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Abstract 

Mortality selection is a general concern in the social and health sciences. Recently, existing 

health and social science cohorts have begun to collect genomic data. Causes of selection into a 

genomic dataset can influence results from genomic analyses. Selective non-participation, which 

is specific to a particular study and its participants, has received attention in the literature.  But 

mortality selection—the very general phenomenon that genomic data collected at a particular age 

represents selective participation by only the subset of birth cohort members who have survived 

to the time of data collection—has been largely ignored. Here we test the hypothesis that such 

mortality selection may significantly alter estimates in polygenetic association studies of both 

health and non-health traits. We demonstrate mortality selection into genome-wide SNP data 

collection at older ages using the U.S.-based Health and Retirement Study (HRS). We then 

model the selection process. Finally, we test whether mortality selection alters estimates from 

genetic association studies. We find evidence for mortality selection. Healthier and more 

socioeconomically advantaged individuals are more likely to survive to be eligible to participate 

in the genetic sample of the HRS. Mortality selection leads to modest drift in estimating time-

varying genetic effects, a drift that is enhanced when estimates are produced from data that has 

additional mortality selection. There is no general solution for correcting for mortality selection 

in a birth cohort prior to entry into a longitudinal study. We illustrate how genetic association 

studies using HRS data can adjust for mortality selection from study entry to time of genetic data 

collection by including probability weights that account for mortality selection. Mortality 

selection should be investigated more broadly in genetically-informed samples from other cohort 

studies.  
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1. Introduction 

Of all individuals born in a given year, those who live until some threshold age are not a 

random sample. Traits, behaviors, and environmental circumstances influence survival. As 

cohorts age, members with disadvantageous characteristics are more likely to die off (e.g., those 

that smoke; Centers for Disease Control and Prevention, 2008). Such “mortality selection” can 

introduce bias into etiological studies of conditions that cause mortality (e.g., Vaupel & Yashin, 

1985). We investigated effects of mortality selection on estimates of genetic associations in a 

large sample of US adults followed longitudinally during later life from the Health and 

Retirement Study (HRS). The HRS is among the few genetically informed databases to include 

longitudinal data on a population-based sample before and after the time of DNA collection. We 

use these longitudinal data to model mortality selection occurring between HRS baseline 

enrollment, which began in 1992, and DNA collection, which occurred during 2006-2008. We 

examined mortality selection as a function of age, socioeconomic status, health behavior, and 

chronic disease status.  

With the information gleaned from these models of mortality, we test effects of mortality 

selection on two sets of genetic analyses. We tested for the influence of mortality selection on 

polygenic score associations with height, body mass index (BMI), educational attainment, and 

smoking behavior. The first set of analyses test associations between polygenic scores derived 

from published GWAS and the target phenotypes of those scores. The second set of analyses 

tests variation in those “main effects” across different HRS birth cohorts. Findings indicate that 

mortality selection tends to increase genetic associations with mortality-risk factors such as 

smoking and decrease genetic associations with protective factors such as education. With 

respect to changes in genetic effects across birth cohorts, mortality selection tends to increase 

estimates for phenotypes that have become more common in recent cohorts and decrease 

estimates for phenotypes that have become less common. We show that the biases introduced by 

mortality selection can potentially be reduced via weights from our mortality models. 

1A. Conceptual Framework 

Results from gene-environment interaction studies have made it clear that genetic effects 

are not constant across different environments (Hunter, 2005; Manuck & McCaffery, 2014). One 

potentially salient and easily measured environment is historical context as measured by birth 

cohort. There has been recent interest in historical context as an environmental moderator 

(Domingue, Conley, Fletcher, & Boardman, 2015; Guo, Liu, Wang, Shen, & Hu, 2015; 

Rosenquist et al., 2015), but such studies may be confounded by mortality selection. Consider 

the genetic effect ( ) on some outcome ( ) for some birth cohort ( ):        , or simply   . A 

priori, many hypotheses about    are possible. Some genetic effects are presumably independent 

of birth cohort (especially over relatively small windows of time) while others are perhaps 

sensitive to the particular historical context during which development transpires. Whatever the 

behavior of   , estimates of the effect,   
 , may depend upon the specific time ( ) when data is 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2016. ; https://doi.org/10.1101/049635doi: bioRxiv preprint 

https://doi.org/10.1101/049635
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mortality Selection in a Genetic Sample  

 

 4 

collected. In particular, estimates of     
       may be non-constant as a function of   since only 

those who die (indexing year of death by  ) after the observation window (that is,    ) are 

included. This is the problem of mortality selection.  

The sensitivity of     
  to   depends partially on the nature of  . If mortality selection 

(i.e.,    ) is independent of   and  , then missingness will not be problematic for the 

purposes of estimating     
  (i.e., it is MAR; Rubin & Little, 2002). For example, if development 

related to   will largely take place after the age    , then this might be a reasonable 

hypothesis. On the other hand, if mortality selection is associated with both   and   then 

inference is more challenging. Smoking, for example, is clearly associated with premature death 

and, as such, accurate estimates of associations from older populations may prove difficult to 

obtain. But any dependence will again depend upon when development occurs with respect to 

the age at which respondents are studied. If development is largely complete by age     (e.g., 

has a respondent born in 1940 reported ever being a smoker by 2000 as individuals are unlikely 

to begin smoking after age 60), then under certain assumptions it is possible that     
     since 

observed variation in smoking behavior has been substantially reduced. 

We highlight four additional issues that are relevant. First, under reasonable assumptions, 

           will be an unbiased estimate of            . Such estimates may be of interest in 

some cases (e.g., Levine & Crimmins, 2015). Bias for estimates of such effects is possible but 

potentially sensitive to the type of genetic effect considered. Second, the above framework could 

be expanded to consider age-specific genetic effects for time-varying outcomes. We do not 

consider such scenarios here. Third, marginal effects can be estimated as well. If variation in    

as a function of birth cohort is small, these are likely to be reasonable summaries. They are also 

useful as first-order approximations of the genetic effect, especially when sample sizes are 

relatively small, and are the first types of association that we study. Finally, mortality selection is 

one of many selection processes that result in an individual being in a genetic sample. The 

consenting process, for example, also has implications for the composition of a genetic sample 

(e.g., McQuillan, Pan, & Porter, 2006).  

1B. Polygenic Scores 

 Our examination of mortality bias in the context of genetic associations utilizes polygenic 

scores. Polygenic Scores (PGSs) were first introduced in 2009 (e.g., Purcell et al., 2009; Wray, 

Goddard, & Visscher, 2007) as flexible tools for quantifying the genetic contribution to a 

phenotype. Although mortality bias may is a potential concern in the study of variation at a 

single genetic locus, we focus on polygenic scores as they are a subject of increasing interest 

(e.g., Dudbridge, 2016) and are more powerful predictors of outcomes, an important 

consideration given the sample size available here.  Also, to the extent that a PGS is a noisy 

measure of total additive heritability, it is an estimand of particular interest.  We consider 

polygenic scores for smoking, educational attainment, height, and BMI that are possible due to 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2016. ; https://doi.org/10.1101/049635doi: bioRxiv preprint 

https://doi.org/10.1101/049635
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mortality Selection in a Genetic Sample  

 

 5 

the work of previous GWAS (Locke et al., 2015; Rietveld et al., 2013; The Tobacco and 

Genetics Consortium, 2010; Wood et al., 2014). These phenotypes are chosen because each has 

demonstrated moderate to large heritability estimates (Branigan, McCallum, & Freese, 2013; Li, 

Cheng, Ma, & Swan, 2003; Schousboe et al., 2003; Silventoinen et al., 2003). Further, smoking 

and education are each strongly related to mortality, (Hummer & Hernandez, 2013; Centers for 

Disease Control and Prevention, 2008).  

 The relationship between the remaining two phenotypes (BMI & height) and mortality is 

somewhat less clear. There is evidence to suggest that associations between mortality and height 

are mediated by other factors while the association between BMI and mortality may be more 

direct (Allebeck & Bergh, 1992). Other research suggests heterogeneous associations between 

cause-specific mortality and height (Leon, Smith, Shipley, & Strachan, 1995). Given the nature 

of the variants detected in the height GWAS, the lack of a clear causal role in the association 

between height and mortality, and the lack of a strong empirical gradient in height and early 

death (see our Table 2B), we hypothesize that there will be minimal bias observed for genetic 

associations with height. There is similar heterogeneity in cause-specific mortality and BMI 

(Flegal, Graubard, Williamson, & Gail, 2007) and some evidence that BMI is a poor mortality-

related proxy for abdominal obesity (G. M. Price, Uauy, Breeze, Bulpitt, & Fletcher, 2006). 

Moreover, in our sample early mortality is associated with lower BMI. Thus, we do not expect 

strong bias due to mortality selection to be observed in the estimation of the genetic association 

with BMI. The fact that both of these phenotypes have strong genetic influences but fairly 

inconsistent links to mortality
1
 compared to smoking and education–which have both strong 

genetic underpinnings and strong links to mortality–provides an important set of comparisons as 

we evaluate the potential influence of mortality selection on PGS associations.  

2. Data & Methods 

2A. Data 

The Health and Retirement Study is a biennial longitudinal study starting in 1992 focused 

on those 50 and over. Information about work, assets, health, physical and cognitive functioning, 

and health care expenditures are collected. We consider 37,319 respondents in the HRS who 

provided any data to HRS between 1992 and 2012.
2
 We conceptualize the collection of genetic 

samples as a result of a two-step selection process (see inset of Figure 1). First, respondents had 

to live until the 2006-2008 genotyping window. In 2006, half of the sample was randomly 

selected to receive an enhanced interview that included saliva collection. The second half of the 

sample received the enhanced in-home interview in 2008. For simplicity, we focus on living until 

                                                             
1
 The relationship between mortality and BMI/height need not even be linear, although we do not 

consider such a possibility here.  
2
 Specifically the RAND Version N data (Chien et al., 2014).  
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2006 as an indicator of having avoided mortality selection.
3
 Of the original 37,319 respondents, 

30,101 (80.7%) lived until at least 2006.  

Second, respondents could have left the pool of candidates for genotyping due to other 

reasons. Respondents could be lost to HRS follow-up. Additionally, respondents who needed to 

be interviewed by proxy, were residing in a nursing home, or declined a face-to-face interview 

did not receive the enhanced interview at which the saliva collection occurred. The saliva was 

subsequently used for genotyping. Of the 30,101 HRS respondents who lived until 2006, 12,507 

(41.6%) were genotyped in either 2006 or 2008. Although this second type of selection is not the 

focus of this study, we describe why genetic information is not available for 17,594 who had not 

died prior to 2006 in Section 2 of the SI. Figure 1 considers survival differences between those 

who live past 2006 but are and are not genotyped. Genotyped respondents are of course longer 

lived than non-genotyped respondents who lived until at least 2006, but both groups are longer 

lived than those who died prior to 2006. The difference between these two groups (types 2 and 3 

in Figure 1) suggests that there is a secondary selection process that deserves further 

consideration. However, the accounting in Section 2 of the SI suggests that this is a 

heterogeneous group which may resist easy explanation.  

Table 1 considers sex and race differences between genotyped and non-genotyped 

respondents in the full sample and subsamples disaggregated by birth cohort (details on birth 

cohort definitions are in SI Section 1). Genotyping rates were especially low for the oldest and 

youngest birth cohorts. In addition, while the HRS included a larger share of non-white 

participants in the later birth cohorts, this is not reflected in the genetically informed sample. We 

stratify analysis along race/sex lines to minimize the effects of these differences. We also 

consider a broad set of health indicators including a subjective health measure and a broader 

measure of socioeconomic status (years of completed education). Construction of these measures 

is described in the SI. Table 2 (panel A) shows the means of these variables for the entire sample 

and by birth cohort. Respondents had, on average, slightly more than a high school education.  

Roughly 58% of the sample reported ever smoking, 26% had diabetes, 34% had heart disease, 

8% had Alzheimer’s or memory problems
4
, and self-reported health was roughly fair (which was 

coded as 3).  

 Genetic data for the HRS focus on single nucleotide polymorphisms (SNPs) and are 

based on DNA samples collected via two methods. The first phase was collected via buccal 

swabs in 2006 using the Quiagen Autopure method. The second phase used saliva samples 

                                                             
3
 This simplicity comes at slight cost as there were 55 people who died in 2006 and were 

genotyped, 143 in 2007, and 216 in 2008.  
4
 The HRS asked respondents about memory problems in waves 1-9 and replaced that question 

with one about an Alzheimer’s diagnosis in waves 10-11. We refer to “Alzheimer’s” but note the 

ambiguity. 
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collected in 2008 and extracted with Oragene. Genotype calls were then made based on a 

clustering of both data sets using the Illumina HumanOmni2.5-4v1 array. SNPs are removed if 

they are missing in more than 5% of cases, have low minor allele frequency (0.01), and are not in 

Hardy-Weinberg equilibrium (p<0.001). We retain approximately 1.7M SNPs after removing 

those that did not pass the QC filters. 

2B. Methods 

 We estimate cumulative time-to-event curves by use of the Kaplan-Meier method and test 

via log-rank. We then use Cox proportional hazards regression analysis (Cox, 1972) to model 

survival and determine independent predictors, 

                    . (Eqn 1) 

The Cox model is presented in Equation 1 and describes the association between covariates,  , 

(genotype status, birth year, and, due to the fact that the HRS is periodically refreshed, age at 

first interview) and the hazard of mortality       . We also include interactions between 

genotype status and each of the time indicators (birth year and age at first interview). We 

measure duration time as the number of years between the year of the first interview and the year 

of the most recent interview. We also test the proportional hazards assumption; details are in 

Section 6 of the SI. 

We model probability of inclusion in the genetic sample using logistic regression,  

                                   
      

   

        
   

. (Eqn 2) 

We consider various choices for the predictor matrix  . Primary focus is on both a model that 

includes effects of birth year and the health indicators from Table 2 as well as educational 

attainment and a model that contains just the health indicators and education but not birth year. 

We also consider several alternative models to test sensitivity of the selection model to 

alternative assumptions. In particular, we consider models that also contain interactions between 

the health indicators and birth year and a model identified by the random forests algorithm (Liaw 

& Wiener, 2002), a non-parametric approach to prediction (James, Witten, Hastie, & Tibshirani, 

2013).  

We then use the model for mortality selection to produce probability weights (Robins, 

Rotnitzky, & Zhao, 1994) which we then use to create samples matched on probability of living 

until at least 2006 as well as in the estimation of weighted models (Lumley & others, 2004). We 

then utilize inverse propensity weighting to weight the observed sample to be reflective of the 

sample prior to mortality selection (i.e., we adjust our naïve estimate of     
 , which may be 

biased due to mortality selection, in an attempt to more accurately recover   ). We stabilize 
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probability weights (Cole & Hernán, 2008), a procedure that has been shown to yield improved 

estimation.  

Polygenic scores were created using SNPs in the HRS genetic database that were 

matched to SNPs with reported results in a GWAS (we also pruned all SNPs where the risk allele 

identified via GWAS could not be readily identified in the HRS genetic database). For each of 

these SNPs, a loading was calculated as the number of trait-associated alleles multiplied by the 

effect-size estimated in the original GWAS.  SNPs with relatively large p-values will have small 

effects (and thus be down weighted in creating the composite), so we do not impose a p-value 

threshold. Loadings were summed across the SNP set to calculate the polygenic score. The score 

was then standardized to have a mean of 0 and SD of 1 and then residualized across the first 10 

principal components (computed amongst the non-Hispanic whites of the HRS genetic sample) 

to control for population stratification (A. L. Price et al., 2006). We used the second-generation 

PLINK software (Chang et al., 2015) for all genetic analyses.  

 Using the PGSs, we consider two models of genetic effects on some outcome,   . The 

first is a model where the genetic effect is constant across time, 

              (Eqn 3) 

where    is individual i's value for a specific PGS. The coefficient    from Eqn 3 is, in effect, the 

marginal genetic effect discussed in Section 1A. Given the nature of polygenic scores, we expect 

minimal bias for estimates from Eqn 3. However, we also consider models of the time-varying 

genetic effect, motivated by recent research on this issue (e.g., Domingue, Conley, Fletcher, & 

Boardman, 2015; Guo, Liu, Wang, Shen, & Hu, 2015),  

                           (Eqn 4) 

where    is the birth year of individual i. Eqn 4 imposes an assumption of linearity on the 

        effect and further decomposes it into a main and interaction effect. Of primary interest 

here are the estimates   
  (from Eqn 3) and    

  (from Eqn 4) before and after weighting by 

selection probability. All phenotypes are standardized within sex when used as outcomes and 

birth year is mean-centered. We also include sex as a control variable in the estimation of Eqns 3 

and 4. 

3. Results 

3A. Evidence of Mortality Differences as a function of genotyping status 

We first examine differences in longevity between genotyped and non-genotyped HRS 

respondents using non-parametric (Kaplan & Meier, 1958) survival curves, see Figure 2. In all 

groups, genotyped respondents live longer than non-genotyped respondents. We expand upon 

these results in Figures A1a and A1b of the SI finding that survival differences between the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2016. ; https://doi.org/10.1101/049635doi: bioRxiv preprint 

https://doi.org/10.1101/049635
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mortality Selection in a Genetic Sample  

 

 9 

genotyped and non-genotyped samples are largest for the AHEAD, CODA, and HRS cohorts 

(i.e., births before 1942, which marked the start of the War Babies cohort). We next test for 

differences in longevity using Cox proportional hazard models (Eqn 1). Models were fit 

separately for men and women and for blacks and whites and included all HRS participants born 

1910-1959 (N=34,669).
5
 These models show that genotyped participants are longer-lived than 

their non-genotyped age-peers and that this difference diminishes in later birth cohorts, see 

Figure 3.
6
 

3B. Models for Mortality Selection 

HRS participants who lived past 2006 were better educated and healthier as compared to 

non-genotyped peers (panel B of Table 2). Overall, they had completed 15% more years of 

education, smoked 9% less, and had dramatically lower rates of Alzheimer’s/memory problems. 

We used this descriptive evidence as the basis for a model of selection into the genetic sample 

(Eqn 2). Our analysis included all HRS participants born 1910-1959 with complete education 

and health data (N=30,079). Table 3 compares the fit among various models as measured by AIC 

and AUC. The bolded rows are our main models that include effects for all of the health 

conditions as well as educational attainment (of the two bolded rows, the top row includes birth 

year while the bottom row does not).
7
 A consideration of the fit criteria suggests that our model 

including birth year does a superior job at predicting mortality. Not surprisingly, there is a 

substantial drop in the AUC when birth year is not included. Adding interactions between birth 

year and the different health conditions only improved model fit slightly (as indicated by AIC) or 

not at all (as indicated by AUC) and a random forest approach with the same set of predictors 

(including birth year) also did not yield substantial improvements in prediction of mortality.   

3C. Mortality Differences in Matched Samples 

 We now test whether our models for selection into the genetic sample attenuate observed 

mortality differences between genotyped and non-genotyped respondents. We concentrate on the 

groups of white respondents due to sample size constraints. We utilize on an out-of-sample 

prediction scheme. Separately for males and females, we first select a 60% subsample of 

respondents and re-estimate the bolded models from Table 3. We then use the coefficient 

estimates to predict probability of mortality prior to 2006 in the remaining 40% sample of 

respondents. We then compute Cox survival models (via Eqn 1) in both the full 40% sample and 

                                                             
5
 We have chosen to focus on this birth window since only 12 respondents who were born before 

1910 were genotyped and respondents born after 1960 would not have been categorized as being 

in any of the current HRS birth cohorts.  
6
 The SI also considers mortality differences as a function of age at first interview, non-mortality 

differences between genotyped and non-genotyped respondents, and survival in a restricted 

sample considering only those who lived until at least 2008, see Sections 2-4. 
7
 Section 5 of SI contains parameter estimates from both models (with and without birth year). 
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a matched subsample focusing on those who were at high probability for living until at least 

2006. Of interest is whether there were reduced differences in survivorship in the sampled 

selected for high probability of living until at least 2006. The effect of matching in this manner 

was dramatic, see Figure 4 (which utilizes the model including birth year). After matching for 

probability of early mortality (prior to 2006), the survival profiles for genotyped and non-

genotyped respondents are much more comparable. 

Table 4 quantifies the increase in similarity of mortality profiles over 100 iterations of the 

out-of-sample prediction scheme. The table focuses on differences in survival before and after 

matching by considering the estimated proportion of the sample remaining after 14 years of 

follow-up (the time between the start of HRS and the first wave of genotyping; captured by the 

vertical line in Figure 4). After matching on the fitted probabilities from model including birth 

year, there are sizeable reductions in the survival differences between genotyped and non-

genotyped respondents. Consider females born in 1930. Over all iterations, there was a raw 

difference in surviving proportions of 0.26 between genotyped and non-genotyped. This was 

reduced to a mean difference of 0.15 after matching. Reductions are even more pronounced for 

1945 births for both sexes. For the model that does not include birth year, there is clearly 

increased similarity in mortality profiles between genotyped and non-genotyped respondents as 

judged by the difference in differences, although the similarity is weaker than in the model 

including birth year.  

3D. Implications for Association Studies 

 We first consider the mean polygenic score (focusing on BMI, height, education, and 

smoking) as a function of birth cohort, see Figure 5. Since the underlying distribution of the 

polygenic score is unlikely to have undergone substantial shifts over the relatively short time 

periods considered here, shifts in the means are most likely evidence for mortality selection. The 

most dramatic shift is for the educational attainment score. There is a substantial decline in the 

mean from the first observed birth cohorts to the last. Such changes may lead to bias in the 

resulting association estimates, a topic to which we now turn. 

 We now consider the models of marginal genetic effects (Eqn 3) using polygenic scores 

for BMI, height, education, and smoking and their respective outcomes, see Table 5. The 

italicized column contains naïve (unweighted) parameter estimates using observed data. We can 

compare these naïve estimates to estimates from weighted models (we separately consider 

weights based on models that do and do not include birth year). In general, mortality selection 

seems to induce almost no bias in the naïve estimates as weighted estimates are fairly close to the 

naïve estimates (within 5% as judged by the ratios). For smoking, there is modest evidence of 

bias as the weighted estimate including birth year is only 95.5% of the magnitude of the original.  

However, we can also compare naïve and weighted estimates to estimates from a sample 

that contains additional mortality selection. Of the genotyped respondents, an additional 1247 
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respondents died after genotyping and we consider estimates based on those who have not yet 

died (the most recent recorded HRS deaths in our data are in 2012-2013). We emphasize that the 

magnitude changes in these coefficients are opposite the changes given by the weighting 

suggesting that the weighting mechanism is adjusting parameters in a sensible direction.  

We then consider estimates from models of time-varying polygenic effects focusing 

specifically on the interaction coefficients (Table 6). Italicized columns again contain naïve 

parameter estimates based on observed data. For BMI and height, there is some evidence for bias 

in the interaction estimates. However, the potential for bias is much larger for education and 

smoking. For educational attainment and smoking, the naïve model seems to substantially 

underestimate the interaction (as compared to either set of weighted estimates). The weighted 

interaction estimates can also be compared to those from the data based on enhanced mortality 

selection. Again, for smoking and educational attainment, mortality selection leads to substantial 

attenuation bias in the estimated interaction coefficients. 

4. Discussion  

 As genetic information is increasingly available in large population-based surveys, the 

threats to validity that traditionally apply to research based on these studies will apply to 

genetically informed studies as well. Here, we consider the implications of mortality selection in 

HRS. We demonstrated that the HRS genotyped respondents are generally healthier and more 

educated (see Table 2; compare to Zajacova & Burgard, 2013) as well as longer-lived (Figure 2). 

We then considered models for mortality selection based on the health profiles of the 

respondents. Samples matched on probability of mortality generally showed more similar 

survival profiles than unmatched samples (Figure 4), although there were still differences in the 

survival profiles after matching (Table 4). This suggests that generalizing association genetically 

informed findings from genotyped samples to larger populations may be challenging. 

 Our main models predicting mortality selection based on several relevant health 

indicators produced AUC values >0.85 (when birth year is included in the model) and >0.72 

(when birth year is not included). A study on the genetic prediction of complex disease (Jostins 

& Barrett, 2011) suggested a maximum AUC of around 0.93 for common disease based on 

heritabilities, so a prediction of mortality with AUC>0.85 is a fairly accurate prediction. As a 

general rule, researchers should consider the association of their outcome of interest with 

inclusion in the genetic sample when making claims about the generalizability of their work. 

Depression, for example, is weakly linked to inclusion in the genetic sample via mortality 

selection for non-Hispanic white females. Thus, a study attempting to utilize GWAS results on 

depression (Ripke et al., 2013) in the HRS sample may be less problematic, in terms of 

generalizability, than a study utilizing GWAS results on self-reported health (Harris et al., 2015) 

given that the latter shows a much larger association with being in the genetic sample. 
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 The bias observed in Tables 5/6 can be understood in terms of different mechanisms of 

missingness (Rubin & Little, 2002). If certain genetic profiles predispose individuals to increased 

risks for mortality, then individuals with such genotypes are less likely to be observed in older 

samples (and there is indeed evidence for this, see Figure 5). This is a form of non-ignorable 

missingness (MNAR) that could lead to bias in the estimated association between genotype and 

phenotype. Such a phenomena may explain the bias in the estimated effect of the smoking 

polygenic score on smoking behavior prior to weighting. However, if the genetic profile in 

question is largely orthogonal to mortality, then there is less reason to expect attenuation in the 

estimated coefficient as mortality bias is now, in effect, leading to ignorable missingness. 

Consider height. Results from Table 2 Panel B suggest that survivors are of the same average 

height as those who died prior to 2006. Thus, there is little reason to suspect bias in the estimated 

association between height and its polygenic score and, indeed, little is observed.  

 While the bias in the marginal genetic effect estimates was modest, the bias in the 

interaction estimates was, in some cases, quite pronounced. Moreover, we demonstrated 

increased bias in a sample with increased mortality selection. As interest in such interactions 

grows (including the gene-by-environment research that is sure to become more common as 

HRS releases polygenic scores), a failure to attend to this type of bias could have serious 

implications for many investigations. Indeed, an earlier study we conducted (Domingue et al., 

2015) likely under-estimated the change in genetic influence on smoking over time due to 

mortality selection. Other studies (Marden et al., 2016; Rosenquist et al., 2015) considering 

related phenomena may also contain results that show the influence of mortality selection.   

5. Implications for Future Research  

We discuss (in order) implications for two areas of research: studies of individual 

variants (e.g., GWAS) and gene-environment interaction studies. The evidence presented here is 

focused on results from polygenic scores. However, similar concerns might be even more 

relevant in the study of individual genetic variants (i.e., in a GWAS) given the typical 

magnitudes of those effects. GWAS replication studies may consider mortality bias as a potential 

confounder. Again, the HRS is well-equipped to do this. For example, The HRS sample is used 

as a validation sample in the most recent GIANT GWAS (Locke et al., 2015) and it would be 

possible to ask how sensitive the replication results are to the selection concerns discussed here. 

The empirical evidence presented with respect to height and BMI suggest that such resulting 

biases may be small, but mortality bias may be more pernicious in other contexts, especially in 

studies of traits with strong mortality associations. 

There is great interest in identifying environments which moderate genetic associations. 

However, mortality selection may need to be “controlled” to properly understand such 

associations. If selection into the genetic sample is more common among the “healthier, 

wealthier, and wiser” then there are theoretical reasons to expect enhanced or muted genetic 

associations among surviving members of the HRS. Thus, there may be influences on estimates 
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of genetic association due to both the mechanics of mortality selection and changing structural 

relationships amongst the survivors and these influences may be reinforcing or opposing. This 

issue will merit additional attention as more genetic information continues to become available. 

 Finally, it is important to note that the evidence presented regarding the impact of 

selection on estimates of polygenic associations is limited to non-Hispanic, white adults. Our 

focus on non-Hispanic whites is partly due to sample size issues with estimating separate models 

for minority groups. But there are also important allele frequency differences across groups that 

may confound the observed associations with population stratification (not to mention different 

degrees of linkage between measured alleles and causal alleles). Furthermore, as others have 

noted, the lifespans of blacks and whites in the US differ by mean (roughly 3.8 years) but they 

also differ with respect to variation at different stages of the lifecourse (Firebaugh, Acciai, Noah, 

Prather, & Nau, 2014). The increased variability of lifespan in blacks may lead to less precision 

in our ability to fit selection probabilities for black respondents. This specific form of 

compression, coupled with the fact that most GWAS to date have been done with samples of 

European ancestry leading to weaker associations between the resulting polygenic scores and the 

relevant outcomes provides substantive and statistical challenges for understanding the 

composition of the genetic sample of non-white respondents in the HRS and how these 

mechanisms may be the same or different.   
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Table 1. Demographic characteristics of the HRS sample as a function of birth cohort and genotype status.  

      % Female % Hispanic % Black % Other 

  N % Geno Geno=Yes Geno=No Geno=Yes Geno=No Geno=Yes Geno=No Geno=Yes Geno=No 

All 37319 33.51 59.07 54.75 9.07 12.22 13.12 20.32 4.76 7.59 

0.not in any cohort 1381 13.83 76.96 73.87 20.42 24.20 14.66 23.95 15.71 18.49 

1.ahead 7758 14.53 62.64 58.98 5.06 5.85 10.74 14.43 0.98 2.35 

2.coda 4226 42.81 55.61 47.91 5.80 7.36 8.73 11.42 3.21 4.14 

3.hrs 10490 45.72 55.86 49.79 8.69 10.20 13.91 20.39 3.38 4.74 

4.warbabies 3653 52.12 62.76 56.15 8.09 9.38 14.23 17.15 4.57 6.35 

5.early 

babyboomers 4774 45.92 57.76 54.26 12.86 21.49 15.37 31.10 8.85 14.99 

6.mid babyboomers 5035 9.69 79.71 53.20 16.39 19.31 12.09 27.69 10.86 14.03 

 

Note: Birth cohorts are defined as: Ahead < 1924; coda 1924-1930; hrs 1931-1941; warbabies 1942-1947; early babyboomers 1948-

1953; mid babyboomers 1954-1959.  
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Table 2. Means of Health indicators for all HRS respondents and split by birth cohorts (panel A). Ratio of means for those lived past 

2006 versus those who died before 2006 respondents in entire sample and again split by birth cohort (panel B). 

Panel A: Means Education BMI Height Smoke CESD Diabetes Heart Alzheimer’s SRH 

All 12.05 27.45 1.69 0.58 1.65 0.26 0.34 0.08 2.95 

0.not in any cohort 12.75 29.12 1.67 0.54 1.77 0.16 0.09 0.01 2.68 

1.ahead 10.71 24.77 1.67 0.53 1.87 0.22 0.52 0.23 3.32 

2.coda 11.74 26.49 1.70 0.61 1.56 0.29 0.47 0.13 3.07 

3.hrs 12.02 27.61 1.71 0.64 1.48 0.31 0.37 0.07 2.87 

4.warbabies 12.79 28.40 1.70 0.60 1.46 0.29 0.28 0.04 2.71 

5.early babyboomers 12.93 28.97 1.70 0.55 1.72 0.25 0.19 0.03 2.82 

6.mid babyboomers 12.90 29.50 1.70 0.57 1.78 0.20 0.14 0.01 2.80 

Panel B: Ratios Education BMI Height Smoke CESD Diabetes Heart Alzheimer’s SRH 

All 1.15 1.10 1.01 0.91 0.75 0.99 0.63 0.41 0.80 

0.not in any cohort 1.02 0.83 1.00 0.54 4.42   Inf   Inf 0.02 0.77 

1.ahead 1.07 1.03 1.00 0.89 0.81 1.04 1.05 1.08 0.88 

2.coda 1.07 1.02 0.99 0.77 0.73 0.83 0.94 1.25 0.82 

3.hrs 1.07 1.02 0.99 0.78 0.62 0.85 0.85 0.82 0.80 

4.warbabies 1.09 0.97 1.00 0.77 0.59 0.80 0.72 0.73 0.73 

5.early babyboomers 1.08 1.01 1.00 0.85 0.59 0.83 0.67  Inf 0.78 

6.mid babyboomers 1.03 1.06 1.00 0.76 0.95 0.82  Inf  Inf 0.86 
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Table 3. Key Estimates for models (Eqn 2) of mortality selection. Main models (bolded) include effects for all of the health conditions 

as well as educational attainment.  Of the two bolded rows, the top row includes birth year while the bottom row does not. The “with 

birth year interaction” model contains interactions between all health indicators and the birth year plus the main effects from the main 

model. Random forests models uses a random forests algorithm based on the set of covariates used in the main model.  

  

Female Non-

White Male Non-White Female White Male White 

 
AIC AUC AIC AUC AIC AUC AIC AUC 

Health only 2915 0.749 2568 0.728 7570 0.779 7090 0.751 

Health + Birth Year 2248 0.888 1922 0.893 6141 0.879 5728 0.864 

W/ Birth year interaction 2247 0.89 1922 0.892 6129 0.88 5724 0.864 

Random Forest NA 0.875 NA 0.877 NA 0.88 NA 0.862 

N 5454 3967 11488 9170 
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Table 4. Differences in estimated survival proportions 14 years after first contact in observed and matched data (only those who had 

relatively high probabilities of being in the genetic sample as based on the main model). The difference in the differences was reduced 

by >0.15 for the 1930 births by even more for the 1945 birth cohorts. Values are based on 100 iterations of out-of-sample prediction as 

described in Section 3C. 

    

Estimated Proportion Surviving 14 years after first 

interview in full sample 

Estimated Proportion Surviving 14 years after first 

interview in matched sample   

  Birth Year Non-Genotyped Genotyped Difference Non-Genotyped Genotyped Difference Diff in Diff 

Health + Birth Year 
       Female.White 1930 0.68 0.937 0.257 0.821 0.966 0.1453 0.1117 

Female.White 1945 0.562 0.891 0.329 0.904 0.947 0.0429 0.2861 

Male.White 1930 0.604 0.904 0.3 0.86 0.958 0.0986 0.2014 

Male.White 1945 0.4 0.855 0.454 0.879 0.964 0.0856 0.3684 

Health Only 

        Female.White 1930 0.682 0.937 0.255 0.797 0.966 0.169 0.086 

Female.White 1945 0.558 0.888 0.33 0.796 0.967 0.171 0.159 

Male.White 1930 0.608 0.903 0.295 0.688 0.938 0.25 0.045 

Male.White 1945 0.4 0.852 0.452 0.727 0.946 0.219 0.233 
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Table 5. Comparison of naïve and weighted estimates of marginal associations between polygenic score and its respective trait among 

non-Hispanic white respondents (N=8817). The naive estimates (italicized) are unadjusted estimates of the effect of genotype on 

phenotype based solely on the genotyped respondents. The weighted estimates are based on identical models weighted to adjust for 

probability of mortality prior to 2006 (the models considered in Table 3). The ratio column is a ratio of the weighted to naïve estimate. 

We also consider estimates from an updated version of the HRS data that contains enhanced mortality selection (only those who lived 

past 2013). In addition, phenotypes are standardized within sex, main effects of gender are included but not shown, and birth year is 

mean-centered. All phenotypes are standardized within sex when used as outcomes.  

    Enhanced Mortality Selection Naïve Weighted, Health + Birth Year Weighted, Health Only 

  

Coefficient 

(Eqn 3) Est SE 

Ratio 

(compared 

to naïve) Est SE Est SE 

Ratio 

(compared 

to naïve) Est SE 

Ratio 

(compared 

to naïve) 

BMI G 0.251 0.01 1.033 0.243 0.01 0.238 0.01 0.98 0.234 0.01 0.962 

Height G 0.311 0.011 1.012 0.307 0.01 0.304 0.013 0.99 0.305 0.013 0.993 

Education G 0.162 0.01 0.972 0.167 0.01 0.17 0.01 1.016 0.17 0.01 1.017 

Smoke G 0.116 0.012 1.023 0.114 0.011 0.109 0.011 0.955 0.111 0.011 0.977 
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Table 6. Comparison of naïve and weighted estimates of associations varying by birth cohort between a polygenic score and its 

respective trait among non-Hispanic white respondents (N=8817).  The naive estimates (italicized) are unadjusted estimates of the 

effect of genotype on phenotype based solely on the genotyped respondents. The weighted estimates are based on identical models 

weighted to adjust for probability of mortality prior to 2006 (the models considered in Table 3). The ratio column is a ratio of the 

weighted to naïve estimate. We also consider estimates from an updated version of the HRS data that contains enhanced mortality 

selection (only those who lived past 2013). In addition, phenotypes are standardized within gender, main effects of gender are 

included but not shown, and birth year is mean-centered. All phenotypes are standardized within gender when used as outcomes. 

  
  Enhanced Mortality Selection Naïve Weighted, Health + Birth Year Weighted, Health Only 

  

Coefficient 
(Eqn 4) Est SE 

Ratio 

(compared 

to naïve) Est SE Est SE 

Ratio 

(compared 

to naïve) Est SE 

Ratio 

(compared 

to naïve) 

BMI 
G 0.239 0.011 1.013 0.236 0.01 0.236 0.01 1.001 0.228 0.01 0.967 

B 0.018 0.001 0.998 0.018 0.001 0.019 0.001 1.025 0.018 0.001 0.98 

G*B 5.94E-03 1.16E-03 1.031 5.76E-03 1.06E-03 5.62E-03 1.09E-03 0.976 5.39E-03 1.09E-03 0.936 

Height 
G 0.306 0.011 1.006 0.304 0.01 0.303 0.013 0.996 0.303 0.013 0.994 

B 0.008 0.001 0.968 0.008 0.001 0.009 0.001 1.11 0.009 0.001 1.03 

G*B 2.09E-03 1.17E-03 0.94 2.23E-03 1.06E-03 2.21E-03 1.16E-03 0.991 2.17E-03 1.17E-03 0.972 

Education 
G 0.171 0.01 0.978 0.175 0.01 0.177 0.01 1.011 0.178 0.01 1.016 

B 0.017 0.001 0.991 0.017 0.001 0.018 0.001 1.082 0.018 0.001 1.073 

G*B 
-1.53E-

03 
1.11E-03 0.849 

-1.81E-
03 

1.04E-03 
-2.14E-

03 
1.06E-03 1.187 

-2.03E-
03 

1.09E-03 1.121 

Smoking 
G 0.114 0.012 1.018 0.112 0.011 0.109 0.011 0.971 0.11 0.011 0.979 

B 0.002 0.001 26.961 0 0.001 -0.002 0.001 -30.682 0 0.001 2.474 

G*B 1.13E-03 1.29E-03 0.647 1.74E-03 1.18E-03 2.26E-03 1.19E-03 1.298 2.02E-03 1.20E-03 1.159 
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Figure 1. Description of two-step selection process into sample of genotyped respondents (inset). 

Main figure shows Kaplan-Meier survival curves for those who died prior to 2006 (type 1), those 

who survived through 2006 but were not genotyped (type 2) and those who were genotyped 

(type 3).   
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Figure 2. Kaplan Meier survival curves for genotyped and non-genotyped HRS respondents, split 

by race and sex.  
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Figure 3. Cox survival curves for white male and female HRS respondents in the 1930 (black 

lines) and 1945 (red lines) birth cohorts. Solid lines show survival curves for genotyped 

respondents. Dashed lines show survival curves for respondents who were not genotyped. 

Models were estimated separately in groups defined by sex and self-reported race/ethnicity. 

Survival curves reflect risk for respondents aged 60 at the time of their first interview. 
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Figure 4. Cox survival curves for white male and female HRS respondents in the 1930 (black 

lines) and 1945 (red lines) birth cohorts. Solid lines show survival curves for genotyped 

respondents. Dashed lines show survival curves for respondents who were not genotyped. 

Survival curves reflect risk for respondents aged 60 at the time of their first interview. The left-

side figures show survival curves based on the full sample. The right-side figures show survival 

curves based on a subset of genotyped and non-genotyped respondents matched according to 

their estimated probability of survival through 2006. The matched samples were estimated to 

have high survival probabilities (from the bolded model in Table 3 including birth year; 

estimated probabilities of genotyping were above the 70
th

 percentile as determined by the 

distribution of fitted probabilities amongst those who were genotyped). Since this sample was at 

a high probability of being genotyped, we would expect it to be healthier and do indeed see that 

to be the case as thicker lines are to the right of otherwise similar thinner lines.  
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Figure 5. Mean polygenic score for non-Hispanic whites split by sex (N=8845) as a function of 

birth year (1919-1955).  
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