing from tumor 
biopsies, circulating tumor cells, or exosomes, as well as the rapid discovery and 
characterization of non-coding RNAs families in multiple organisms. SeRPeNT differential 
processing operation can also be very powerful at, for instance, discovering RNAs that are 
differentially processed in tumor cells, thus generating biomarkers and potential drug targets. In 
summary, SeRPeNT provides a fast, easy to use and memory efficient software for the 
discovery and characterization of known and novel classes of non-coding RNAs.  
 
 

Methods 
 
SeRPeNT is written in C. The source code and a binary for Linux are available at 
https://bitbucket.org/regulatorygenomicsupf/serpent under the MIT license. Makefiles to 
reproduce the analyses described in this manuscript are available from the same site.  
 
Profile building from aligned short RNA-Seq reads 
 
The tool profiler uses as input one or more small RNA sequencing replicates in BAM format. 
Consensus read-contigs are built by pooling all the reads that overlap on a genomic region and 
that are at a distance smaller than a user-defined threshold. Each contig is scored per individual 
replicate by counting the number of reads mapped within its boundaries and reproducibility is 
measured across all the biological replicates. For all analyses of reproducibility in this paper we 
used npIDR45 with cut-off of 0.01. SeRPeNT allows using also SERE46 for reproducibility. SERE 
(simple error ratio estimate) compares the observed variation in the raw number of reads of a 
contig to an expected value, accounting for the impact of variation in read depth across 
replicates, whereas npIDR (non-parametric irreproducible discovery rate) determines the 
reproducibility of a contig in one or more replicates with similar sequencing depths. Contigs that 
do not pass the user-defined cutoff of reproducibility are discarded from further analysis. For 
each of the remaining contigs, a profile is built by counting the number of reads per nucleotide in 
the genomic region delimited by the contig boundaries. Each sRNA is defined as a genomic 
region and a vector of raw read counts, or heights, of length equal to the number of nucleotides 
spanned by this genomic region. Profiles are additionally trimmed at the 3’-end positions, when 
heights were either below 5 reads or below 10% of the highest position, but not when having 
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more than 20 reads. Only profiles of lengths between 50 and 200 nucleotides, and of minimum 
height 100 in pooled replicates, were considered. All these parameters can be configured on 
SeRPeNT command line. The consistency of sRNA profiles across multiple experiments was 
determined by calculating a normalized entropy of the different labels for the same sRNA locus 
across experiments (Supplementary Methods).  
 
sRNA profile clustering 
 
The annotator tool assigns a distance between each possible pair of profiles resulting from the 
previous step. This distance is computed with a novel algorithm (Supplementary Fig. 10) 
based on dynamic time-warping47,48 that accomplishes the task of finding the optimal alignment 
between two profiles by placing the height of each profile along the axes of a grid, representing 
alignments as paths through the grid cells, and finding the path with maximum normalized 
cross-correlation score across it. Given a pair of profiles of the same length A = (a1, …, an) and 
B = (b1, …, bn), where ai and bi are the heights of nucleotide i in profile A and B, respectively, we 
define the cross-correlation score between A and B as: 
 

A•B = ai ⋅bi
i=1

n

∑  (1) 

and the normalized cross-correlation score as: 
 

rA,B =
A•B

(A•A)(B•B)
 (2) 

 
This optimal alignment maximizes its normalized cross-correlation score between the two 
profiles. Given two profiles S = (s1, …, sn) and Q = (q1, …, qm) of length n and m nucleotides 
respectively, each position (i, j) in the dynamic matrix D will store a vector of three values D(i,j) = 
(x, y, z) such that they maximize the value 𝑥/ 𝑦 ⋅ 𝑧  in formula (2) amongst all the possible 
partial alignments between Si and Qj, where Si = (s1, …, si) and Qj = (q1, …, qj) are the profiles 
spanning the first  i and j nucleotides of the profiles S and Q. The dynamic programming 
equation is then defined as: 
 

 D(i - 1, j) + (si · ϕj,  si · si, ϕ · ϕ) 
D(i,j) = (x, y, z) among  D(i - 1, j - 1) + (si · qj, si · si, qj · qj)    that maximizes 𝑥/ 𝑦 ⋅ 𝑧  (3) 

 D(i, j - 1) + (ϕ · qj, ϕ · ϕ, qj · qj) 
 
where ϕ represents a negative Gaussian white noise function used to penalize an expansion or 
contraction in the alignment. When applied to a profile S, ϕ(S) returns a negative value taken 
from a random uniform distribution with mean and standard deviation defined by S. Once all the 
pairwise distances are calculated, profiles are clustered using a modified version of a density-
based clustering algorithm49 (Supplementary Fig. 11). For each sRNA profile i we define the 
local density ρi as the number of sRNA profiles that are close to profile ρi. We use an 
exponential kernel as described before50, such that the local density ρi is defined as: 
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ρi = e
−
dij
dc

"

#
$

%

&
'
2

j
∑   (4) 

where dij is the distance between profiles i and j, and dc is a distance cutoff. The clustering 
algorithm is based on the assumption that cluster centers with high density are surrounded by 
neighbors of lower local density and lie at large distance from other profiles of high local density. 
At each iteration of the algorithm, the distance cutoff dc is calculated51 and the profile with the 
highest density is identified. This profile and all the profiles that are closer than dc, are assigned 
to the same cluster. We introduced a novel step in the algorithm by which all the clustered 
profiles are removed before the next iteration step. The remaining unassigned profiles are then 
assigned to a different cluster, and so on. The algorithm stops when the calculated dc is higher 
than a user-defined threshold. Although this modified version of the density-based clustering is 
slower than the original version, it shows slightly better accuracy in the cross-fold validation. Our 
software allows skipping the calculation of the threshold as an option, at the expense of a lower 
accuracy.  
 
Profile annotation 
 
The annotator tool performs the sRNA profile annotation. Every detected profile that overlaps an 
annotated short non-coding RNA is marked as known and labeled with the corresponding class 
label (e.g. H/ACA snoRNA). The overlap amount required between the sRNA profile and the 
annotated RNA is user-defined. Profiles that do not overlap with any annotation or do not satisfy 
the overlapping requirements are marked as unknown. For each cluster with two or more 
profiles, the different labels from all the known profiles are counted, and all the unknown profiles 
within the cluster are labeled by majority vote with the most abundant label. In case of a tie, the 
label of the closest profile is assigned. All the remaining profiles are denoted as unlabeled. 
 
Differential processing analysis 
 
The diffproc tool assesses if a profile Pa in a particular condition A shows a different processing 
pattern Pb in another condition B. Given A pair of profiles Pa and Pb from conditions A and B, 
respectively, such that their reference coordinates overlap as described above, are compared 
as follows. GIven Ka the cluster in condition A that contains the profile Pa and Kb the cluster in 
condition B that contains the profile Pb, diffproc calculates all the pairwise distances Dab 
between Pa and all the profiles in Kb, and the pairwise distances Db between profiles in Kb (Fig. 
1). These two distance distributions are then compared using a one-sided Mann-Whitney U test 
and a fold-change is calculated as the ratio of the medians between both distributions. The 
same method is applied to profile Pb and cluster Ka. Pa and Pb are then reported as differentially 
processed if both tests are significant according to the p-value and fold-change cutoffs defined 
by the user.  When there are not enough cases to perform a Mann-Whitney U test, only the fold-
change is taken into account. 
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Figures 
 

 
 
Figure 1. Overview of SeRPeNT. Overview of the operations performed by the SeRPeNT 
tools: (a) Building of profiles from short RNA-Seq mapped reads using reproducibility across 
replicates. A profile is a collection of reads overlapping over a given genomic locus and can be 
regarded as a vector where each component contains the number of reads at each nucleotide 
of that locus. (b) Density-based clustering of profiles based on pairwise distances calculated 
with a dynamic time-warping algorithm. (c) Annotation of novel profiles using majority vote in 
clusters. (d) Differential processing calculation. The distribution of distances between a profile 
and its clusters sisters in one condition cluster (C1) and across conditions (C2) are compared 
(panel below). Differential processing is determined in terms of a Mann-Whitney U test and a 
fold-enrichment (Supplementary Fig. 2). 
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Figure 2. Extended annotation derived from ENCODE cell lines. (a) Number of known and 
novel sRNAs across 9 ENCODE cell line dataset. (b) Hierarchical clustering representation of 
the clusters obtained for the NHEK cell line. Distance between clusters is calculated by 
averaging all the distances between profiles from both clusters. Colored circles represent 
clusters of sRNAs at the leaves of the tree labeled by class. Empty circles represent internal 
nodes of the tree. The read profiles in clusters 5 and 111 are for one of its members, for which 
we plot the number of reads per nucleotide in the sRNA. (c) Genomic loci and graphical 
representation of the hairpins for the four novel microRNA. Predicted mature microRNAs are 
highlighted in blue in the gene loci SKA2 (MCF-7), LMO7 (SK-N-SH), CLIP4 (A549) and one 
intergenic region (K562). 
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Figure 3. Differential processing across ENCODE cell compartments. (a) Representation of 
clusters containing 5 or more sRNAs across all four ENCODE cell compartments. The size of 
the points represents the number of sRNAs from the extended annotation contained in the 
cluster. The normalized entropy (y axis) represents the purity of a cluster (Supplementary 
Methods), the lower the entropy, the higher the purity of the cluster. (b) Proportion of profiles 
from the extended annotation that are differentially processed between cellular compartments 
separated by non-coding RNA family (y axis). Numbers in the top of the bars represent the total 
number of profiles detected in both compartments. (c) Representation of the read profiles for the 
tRNA-Leu-AAG transfer RNA showing abundant processing of the 3’-half in the cytosol 
compared to the chromatin compartment. The plot represents the number of reads per 
nucleotide in the same scale for each compartment.  
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Figure 4. Detection of miRNA-like sRNAs. Differentially expressed sRNAs (blue) from 
extended annotation in the comparison between DICER1 knockout and control experiments in 
human HCT116 cell lines for (a) miRNAs, (b) snoRNAs and (c) tRNAs. The analyses for the 
knockout of DROSHA and XPO5 are available as Supplementary Figures. (d) Representation of 
a novel miRNA detected by SeRPeNT (depicted as a read profile) whose precursor is the 
lncRNA RP11-141B14.1 (depicted as a green line). Profiles for both replicates are included. (e) 
Secondary structure prediction of the miRNA precursor by FOMmiR. 
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