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Abstract

Understanding gene regulatory networks is critical to understanding cellular differentiation
and response to external stimuli. Methods for global network inference have been developed
and applied to a variety of species. Most approaches consider the problem of network infer-
ence independently in each species, despite evidence that gene regulation can be conserved even
in distantly related species. Further, network inference is often confined to single data-types
(single platforms) and single cell types. We introduce a method for multi-source network in-
ference that allows simultaneous estimation of gene regulatory networks in multiple species or
biological processes through the introduction of priors based on known gene relationships such
as orthology incorporated using fused regression. This approach improves network inference
performance even when orthology mapping and conservation are incomplete. We refine this
method by presenting an algorithm that extracts the true conserved subnetwork from a larger
set of potentially conserved interactions and demonstrate the utility of our method in cross
species network inference. Last, we demonstrate our method’s utility in learning from data
collected on different experimental platforms.

1 Introduction

As the volume and variety of genome scale data continues to increase in quantity and quality, the
goal of accurately modeling gene regulatory networks has become attainable [5, 9, 7]. Large-scale
data collection efforts have contributed to the development of high quality networks which accu-
rately recapitulate biological processes, but most processes and organisms remain uncharacterized
at the network level. Furthermore, as new technologies are developed and some old ones are re-
placed, such as RNAseq and microarray, it becomes important to be able to combine data from
multiple platforms, lest we lose valuable information from existing studies. The problem of inferring
related – but not necessarily identical – structure from related – but not identical – data is ubiq-
uitous in biology. Multi-source network inference has applications for learning multiple networks
in related species, for learning networks associated with distinct processes within the same species,
and for learning networks based on heterogenous data sources. Moreover, as it becomes possible
to learn genome-wide regulatory networks, we can begin to compare and to test whether there is
conservation of networks across species and biological processes. Our use of model organisms to
study biological processes and diseases relevant to humans relies on the assumption of conservation;
yet this has not been effectively tested at the genome scale.
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We present two methods for network inference based on linear estimates of gene expression
dynamics, extending existing dynamical-systems methods for network inference [5, 1, 60]. The core
of both methods is the observation that biological information about the relatedness of genes can
be used to select which network coefficients should be similar to one another in a multi-source
network inference problem (ie orthologous TFs should regulate orthologous genes), and that these
constraints can be efficiently represented as penalties in a least-squares regression problem. Taking
into account the similarity of putatively conserved interactions improves our ability to accurately
describe TF-gene relationships on a genome-wide scale.

Our first method – fused ridge – uses an L2 penalty on the differences between a priori similar
interactions (termed fusion penalty), and is useful where the relationships between networks (simi-
larity of genes between data sets) is reliable. In the case where both networks contain an identical
set of genes and TFs, this approach can be thought of as parametrically interpolating between
treating the data sources separately and combining them together. In the case of multi-species,
simply combining two datasets is both unwise – because the networks may differ substantially –
but also potentially impossible, because the set of common of genes may be small. Our method
allows useful pooling of data even when the overlap between genes is incomplete, or when orthology
assignments depart from a strict one-to-one mapping. Our second method – adaptive fusion – uses
a non-concave saturating fusion penalty to simultaneously infer the constrained networks and to
learn which constraints should be relaxed (ie which parts of the network are genuinely different).
With this approach, we seek to identify both conserved and divergent interactions between related
networks.

In the case of multiple species, numerous studies have shown that functional conservation ex-
ists in gene regulatory networks even across large evolutionary distance [51, 21, 56, 12]. In our
fused L2 approach, we assume that for closely related species, orthologous TFs could exert similar
regulatory effects on orthologous target genes. These orthology relationships form the basis of a
set of constraints which favor – but do not require – networks in which orthologous transcription
factors regulate orthologous genes. As a result, data in one species can improve network inference
performance in another species (and vice versa). This general framework for multi-species network
inference can be extended to an arbitrary number of distinct organisms, each contributing data
with only partially overlapping sets of genes. This is an advantage over existing approaches to
multi-species network inference, which infer only a sub-network for which orthologs exist in every
species [26].

This approach of introducing constraints on the similarity between specific regulatory inter-
actions can be extended beyond the case of multi-species network-inference from orthology; any
biological prior on similarity of regulation can be used in place of orthology. For example, we
can use fused regression to combine datasets obtained using different platforms or experimental
techniques and we can introduce constraints that favor genes in the same operon (or having similar
promoters) towards having similar regulators.

Existing multi species approaches often use orthology as a proxy for functional conservation
[50, 46, 26, 27, 62], or attempt to learn functional similarity via expression data [17]. Orthology
can be approximated using readily identifiable sequence similarity, which is often a useful predictor
of functional similarity [59, 24]. In multi-species network inference, our fused L2 approach mini-
mizes a cost function that strives to simultaneously fit expression data in each species and produce
networks that are consistent with evolutionary constraints created using orthology. However, many
genes will have evolved different functions and therefore may have new regulatory interactions. For
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example, gene duplications may lead to neofunctionalization [11] of the duplicated genes. In the
case of comparing networks from related cell lines from the same species, changes in chromatin con-
figuration may affect our hypotheses about the similarity of interactions between pleiotropic TFs
and target genes across cell types (a within-species analog to neo-functionalization) [35]. Identify-
ing interactions that are present in one species but not another is of direct biological interest, but
existing approaches to network inference are unable to effectively test the hypothesis of conserved
subnetworks. Observing a large difference in the weights of regulatory interactions obtained though
independent inference of multiple networks is perhaps the best (least biased) evidence against con-
servation of orthologous regulatory interactions (cases where target and regulator have orthologs
across species). However, this is sometimes weak evidence, as network inference is typically under-
constrained [39], meaning there could be a different set of networks for which conservation does
hold, and which fit the data almost as well. We propose using our adaptive fusion approach to
simultaneously perform network inference and evaluate edge-conservation (or lack thereof).

We approach this problem by introducing a saturating penalty function based on statistical
efforts to develop unbiased regularization penalties for fused regression [62, 13]. The main dif-
ference between the L2 fusion approach and our new adaptive fusion approach occurs when the
difference between presumed analogous interactions is large despite the fusion penalty. We assume
that cases where the method is unable to reconcile the likelihood and the fusion constraint derived
from orthology (in the case of multi-species fusion) or identity (in the case of multi-platform fu-
sion) correspond to cases with evidence of divergent TF-to-target-gene interactions. Practically,
this inability to reconcile likelihood and conservation hypothesis manifests as large differences in
model weights across species or platforms. We account for this possibility in our adaptive fusion
model with a relaxation of the fusion penalty in cases with extreme model weight divergence. The
resulting cost function is non-convex and difficult to optimize [13]; however, we can approximate
its solution and obtain deeper insight into functional similarity than is available through strict
orthology enforcement or the comparison of separately learned networks.

Although the fusion constraints we employ can be described as arising from orthology - which
links genes - it is important to note that the constraints themselves link individual regulatory
interactions. This finer level of representational granularity is critical to the functioning of adaptive
fusion, and means the method can accommodate any form of prior on expected similarity between
regulatory interactions, even priors that cannot be decomposed into gene to gene mappings. We
develop two algorithms for solving efficiently multi-output least-squares regression problems with
pairwise L2 fusion penalties on entries of the coefficient matrix. We also introduce - in the form
of adaptive fusion - the idea of a saturating penalty function on fusion constraints, and estimate
the solution to the resulting optimization problem through iterative application of the fused L2
algorithm.

We test the ability of fused L2 and adaptive fusion to improve network recovery on both synthetic
data and by comparing related networks in the bacteria species Bacillus subtilis and Bacillus
anthracis. This shows the applicability of our method in combining different datasets and leveraging
similarity across organisms as well as within a network in order to improve network inference. We
explore the circumstances under which each approach is optimal, and evaluate the robustness of
adaptive fusion to incorrect orthology, simulating the biologically relevant cases of neo- and sub-
functionalizations.
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2 Methods

2.1 Statistical approach and background

We consider prediction and coefficient estimation problems with N observations of M dependent
variables y1,1, y2,1, ...yN,1, yN,2, ..., yN,M and p features xi,j , i = 1, 2, ..., N, j = 1, 2, ..., p. We begin
with a standard linear regression model:

yi,k =
∑
j

xijβj,k + εi (1)

with errors εi having mean 0 and constant variance, and predictors xij having mean 0 and unit
variance. We are interested in the case where p > N . Many methods have been proposed to deal
with the underconstrained case, and have been applied to genomic data [57, 36]. For example, ridge
regression penalizes the L2 norm of the coefficients βi,j in order to avoid overfitting [22], and can be
thought of as a mean-zero Gaussian prior on the coefficients. More complicated penalties have been
developed to represent specific expected or desireable structure in a regression model’s coefficients.
For example, Land and Friedman [32] proposed a fusion penalty which encourages smoothness of
the estimated parameter vector. Previous approaches have used fusion penalties to draw statistical
strength across multiple regression tasks [29, 33, 8, 47, 20]. Price et al. and Bilgrau et al. use a
fused ridge estimator for jointly estimating multiple inverse covariance matrices [49, 4]. We take a
related approach to these prior works, adding an L2 penalty on the differences between coefficients
to the existing ridge penalty in order to incorporate prior knowledge about relationships between
input-output pairs:

arg min
β

∑
||Xβ − Y ||2 + λR||β||2 + λS

∑
βg,k≈βh,l

||βg,k − βh,l||2 (2)

where X, Y , and β are matrices, and βg,k ≈ βh,l denotes fusion between entries of β (enforcing
similarity between model weights across separate data-sets). Note that, like ridge regression, this
penalty can be thought of as representing a Gaussian prior on the coefficients β. In the case where
β is a column vector, introducing this penalty is equivalent to assuming that β is sampled from a

multivariate Gaussian with inverse covariance matrix Σ−1 = λR+
∑
βg≈βg

λS(1g,g +1h,h−1g,h−1h,g),

where I denotes the identity matrix and 1i,j a matrix of zeros with 1 in its i, jth entry. In the case
of a two-coefficient model with fusion between the coefficients, for example, fused L2 is equivalent
to assuming a prior with variance (λR + λS)/(λ2

R + 2λRλS) and covariance λS/(λ
2
R + 2λRλS).

In many cases, however, there is some uncertainty about the relationships that should be en-
forced. Sohn et al. attempt to simultaneously learn the regression coefficients and the output
structure [53]. We develop a similar approach, by applying a penalty function bounded by a con-
stant to produce unbiased estimators for large coefficients, combined with an L2 penalty, similar
to SCAD-L2 [61].

arg min
β

∑
||Xβ − Y ||2 + λR||β||2 + λS

∑
βg,k≈βh,l

pλ,a(βg,k − βh,l) (3)

where the penalty pλ,a has derivative
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p′λ,a(θ) =

{
λθ if θ ≤ λ
max(λ(2a− θ), 0) if θ > a

(4)

This approach allows us to simultaneously learn the regression coefficients and evaluate the
validity of our prior information (this model relaxes the fusion penalty when model components
are irreconcilably different).

2.2 Application

Although our approach is generalizable to a wide variety of multi-source network inference prob-
lems, we begin with the concrete example of network inference in two related species. Our approach
to multi-species network inference is based on the hypothesis that gene regulation in related species
is governed by similar but not necessarily identical gene regulatory networks, due to conserva-
tion of function through evolution. We represent conservation of network function by introducing
constraints into the objective function for network inference that penalize differences between the
weights of regulatory interactions believed to be conserved. These constraints favor the generation
of similar networks for related species, and in the generally under-constrained regime of network
inference can improve the accuracy of network recovery. We then go on to introduce a method
to test the assumption of conserved network structure, and to relax the associated constraints on
pairs of interactions for which the data does not support conservation (where conservation of a
regulatory edge is implied by like model weights across data-sets).

2.3 Approach overview

Algorithm 1 Network inference using fused regression

load expression data
load orthology
create priors and fusion constraints
partition gold standard into training and leave-out
generate TFA matrices using gold standard training set
set a if using adaptive fusion
for k in folds do

partition expression data into training and leave-out set
λR parameter selection using training set
λS parameter selection using training set
run fused regression
return PRC and ROC curves using leaveout gold standard

end for
average PRC / ROC curves over folds

2.4 Gene regulatory network

We model the transcription rate of each gene as a weighted sum of transcription factor expression,
and seek to identify the identities and regulatory weights of these TFs. This formulation matches
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that of the existing Inferelator algorithm, which models gene expression with linear differential
equations [6]. Our primary data for learning gene regulatory networks is expression data, consisting
of time-series and steady state experiments. The rate at which xi, the observed mRNA expression
of gene i, changes, is governed by degradation of existing transcripts with rate α plus a linear
combination of transcription factor (TF) expressions.

d

dt
xi = −αixi +

∑
βi,jxj (5)

where βi,j represents the weight of TF j on gene i, and α is the decay rate of gene i. We fix the
decay rate α for all genes, and set it assuming a time-constant of 10 minutes [19, 52], as in [18].
Let xi(t) be the expression of gene i at time t. Given time-series data on the expression of gene i

at timepoints tk and tk+1, we can approximate the rate of change of xi as x′i(tk) =
xi(tk+1)−xi(tk)

tk+1−tk .

We treat steady-state data as having a derivative of zero. This gives us, for each gene i and time
tk an equation

xi(tk+1)− xi(tk)
tk+1 − tk

+ αixi(tk) =
∑

βi,jxj(tk) (6)

where j 6= i for time series and

αixi(tk) =
∑

βi,jxj(tk) (7)

for steady state.
We can summarize these equations in matrix form as

Y = Xβ (8)

where Y is the gene expression matrix, X is the TF expression matrix, and β is the regulatory
weights we are interested in learning. We are interested in learning β, the matrix representation of
the gene regulatory network, where the weight in a given position represents the regulatory weight
of a TF on a gene. Positive weights represent activation, negative weights represent repression,
and 0 weights represent the absence of an interaction. The matrix β can be solved using linear
regression. Because there are typically far fewer conditions than possible regressors (TFs), we
introduce a ridge regularization constraint with weight λR and solve

arg min
β

||Xβ − Y2||2 + λR||β||2 (9)

This is similar to the formulation used in the Inferelator algorithm, which we extend to the case
of simultaneously inferring multiple networks.

Transcription factor expression is not always the best predictor of its gene targets’ expression,
so previous network inference methods attempt to estimate transcription factor activities prior to
network inference. When there exists a set of prior known interactions, we are able to estimate
transcription factor activity (TFA) using network component analysis [37], as in [1, 15], and use
TFA as explanatory variables instead of transcription factor expression.

2.5 Fused gene regulatory networks

Information about the partially conserved structure of gene regulation is introduced through the
incorporation of constraints into the above regression formulation. These constraints penalize
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differences between interaction weights in the networks of multiple species that are expected to be
similar based on prior biological knowledge. We can then solve the penalized regression problems
simultaneously, in order to obtain a gene regulatory network (GRN) for each species. Consider the
case of organisms A and B, governed by GRNs βA and βB (the following approach applies equally
well to more than two species but for simplicity we continue with the case of two species). When
TF gA in organism A and TF hB in organism B are orthologs, and gene kA and lB are orthologs,
then we expect that the gA → kA interaction weight should be similar to the hB → lB interaction
weight, and we introduce a fusion constraint between these analogous interactions. In terms of the
above regression formulation, we expect that βAg,k ≈ βBh,l, and include a penalty term λSp(β

A
g,k−βBh,l)

in the quantity being minimized in order to encourage similarity. The function p(x) controls the
shape of the relationship between weight dissimilarity and penalty, while scalar λS controls the
overall scaling of the penalization of differences between fused coefficients. λS controls the tradeoff
between fitting the expression data-sets individually and producing a set of networks that conform
to evolutionary prior knowledge. This gives us the final equation to be minimized:

arg min
βS

∑
S∈{1,2}

||XSβS − Y S ||2 + λR||βS ||2 + λS
∑

(g,h)∈orth,
(h,l)∈orth

p(βS1
g,k − β

S2
h,l) (10)

where the second sum is over pairs of interactions with fusion constraints. In the fused L2
algorithm presented here, the penalty function is equal to the L2 norm of the difference in regulatory
weight of fused coefficients, p(x) = x2. Every component of the objective function is an L2 norm and
thus the problem is convex and can in fact be solved through linear regression with an augmented
design matrix.

As an example, consider the case where there is a one-to-one orthology between the species
being considered (ie different cell-lines of the same organism). The choice of λS allows one to
interpolate between fitting each network independently (λS = 0) and pooling data together as if
it came from one source (λS = inf). In addition to performing well between these extremes, our
method allows pooling of data even when there is incomplete orthology. By introducing constraints
on the similarity of individual interactions, rather than on the networks as a whole [38], we can
pool some information across species even when a small fraction of genes have orthologs.

2.6 Adaptive fusion

Fusion constraints penalize dissimilarity between interactions thought to be analogous based on
a priori knowledge. For example, orthology can be used to predict which interactions will be
similar across species. With an L2 fusion penalty, interaction weights which differ from each other
by a large amount are excessively penalized, which effectively ensures that fused interactions are
assigned similar weights. This will be inappropriate for interactions which are identified based on
orthology as being analogous, but which are no longer similar due to evolutionary changes. We
propose that a saturating penalty that is relaxed once differences in weights grow beyond a certain
point (interactions which appear to be very different based on the data are effectively unfused). A
related problem has been studied in the context of LASSO regularization, where it was shown by
Fan and Li that using a saturating penalty retains many of LASSO’s desireable properties while
removing its bias towards model weights of 0 [13]. They further showed that, although the resulting
loss-function is nonconvex, good results can be obtained with a local quadratic approximation
of gradient descent. Several saturating penalties, such as SCAD [13] and MCP [62], have been
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discussed in the context of sparse regression. We introduce a modified form of MCP to the problem
of penalizing differences between fused coefficients. The principal difference between the penalty we
adopt and SCAD/MCP is that both of these penalties are L1 like at the origin, producing sparse
solutions. Some network inference approaches use L1 penalties to produce sparse networks, on the
basis that biological networks are thought to be sparse. However, as we are penalizing differences
in interaction weights, rather than the weights themselves, there’s no reason to assume that most
differences will be exactly zero, and an L2 penalty - equivalent to an assumption that the differences
between fused coefficients are Gaussian distributed - may be more appropriate.

We use a penalty on the difference between fused coefficients θ which is L2 like at the origin
and saturates at θ = a. Written in terms of its derivative, the penalty p′λ,a

p′λ,a(θ) =

{
λθ if θ ≤ λ
max(λ(2a− θ), 0) if θ > a

(11)

As in [13], we solve using iterative local quadratic approximation. Specifically, βS(t) is the
network on iteration t. For each fused BS1

g,k ≈ B
S2
h,l we define:

θ(0) = 0 (12)

θ(t) = |BS1
g,k −B

S2
h,l| (13)

and introduce a fusion constraint λ = p′(θ(t))
2θ(t)

βS(t+1) is obtained by fitting the ridge-fused model with fusion constraints given by the above
λS . This is useful because all our penalties can be treated as L2 and therefore retain the properties
of ridge regression, and can be solved using the fused L2 algorithm we develop.

Our adaptive penalty function introduces, in addition to regularization and fusion penalty
weights λR and λS , an unknown parameter a. We could employ grid search using cross-validation
to search for the best parameters, but for many data sets, this can be computationally expensive.
Moreover, we are primarily interested in using this saturating penalty as a way of testing the
hypothesis that conservation in GRNs can be predicted based off of known similarities between
genes. Therefore, we propose a user-defined a, where this parameter is set using the distribution
of differences between fused weights from independently fit networks. The choice of which value in
this distribution to use for a represents the working hypothesis for the fraction of fused interactions
which should be unfused.

2.7 Solving fused L2 problems using augmented matrices

We begin with the problem of constructing a design matrix to map our problem to that of solving
a fused L2 regression problem with a single response variable. We then go on to show that,
although the vectorized solution involves solving an impractically large system of equations, under
typical biological conditions the structure of constraints allow the problem to be broken up into
many smaller subproblems. Key to this approach is the observation that ridge constraints can be
incorporated into a least-squares regression problem by appending a scaled identity matrix to the
design matrix, and a corresponding number of zeros to the response vector. Similarly, a fusion
constraint λS(βi − βj)2 can be incorporated into a least-squares regression problem by appending
a row containing

√
λS in the ith position, −

√
λS in the jth position, and 0s elsewhere to the design

matrix, and zero to the response vector. In order to convert an optimization over multiple response
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variables and multiple sources into an optimization with a single source and response variable,
we vectorize as follows: we construct a new design matrix by diagonally concatenating design
matrices from relevant regression problems, and create a new response vector by concatenation of
corresponding response vectors.

This is equivalent to the original problem due to the block structure of matrix multiplication.
In an ordinary regression problem each response variable can be solved independently, and vec-
torization is unnecessary. However, in fused regression, we append additional rows to the design
matrix that link entries of the interaction weight matrix associated with different response vari-
ables (figure 8). As a result, these linked response variables must be solved simultaneously through
vectorization. Two response variables are linked by a fusion constraint if any of the regulatory
weights affecting those genes are linked by a fusion constraint. Two response variables must be
solved simultaneously if there is any chain of linked response variables connecting them. However,
every other response variable can be solved separately. In biological terms, the regulators of two
genes (whether in the same species, or different species) must be solved together if there is a fusion
constraint linking those genes’ regulators, or if there is a chain of such constraints. If the networks
for a large number of genes are solved simultaneously, the system of equations can quickly become
intractable.

In order to avoid this difficulty, we use depth-first search to identify linked columns of each
TF expression matrix, then form design and response matrices through vectorization. We can
then incorporate fusion constraints as in the case of single-source single response-variable fused
regression. In most cases, we have found the direct solution using augmented matrices to be
adequate (possible due to the sparse structure of orthology links; only a small number of genes
must be solved at once). In the general case, the size of the design matrix is proportional to
the number of response variables that must be solved simultaneously. Because the scaling of this
algorithm has a complicated dependence on the constraint structure used, a general description
of its runtime is difficult. However, in the case of multi-species network inference with one-to-one
orthology, the network associated with each pair of orthologous genes requires solving a linear
system with approximately twice as many observations and unknowns as the single species case.
Linear systems of this size can be solved quickly using standard techniques, and runtime using our
bacterial datasets clocks in around thirty minutes. When the size of the groups of genes linked
by fusion constraints becomes large (when organisms have a number of many-to-many orthologous
blocks), however, the augmented design matrix approach becomes slower and we discuss further
optimisations to this scheme below to enable scaling to these regimes.

2.8 Solving fused L2 problems using iterative solver

To address scaling limitations when many-to-many fusion constraint blocks occur, we developed an
iterative solver that uses coordinate-wise descent to solve for solutions corresponding to a sequence
of values of fusion penalty weights. As our fused L2 method uses a convex and differentiable penalty
function, this approach converges to a global minimizer. Although less efficient than the augmented
design matrix approach we developed for cases where fusion constraints are primarily one-to-one or
few-to-few, the iterative solver has the advantage of computing a solution path for λS and scaling
well across a wider range of biological applications.

On each iteration t the iterative solver computes
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arg min
βS

∑
S∈{1,2}

||XSβS(t)− Y S ||2 + λR||βS(t)||2 + λS
∑

(g,h)∈orth,
(h,l)∈orth

||βSg,k(t)− βSh,l(t− 1)||2 (14)

Note that this is almost identical to equation 5, but now the network β is a function of the iteration
number t. On each step, we compute βs that minimize a penalized cost function where the fusion
penalties encourage similarity between a parameter and its fused-to parameter from the previous
iteration’s solution. This process is iterated until the estimated βs converge. Because each iteration
reduces the error between β(t) and β(t − 1), and because β(t) = β(t − 1) is the globally optimal
solution, this process must eventually converge to the same network as equation 2. Although
we have not produced bounds on the convergence rate, which also depends on the structure of
constraints, in practice a small number of iterations (∼10) are necessary.

2.9 Fusion and regularization path

Optimizing over both parameters, λR and λS , is computationally prohibitive and we opted to test
a heuristic where we optimize the two parameters separately. Our procedure first optimized λR
with λS = 0, then optimized λS using this value of λR. This procedure is guaranteed to achieve the
best unfused solution in the case when λS is constrained at 0. As a result, any performance gains
of fused regression are a lower bound on the highest achievable performance gains. To optimize λR
we use cyclical coordinate descent algorithms from the ’glmnet’ package [14] to compute a ridge
regularization path. We use cross validation to select the optimal λR parameter from this path,
selecting the λR which minimizes the average error of prediction on a leave out set across cross
validation folds. Following selection of λR, we search for optimal λS by computing the solution
path from the iterative solver (using the sequence of successive model weights) again using cross
validation to select the optimal parameter. Note that both parameters are chosen without reference
to the gold standard, which is used in a separate evaluation of network quality.

2.10 Simulated data

We generate simulated data to evaluate the ability of our fused L2 approach to learn the true
network and to show that sharing information between similar but not identical data sources results
in more accurate network recovery. Generation of simulated data begins with the production of
random orthology mappings with sparcity simlar to that found in real data-sets. We produce a one-
to-one orthology by pairing random genes until a specified fraction have been assigned orthologs.
This process is carried out separately for TFs and non-TF genes, so that TFs and non-TF genes
are never assigned to be orthologous. We then produce a pair of random networks (β1 and β2) as
follows. For each unfilled entry in β1 or β2, we enumerate the set C consisting of the entry along
with every entry in either matrix to which it is fused. With probability equal to the sparsity rate we
assign every entry in C to be 0, otherwise we sample a value v ∼ N (0, 1) and independently assign
each entry in C to v+N (0, σ2

f ). σf is a parameter that controls the distribution of differences in the

values of fused coefficients, so that the nonzero coefficients of β1, β2 are distributed as N (0, 1+σ2
f ).

Given a network β, we generate N samples of gene expressions at two timepoints. The condition
by gene expression matrix for timepoint one, YT1, is sampled randomly from a multivariate Gaussian
distribution with identity covariance matrix. XT1 is the TF expression sub-matrix of YT1, and

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2016. ; https://doi.org/10.1101/049775doi: bioRxiv preprint 

https://doi.org/10.1101/049775


consists of columns of YT1 that correspond to TFs. Treating the decay rate as 0, the gene expression
matrix at timepoint two, YT2 is sampled as YT2 = YT1+T1+ε, where ε is a Gaussian noise term. This
process is carried out separately for each network. Following generation of simulated data, we may
introduce error into the orthology mapping. This can take the form of discarding a specified fraction
of true orthologies (governed by a false-negative rate), by introducing random false orthologies
(governed by a false-positive rate), or by adding Gaussian noise so that fused interactions are not
identical (described above). For convenience, the false-positive rate is specified in units of the
number of true orthologs, and not the number of possible orthologs. The list of priors can in a
similar fashion be manipulated to include false positives and false negatives.

2.11 Ranking regulatory hypotheses

In previous work, betas were rescaled as to form a matrix of confidence scores S as follows

Si,j =
σ2

full model for yj

σ2
full model for yj without predictor i

(15)

Computing residuals with respect to the data alone would disregard information gained through
fusion, because certain interactions may be large due to fusion, rather than their individual ex-
planatory power. Instead, we used an approximation

Si,j =
σ2

full model for yj

σ2
full model for yj

+ β2
i,j × var(TFj)

(16)

2.12 B. subtilis and B. anthracis data and orthology

We used a dataset collected for PY79, a derivative of strain 168, available on GEO with accession
number GSE67023, and a dataset using BSB1, another derivative of strain 168, available at GEO
with accession number GSE27219. We used two datasets for B. anthracis, transcription profiling
during iron starvation (E-MEXP-2272 on ArrayExpress), and time series over the life cycle (E-
MEXP-788 on ArayExpress). We ran Inparanoid to obtain orthology mapping for B. subtilis and
B. anthracis [44]

3 Results

We used both synthetic networks and real data to test the ability of fused regression to improve
the performance of network inference, and the ability of our adaptive fusion procedure to identify
conserved interactions between orthologous genes. For the synthetic data, we generated random
pairs of networks in which orthologous genes have similar regulatory interactions, and then sampled
gene expression from these networks, which we used to derive learned networks for comparison with
the input (true) networks. For real data, we computed recovery of a known gold standard in Bacillus
subtilis [41].

3.1 Using fused regression to learn related networks

It is known that the accuracy of network inference improves with additional data [3]. Additional
data is not always readily available and does not always make identification of unique network
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weights possible; but often there is an abundance of related data. Using related data for network
inference allows us to leverage statistical power from disparate sources, effectively increasing the
sample size and boosting the sensitivity and specificity of learned interactions. We created synthetic
networks to approximate two related biological processes, then evaluated performance of our fused
L2 regression, which learns the networks simultaneously given a prior on the relatedness of inter-
actions. We compared recovery of the two artificial 10 TFs by 200 genes networks, using fused L2
versus learning networks separately, and varied the amounts of simulated expression data samples
made available to the solver. When the amount of data from the second species was held constant,
increasing the amount of data available for learning the network for the first species resulted in a
more accurate network prediction, as expected (figure 1b). When we increased the amount of data
from the second species, we obtained performance gains on network one using fused L2 regression,
demonstrating our ability to improve network inference on one dataset through incorporation of a
related dataset.

When disparate data is generated from identical processes, the weight assigned to fusion con-
straints should be very large. On the other extreme, when the networks have diverged considerably,
a large fusion weight may impair network recovery. We performed an experiment on simulated data
in a multi-species network-inference problem to assess the effect of the similarity of networks, and
the effect of the fusion weight on network recovery (figure 2); pairs of synthetic networks with
varying similarity were then built. The main factors governing similarity between our generated
networks was the extent (and accuracy) of the orthology mapping, and the variability between
conserved, interactions (degree of subnetwork conservation). We then conducted a series of simula-
tions to assess the effect of increasing orthology coverage on network recovery. When the conserved
subgraphs were very similar - when the interactions in the conserved subnetwork were nearly iden-
tical, emulating the case of closely related organisms or similar processes (figure 2a) - increasing the
weight of the fusion penalty λS improved network recovery. As the size of the conserved subgraph
increased, this effect was enhanced. To simulate the case of distantly related organisms, we cre-
ated networks where the differences between conserved interaction weights were drawn from high
variance distribution, mimicking weak conservation (figure 2b). We showed that even for networks
where the conserved subgraph was weakly conserved, there exists a model parameterization where
fusion regression improves network recovery.

3.2 Fused regression improves performance on both the constrained and non-
constrained parts of the network

Our approach is useful for learning networks from similar sources such as related cell types from
the same species, where there exists a one-to-one mapping of genes, as well as datasets where the
orthology mapping does not span all genes . This can occur when using different technology, eg
microarray and RNAseq, where there is incomplete overlap in the genes that each method assays as
well as incomplete overlap in the genes expressed in different experimental designs. When orthology
is incomplete we are interested in knowing if performance gains from fused regression are limited to
those interactions which have fusion constraints, or if they extend to the entire network. To test this
we used multiple 20 TF by 200 gene synthetic networks with varying proportions of orthologous TFs
and genes. We divided networks into those interactions with fusion constraints (the constrained
subnetwork) and interactions without fusion constraints (the non-constrained subnetwork). We
varied the weight on the fusion penalty, lamS, and evaluated performance by computing AUPR on
the constrained subnetwork, the non-constrained subnetwork, and the whole network (figure 1c).
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Since the conserved subgraphs were similar to each other (more like figure 2a than 2b), we expected
performance to improve as the fusion penalty weight increased. We observed this, particularly for
the constrained subnetwork. As λS increased, interactions with fusion constraints were encouraged
to be more similar. Interestingly, performance gains were seen even in the portion of the network
that was unconstrained by fusion.

3.3 Adaptive fusion successfully identifies and unfuses ’neofunctionalized’ genes

Orthology prediction is not a proxy for functional conservation [16, 55, 42]. To allow for orthologous
genes to be unfused we implemented an adaptive fusion algorithm that attempts to optimize a
nonconvex saturating penalty function on differences between fused interactions (figure 3). Pairs of
interactions that are dissimilar even after fusion, which sit in the flat portion of this penalty function,
are effectively “unfused,” and no further penalty is incurred as differences in interaction weights
grow. Our network procedure strongly favors similarity of fused interactions, and only “unfuses”
interactions when their similarity cannot be reconciled with expression data. As a result, the
“unfusing” or relaxation of the fusion penalty on certain constraints is much more direct evidence
for neofunctionalization than comparing separately fit networks could provide.

We performed a simulation to assess the ability of our adaptive fusion algorithm to distinguish
which parts of two input networks are conserved vs. neofunctionalized (figure 4). We generated
synthetic fused networks and introduced error in the fusion constraints by adding false positives
and negatives to the orthology information given to the solver. Because we knew which entries in
the orthology mapping were “incorrect” (not reflected in the generation of the networks), we could
correctly label fusion constraints that involved one or more “incorrect” mappings. We verified that
adaptive-fusion unfused mostly “incorrectly fused” interactions (figure 4a red dots), while leaving
truly analogous interactions fused (figure 4a green dots).

We then compared the recovery of interaction weights which were accurately fused, and recovery
of interaction weights which were inaccurately fused due to incorrect orthology information (figure
4b). Because fused L2 heavily penalizes large differences between weights which are predicted to
be similar, it is able to retrieve a more accurate network for those interactions with true fusion
constraints than by learning networks separately (measured by MSE between the true and inferred
interaction weights) . In this simulation, however, the gains accomplished through fused regression
do not extend to those interactions lacking true fusion constraints, and the error remains similar to
learning networks separately. When we applied adaptive fusion, we did not observe an improvement
in network recovery (relative to fused L2). However, we were able to identify fusion constraints
reflecting incorrect orthology information that had been provided to the algorithm (figure 4a).

3.4 Cross-species network inference using bacterial data

We used gene-expression data from Bacillus subtilis and B. anthracis in order to assess performance
gains of fused regression on real data. Our B subtilis data set consists of 360 time-series and steady-
state observations of 4891 genes, 4100 of which are protein coding [31], during the life cycle. Our B.
anthracis dataset consists of 72 time-series and steady-state observations of 5536 genes comprising
data from distinct points in the life cycle and iron-starvation conditions. There were 247 known
transcription factors (TFs) in the B. subtilis dataset, and 248 TFs in the B. anthracis dataset.
We obtained 1,870 one-to-one orthologs from Inparanoid [44], 95 of which are transcription factors,
which produced 177,650 fusion-constraints between gene interactions within the two species. This
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number represents only 14.7% of the regulatory interaction matrix in B. subtilis and 12.9% in B.
anthracis.

To assess network inference performance, and for use as priors, we used a gold standard of 3,040
known B. subtilis interactions with corresponding activation and repression sign. Of these 3,040
priors, 968 had corresponding interactions in B. anthracis. Based on our simulation results, we can
expect the greatest gains in network-inference performance from fusion when the species of interest
has a small number of available conditions, but data is abundant in a related species. However, in
order to evaluate performance objectively a gold-standard of known interactions is necessary. As a
result, we can only evaluate network recovery for B. subtilis, and B. subtilis also has the majority
of our conditions. In order to simulate the data-poor regime, we subsampled our B. subtilis data.
We divided our B. subtilis data into k folds, and then for each fold fit a network to the B. subtilis
data from that fold alone fused to the entire 72 B. anthracis conditions (figure 5a). Though overall
performance is hindered by our subsampling of B. subtilis data (a necessary procedure to allow
evaluation of networks) we demonstrate marked improvement in learning the B. subtilis network
when using fused regression (figure 5a). Notably, these performance gains occur mostly at low
values of recall (near the top of our prediction ranks, where biologists would presumably focus
validation and followup experiments).

3.5 Testing adaptive fusion using bacterial data

The goal of adaptive fusion is to unfuse constraints between non-conserved interactions, while
leaving intact all other constraints. However, because we lacked a comprehensive gold standard of
known non-conserved interactions between B. subtilis and B. anthracis, we were unable to directly
evaluate how accurately adaptive fusion identified these interactions. We opted instead to introduce
a large number of random fusion constraints between genes not known to be orthologous. These
fake constraints, which are unlikely to reflect any conserved network structure, served as a proxy for
the unknown fraction of non-conserved interactions between orthologous genes. We ran adaptive
fusion to learn networks for B. subtilis and B. anthracis, using these constraints, along with those
generated by known orthology. We confirmed that our injected spurious fusion constraints were
unfused at a higher rate than those generated by known orthologs (see figure 5b c). Although
it may seem odd that a large fraction of fake constraints were left intact, we note that biological
networks tend to be sparse, so that many of the random fusion constraints are between coefficients
with near zero weight (and therefore near zero difference in weight) (figure 5c).

3.6 Integrating datasets from different platforms using fused regression

Although there are many large-scale collaborations which attempt to make protocols as uniform as
possible for comparability between datasets generated by different labs [45, 30] and several methods
for removing batch effects [23, 25], there still exists technical and biologial variability between many
experiments attempting to capture the same or similar experimental conditions esspecially when
experiments employ different experimental platforms. With the advent of RNAseq, for example,
microarray based technologies are no longer the dominant assay for genome-wide expression, but
a large body of accumulated legacy data remains useful if it can be integrated with more modern
techniques. Currently, the most widely used approach to combining datasets for network inference
is to learn networks from disparate datasets separately, then rank combine the networks as in
Marbach et al [40]. We included, along with our B. subtilis dataset, a previously published dataset
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containing 269 samples covering 104 conditions, obtained using a different tiling microarray (vs
custom microarray) and different strain of B. subtilis [43]. We compared performance when learning
the networks separately and then rank combining (as in cite Ciofani) to learning the networks
simultaneously using fusion regression and show large improvement in performance using our fused
L2 approach (figure 6a).

Information about the similarity of TF-gene interactions can also come from knowledge about
the promoter region or the structure, for bacteria, of polycistronic transcripts. In bacteria, genes
within the same operon are typically under the control of the same promoter [34]. We posited,
therefore, that genes within the same operon will be regulated similarly by the same transcription
factors. We applied fusion regression by creating fusion constraints between a given transcription
factor and genes within the same operon, and showed a boost in B. subtilis network recovery using
within-species fusion (figure 6b).

3.7 Transcription factor activity estimation integrates into fusion regression
approach

We tested a combination of our fused regression approach with a method for estimating transcription
factor activities (TFA). Rather than modeling gene expression using transcription factor mRNA
abundance, we fit gene expression as a function of transcription factor activity, as applied to B.
subtilis by Arrieta-Ortiz et al [1]. TFA activity estimates transcription factor activities that are
modulated through mechanisms such as dimerization and interaction with required factors. TFA
activity estimates have been shown prior to be better predictors of TF function than expression level
alone in several contexts including similar network inference tasks[15] [1]. We estimate TFA based
on known regulatory interactions using network component analysis [37]. To test the integration
of this approach with our fused regression, we assessed the combination of B. subtilis datasets,
as in figure 6a, with the incorporation of TFA estimation. We randomly divided the prior known
interactions in half, and used half to learn TFA and to generate priors on network structure. The
remaining interactions were reserved as a gold standard for validation. As in previous studies,
we observed a marked improvement in network inference when using transcription factor activity
(figure 7). We also obtained AUPR improvement when using fused regression on TFA, and showed
that our gains from sharing information across datasets using fused regression were preserved and
even enhanced by using TFA.

4 Discussion

Gene expression data, such as microarray or RNA seq, provide information about the relationship
between genes by allowing an experimenter to measure correlations in expression value over time
or across conditions. Many sources of information - such as the knowledge that two genes are
related through orthology or belong to the same operon - provide additional information about
the relationships between these gene-gene relationships. For example, two genes that belong to
the same operon are likely to have a similar set of regulators [34], but knowing that two genes are
members of a polycistronic transcript does little to inform the identity (strength, sign) of those
regulators. Meta-information about the structure of gene regulatory networks, specifically which
pairs of interactions are a priori likely to be similar to one another, can provide a powerful set of
constraints to improve network inference performance [50, 48]. We present a general framework
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for gene regulatory network inference that incorporates this meta-information - termed fusion con-
straints - and apply the technique to the problem of simultaneous inference of regulatory networks
in multiple species (B. subtilis and B. anthracis).

We apply this algorithm to the problem of network inference in two distantly related biological
organisms – B. subtilis and B. anthracis – and show that network recovery is improved through
the introduction of fusion constraints between pairs of orthologous genes. Many previous meth-
ods for cross-species network inference operate on the conserved subset of orthologous genes [10].
This assumption may be appropriate with very closely related species, but could not be applied
in this domain, where a large fraction (62% and 67%) of the B. subtilis and B. anthracis genomes
do not have clear orthologs (and many orthologs have ambiguous many-to-many groupings). Our
method, in contrast, can obtain improvements in network inference performance even when the
conserved subset of genes is small. This approach is particularly interesting in light of the diversity
of important model organisms used in modern biology. Different model systems provide different
advantages and disadvantages for experimental design [54], but without a principled mechanism
for combining data from multiple sources, it is difficult to fully leverage data obtained from even
a slightly different model system. We further demonstrate the viability of fused L2 as a method
for combining data from multiple experimental platforms, where fusion is between each identical
regulator-gene pair. Because the algorithm we developed can accomodate constraints between arbi-
trary pairs of regulatory interactions, any biological prior representing information about expected
regulatory similarity can be represented, even if the prior provides no information about the mag-
nitude or direction of regulation. We demonstrate this flexibility through the novel incorporation
of operon structure into the gene-regulatory network inference problem. In this application, fusion
reflects the assumption that genes in the same operons have similar regulators [34]. The ability
to incorporate multiple data sets describing related processes, as well as multiple data types, in a
principled manner, helps us take advantage of the breadth of experimentation in biology to better
learn the structure of gene regulation. We illustrate this by combining two different B. subtilis
datasets and show that fused L2 is an improvement over current approaches to combining data [40]
because of our ability to exploit the statistical power that our expanded datasets afford us.

Although it is important to take advantage of the similarities of related organisms for generating
improved models of gene regulation, it is also critically important to understand how systems differ
from one another. Our cross-species network inference method is premised on the assumption that
orthologous genes have similar regulators. Existing approaches to the genome-wide testing of this
assumption learn regulatory networks separately, then compare to identify conservation [2, 58]. Be-
cause network inference is typically underconstrained, fitting a network that describes a particular
set of experimental observations involves sampling a single network from a large set of networks
that fit the data equally (or almost equally) as well. As a result, the existence of a difference
between corresponding regulatory interactions in a pair of experimentally derived networks is weak
evidence that a difference truly does exist. Uncoupled global network inference algorithms are a
very weak tool for uncovering evolutionary divergence. Our method explicitly favors recovering
networks for which evolutionarily corresponding interactions are similar. As a result, the failure
to obtain networks that confirm evolutionary conservation is stronger evidence that conservation
does not exist; the next best network that does exhibit conservation must fit the data much worse
to have overcome the bias built into the fusion constraints.

We have described a method – adaptive fusion – that attempts to learn which fusion constraints
should be relaxed while the network is being learned. This method is based on minimizing a

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2016. ; https://doi.org/10.1101/049775doi: bioRxiv preprint 

https://doi.org/10.1101/049775


saturating penalty function on fusion constraints, similar to a class of penalties that have been
developed to minimise bias in regularized regression [13, 62]. The result of adaptive fusion is both
a network and a new set of fusion constraints, describing the learned fusion weights (including
which fusion constraints have been relaxed). For the multiple species case, relaxation of fusion
constraints represents orthologs which do not share similar interactions presumably due to evolution
of regulatory circuitry [28]. When jointly learning networks describing processes in different cell
lines, this may identify interesting context-specific behavior. Genes may be fused together on the
basis of similar binding sites or chromatin features, and the relaxing of the fusion penalty indicates
divergence of gene function.

Because our model shares its basic assumptions about the role of transcription factors in gene
expression dynamics with models developed for single-species network inference, we are able to
leverage techniques developed for the single-species estimation of transctiption factor activity [15].
The performance gains of this additional step in the cross-species case are significant. Our ap-
proaches – fused L2 and adaptive fusion – represent a very general framework for simultaneous
network inference and the incorporation of structured biological priors. These priors – incorpo-
rated into our method as fusion constraints – allow the use of rich sources of biological knowledge,
such as orthology and operon structure, which have informed experimental design, but are typically
not incorporated into genome wide network inference algorithms. By accomodating the simulta-
neous inference of multiple related networks, we can improve network inference performance by
allowing the efficient reuse of data from similar, but not necessarily identical, sources. A method
for pooling data from multiple sources holds the promise of vastly expanding the quantity of data
available for analysis, particularly in less commonly used model systems. At the same time these
methods allow us to test our assumptions on how similar biological systems relate to one another,
by allowing us to rule out conservation in a principled way, and at the genome-wide scale.
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Figure 1: A. Schematic representation of the the generation of fusion constraints from orthology mappings. Dashed arrows
indicate potential regulatory interactions, while solid arrows denote orthology. We introduce fusion constraints for pairs of
interactions for which both the regulator and regulated gene are orthologs of one another. In this example, we would introduce
a constraint between the (A,B) and (A′, B′) interactions and the (A,C) and (A′, B′) interactions. B. In order to demonstrate
the utility of fused network inference in combining data, we generate two networks with 10 TFs and 200 genes (75% sparsity).
Mean squared error of the inferred vs. true coefficient matrices for network 1 are plotted as a function of the number of conditions
generated for species 1 (x-axis) and the number of conditions generated for species 2 (y-axis). As expected, increasing the number
of samples available for the species of interest improves network inference performance. However, because we are fusing to data
from a related species, similar gains are observed when increasing the amount of data available in this second species. C-F
Show the varying effects of fusion on simulated networks with different levels of conservation. We generate a series of networks
with 20 TFs by 200 genes in two species, (50% sparsity) while varying the fraction of gene orthologies in the simulated networks.
For each network, we evaluated AUPR on one of the species for: all interactions (blue line), interactions with fusion constraints
(green line), and interactions without fusion constraints (orange line). At every level of conservation, constrained interactions
show the largest benefits of fusion, with the magnitude of the benefit growing with fraction of orthologous genes. When the
networks are highly conserved, however, even interactions that are not directly constrained through fusion are recovered more
accurately as λS increases.
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Figure 2: This figure demonstrates the interaction between fusion weight (λS), the degree of orthology coverage of networks,
and the degree of similarity between fused interactions. A. We generated a series of pairs of 10 TF by 200 gene networks
(75% sparsity) in two species. These networks had minimal fusion noise, so that pairs of interactions linking orthologs had
nearly identical weight. We varied the fraction of genes with orthologs (y-axis) and the weight of fusion in network inference
(x-axis), and measured performance as the mean-squared error of the true vs inferred network weights. In order to more clearly
visualize the varying effect of fusion, performance is plotted in relative units of the of the unfused MSE (left column) for each
level of orthology. This was necessary because each row represents a different pair of networks, generated with a different level
of orthology, for which baseline performance varies. Performance gains from fusion are, as expected, largest when the degree
of orthology is large. However, even when the fraction of genes with orthologs is relatively small (top row), we observe gains
from fusion. When fused interactions are nearly identical, larger fusion weights always outperform smaller fusion weights. B.
Simulates the case where genes which are orthologs may have different regulatory weights. We generated a series of networks
as in A., but with larger (7.5 ×) gaussian noise added the weights of fused interactions. As in A., benefits from fusion were
observed at every level of gene orthology. However, unlike A., there was an optimal intermediate value of λS that traded off
between the benefits of fusion and the cost of combining heterogenous data.
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Figure 3: Adaptive fusion loss function (A) and derivative of loss function (B). A. Adaptive fusion is a quadratic around
the origin, begins to taper at a/2, and plateus at a. After the plateu, increasing the difference in interaction weight of fused
interactions does not further affect the penalty incurred through fusion. As a result, interaction weights in this zone are
effectively unfused from one another (the fusion penalty behaves like a constant). B. Shows the derivative of the adaptive
fusion penalty, which is used to implement adaptive fusion through local quadratic approximation. The adaptive fusion penalty
is modified from SCAD (smoothly clipped absolute deviation) and MCP (minimax concave penalty) functions and like these
penalties has a zero derivative far from the origin.
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Figure 4: In order to evaluate the performance of adaptive fusion in unfusing interactions that have diverged through evolution,
we performed a series of simulations inferring networks given a partially corrupted list of orthology mappings. Networks were
generated with 35 TFs by 200 genes, 60% orthology coverage and 40% false orthology coverage. A. We plot the interaction
weights between pairs of fused interactions in network 1 (x-axis) and network 2 (y-axis) following network inference without
fusion (λS = 0). Interactions that are generated from false orthologs are marked as red, while interactions generated from true
orthologs are shown in green. As expected, false fusion constraints give rise to uncorrelated weights (red dots). B. When fit with
fused-L2, fusion constraints give rise to very similar weights in the two species for ’true’ and ’false’ interactions. C. Adaptive
fusion run on the same network unfuses constraints for which the inferred weights are dissimilar beyond a certain point. Here,
unfused interactions are almost entirely interactions between false orthologs. D-F Show the distribution of the absolute value
of the difference in inferred weight for interactions with true fusion constraints (green) and false fusion constraints (orange)
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Figure 5: a. Using optimal lamR and lamP values, we use 20-fold cross validation to learn B. subtilis network. We comparedare
performance when solving without fusion, and using L2 fusion with lamS = 1.0. Mean AUPR for lamS = 0 (unfused): 0.0298.
Mean AUPR for lamS = 1: 0.0388. b. We test adaptive fusion using the same setup, with the addition of false orthology
information. We set a 30% false potentialsitive rate, including 561 additional orthologs. We run adaptive fusion, setting the
a term equal to the value above which 40% of constraints would unfuse, reflecting our belief that in addition to some of the
known orthologs result in fusion constraints which should be relaxed. Here we show the percentage of constraints relaxed,
from constraints created from the false orthologs and the known orthologs. We also show the distributions of differences in
weights corresponding to fused constraints created from the false orthologs and the known orthologs, when networks are solved
separately.
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Figure 6: a. We use optimal lamR and lamP values, and solve for B. subtilis-1 and B. subtilis-2 networks using 10-fold cross
validation. We fuse our original B. subtilis-1 dataset to another B. subtilis dataset, which we call B. subtilis-2, using orthology
information, and evaluate performance of B. subtilis-1 using AUPR on gold standard. We compare L2 fusion with solving the
networks separately without fusion, then rank combining as in Marbach et al., as well as solving B. subtilis on its own. b. We
again use optimal lamR and lamP values, and solve for the B. subtilis network using 10-fold cross validation, and evaluate using
AUPR on B. subtilis with gold standard. Here, we fuse genes in the same operon group and compare L2 fusion performance
using operons with unfused network inference.
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Figure 7: We integrate transcription factor activity (TFA) into our network inference, and solve for B. subtilis-1 and B. subtilis-
2 networks using 10-fold cross validation, using fused L2 with and without TFA. As in figure 6, we evaluate performance on B.
subtilis-1 using AUPR on gold standard.
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Figure 8: Schematic representation of design matrix construction. Here, the circles and hexagons correspond to different
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and genes. Rectangles represent matrices; because weights can be solved independently unless there exists fusion constraints
between them, we identify related weights and construct matrix for solving.
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