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Abstract 
Motivation: Inexpensive high-throughput DNA sequencing has democratizing access to genetic in-
formation for most organisms so that access to a genome or transcriptome of an organism is not lim-
ited to model systems. However, the quality of the sampled genomes can vary greatly which hampers 
utility for comparisons and meaningful interpretation. The uncertainty of the completeness of a given 
genome sequence can limit feasibility of asserting patterns of high rates of gene loss reported in 
many lineages.  
Results: We propose a computational framework and sequence resource for assessing complete-
ness of fungal genomes called FGMP (Fungal Genome Mapping Project). Our approach is based on 
evolutionary conserved sets of proteins and ultra conserved DNA elements and is applicable to vari-
ous types of genomic data. We present a comparison of FGMP with state-of-the-art methods utilizing 
246 genome assemblies of fungi. We discuss genome assembly improvements/degradations in 56 
two-point fungal genome assemblies, as recorded by NCBI assembly archive.  
Availability and Implementation: FGMP software and datasets are freely available from 
https://github.com/stajichlab/FGMP or biocluster.ucr.edu/~ocisse/manuscript/FGMP.v.1.0.tar.gz 
Contact: ousmanecis@gmail.com or jason.stajich@ucr.edu 
Supplementary information: Supplementary data are available at  
biocluster.ucr.edu/~ocisse/manuscript. 

 
 

1 Introduction  
The recent explosion of high-throughput sequencing methods and analyt-
ic tools has made sequencing easier and cheaper for nearly all species 
across the tree of life including uncultivated organisms. However, the 
quality and completeness of these genomes is not perfect. Large-scale 
sequencing projects have emerged such as the microbial dark matter 
project (Rinke et al., 2013), the Human Microbiome Project (Turnbaugh 
et al., 2007) or the 1000 fungal genomes project 
(http://1000.fungalgenomes.org). The rapid generation and release of 
draft data is without a doubt beneficial and have been extensively used 
for many purposes. However, the quality and the level of completion of 
draft genomes can vary greatly and there is a need to quantify a genome's 
completeness to provide context for how much be inferred from it. An-
other important motivation of this work is that lineage specific gene loss 
is an important driving force in evolution, especially in fungi (Spanu et 
al., 2010; Kohler et al., 2015).  

Approaches to assess the quality and completeness of a ge-
nome have been proposed using nearly 100 different metrics (Bradnam 
et al., 2013). Unfortunately, most of these metrics are generally not 
applicable for non-model species because they require a substantial 
amount of high quality data (e.g. fosmids, reference genomes, optical 

maps) that can be expensive or infeasible to obtain for a large number of 
samples. So far extremely few methods attempt to estimate the amount 
of missing data in an assembly without prior knowledge. One of the most 
popular approaches, CEGMA estimates the completeness to the presence 
of set of 248 single copy gene markers (Parra et al., 2007). Although 
CEGMA has been used in numerous studies, a key issue is that makers 
were selected from only six model eukaryotic species and the ubiquity 
and detections of these markers may not be consistent as more distant 
lineages are sampled. The concept has been recently revisited and updat-
ed with clade-focused sets of protein coding gene markers in BUSCO 
(Simao et al., 2015). Alternatively, for Fungi, another set of 246 single 
copy gene families has been proposed by FUNYBASE (Marthey et al., 
2008). Typically, multicopy gene families are systematically filtered out 
in these selections, but their utility, as well as that of alternative, non-
protein coding gene markers has not been fully explored. Some of the 
most simple and often used statistics for assembly measurement is N50 
and L50 (Salzberg et al., 2012), which describes the level of fragmenta-
tion of the assembly. Both statistics utilize a sorted list of largest to 
smallest sizes of contigs, where L50 is the length (in bases) of the short-
est contig for which 50% of the genome can be contained within contigs 
of that size or larger, and N50 is the number of contigs that when 
summed their length is half of the assembly size (Yandell and Ence, 
2012;). Note that for some tools the meaning two statistics are swapped, 
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where N50 means length and L50 means the count. Other methods 
measure the number error per bases or assembly inconsistencies (Hunt et 
al., 2013; Gurevich et al., 2013). 
 In the present study, we focused on the fungal kingdom, 
which has been estimated to originate approximately 1.5 billion years 
ago (Brundrett, 2002; Berbee and Taylor, 2006; Stajich 2009). The pri-
mary motivation of this work is to provide a realistic estimation of as-
sembly completeness for fungal genomes. The precision dependents on 
the ability to accurately identify genes, which can appear artifactually 
fragmented by an incomplete assembly or due to rapidly evolving enti-
ties in some lineages. The nature, evolutionary trajectory and loss likeli-
hood of genes need to be considered when calculating genome com-
pleteness from gene content. We propose a different set of markers and 
build a pipeline around them called FGMP (Fungal Genes Mapping 
Project). Our multistep approach extends previous approaches by inte-
grating identifiable fungal protein and ultraconserved genomic regions. 
Our markers include both single and multigenic markers, and has only 
50% overlap with previously published datasets providing a different 
dimension of sequence evolution to evaluate the completeness. Addi-
tionally, we use a multisampling approach coupled to a rarefaction anal-
ysis to search for markers in unassembled sequencing reads, which by-
pass the need for an assembly. Therefore, a researcher can quickly assess 
the quality of a set of reads in hand before attempting an assembly, 
which can be computationally expensive. Finally, we described a side-
by-side comparison of our tool with state-of arts methods over 246 fun-
gal species. We captured assembly improvements/degradations in 56 
different released versions of assemblies of species, as recorded in NCBI 
assembly archive. This work can be a valuable source for genome com-
pletion estimation that can be easily incorporated in more complex pipe-
line because of its modular structure.  

2 Methods  

2.1 Species and data sources 

We selected 40 fungal species covering the major fungal phylogenetic 
clades for analysis to select and initial seed set of conserved markers. 
Our approach differs from previous approaches because (i) at least two 
species per subphylum are selected which increases the likelihood of 
capturing lineage specific markers (ii) a credible homolog needed to be 
present in 99% species tested and (iii) no filtering for single copy genes 
is required. Proteomes and genomes data are from UniProtKB release 
2015_07 (UniProt Consortium, 2014), JGI (Grigoriev et al., 2014) and 
GeneBank (Benson et al., 2014). 

2.2 Orthology, hidden markov models and markers 

Orthologous groups were inferred using OMA (Roth et al., 2008). Clus-
ters with less than 5 species were excluded. To verify the consistency of 
orthology predictions, we systemically surveyed related proteins placed 
in different orthologous cluster using BLASTP (e-value 10-10) and archi-
tecture using HMMER3 and Pfam A (e-value of 0.1) (Eddy, 2011; Punta 
et al., 2012). For each cluster, the most informative sequence was select-
ed using T-coffee (Wallace et al., 2006). Alignment filtered criteria were 
as follows: the alignment score should be higher or equal to 80 and 70% 
of the sequence should be covered by the alignment. For multigenic 
families, we generated a global alignment and select the protein with 
fewer gaps and more similar to the consensus sequence from multiple 
alignment. Hidden Markov Models (HMMs) were generated using 
HMMER3. We controlled the inclusion of related proteins by selecting 
only gene models that can unambiguously distinguished from each other. 

Gene identification is assessed by comparison to HMMs using optimized 
pre-computed thresholds allowing the identification of highly divergent 
models.  

2.3 Fungal ultra conserved elements 

We selected ten representative fungi: Ascomycetes: Aspergillus 
nidulans, Candida albicans, Neurospora crassa, Saccharomyces 
cerevisiae, Saitoella complicata Basidiomycetes: Coprinopsis cinerea, 
Puccinia gramianis, Sporobolomyces. roseus and Ustillago maydis, and 
Mucoromycota: Rhizopus delemar. These species were selected based on 
empirical tests of multi species whole genome alignments. In practice, 
attempts with more than 10 species or heavily fragmented genome as-
semblies were unsuccessful. We then built a phylogenetic tree on basis 
of 95 conserved markers (Cisse et al., in preparation) using RAxML v8.2 
(Stamatakis, 2014). Protein model was inferred automatically using 
PROTGAMMAAUTO option and support values were obtained from 
100 bootstraps. The tree and genome sequences were given as input for 
alignment to progressive Cactus v.0.0 (Paten et al., 2011). Conserved 
alignment blocks were converted in psl format using Maf2psl tool 
(https://github.com/ENCODE-DCC/kentUtils). In each genome, con-
served blocks (size >= 200 bps) were extracted, merged, aligned using 
MUSCLE (Edgar, 2004) and used to prepare HMMs with HMMER3 
v3.1b2. Assignments were performed using NHMMER (e-value < 1e-5).   

2.4 Identification of markers in unassembled sequences 

Subsets of unassembled sequences are randomly selected using reservoir 

sampling (1,000 chunks of 10,000 reads per sample) and screened for 
protein makers using BLASTx with an e-value of 10-4 (Altschul et al., 
1997). For each sample, the number of detected markers is recorded at 
each iteration and used as input for rarefaction analysis. The process is 
stopped when no more new markers are detected after 20 unsuccessful 
trials. The choice of sample size as well as the number of trials is arbi-
trary and based on empirical tests. These parameters might not be realis-
tic but can be set manually depending on user needs. Future develop-
ments will focus on implementing a better statistical approach to select 

the sample size accounting for the population size, the confidence inter-
val, margins errors and the expected coverage. 

To test this approach, we generated simulated PacBio-like sequences 

from the genomes of Neurospora crassa OR74A (NCBI assembly acces-

sion: GCA_000182925.2), Botryotinia fuckeliana strain B05.10 

(GCA_000143535.2) and Acremonium alcalophilum strain JCM 7366 

(PRJNA33785) with 30x coverage depth using PBSIM (Ona and Hama-

da, 2013). Real Pacbio sequences were obtained from NCBI sequence 

archive for Pyronema confluens (SRR3110858) and Rozella allomycis 

(SRR834607).  

2.5 Evaluation of FGMP  

We compared the genome completeness assessments of FGMP to three 
other tools: CEGMA, BUSCO and FUNYBASE. CEGMA uses 248 
single copy genes from six eukaryotes but for comparative purpose, we 
used only Schizosaccharomyces pombe proteins. FUNYBASE data 
correspond to 236 families including 5,166 proteins. One representative 
sequence per family were retained based on T-Coffee multiple alignment 
of each gene family. Only one representative sequence per family in 
CEGMA and FUNYBASE datasets was used. BUSCO provides 1,438 
fungi specific markers that were downloaded from 
http://busco.ezlab.org/ (last accessed 9-10-2015). Consensus sequences 
were extracted from HMMs using hmmemit.  
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Protein sequences were annotated using Blast2GO (Conesa et al., 2005), 
InterProScan ver. 5.16-55.0 (Jones et al., 2014) and Priam release of 04-
Mar-2015 (Claudel-Renard et al., 2003).  

3 Results 

3.1 Workflow 

FGMP is primarily designed for assessment of fungal genomes. It works 
on assembled sequences or raw shotgun reads and generates complete-
ness statistics and gene models based on the presence of a pre-selected 
set of markers (Figure 1). To generate the consensus protein markers we 
analyzed a phylogenomic dataset of 164,232 proteins from 42 taxa in-
cluding 40 fungi and two outgroup eukaryotes (Homo sapiens and Ara-
bidopsis thaliana). The major fungal lineages were sampled, from the 
early diverging fungi (EDF), Ascomycota and Basidomycota. The clus-
tering yields 6,845 gene families across these clades. Lineage specific 
gene families (i.e. present in less than 5 species) are excluded. Makers 
were selected according to the following rules: (i) a marker should be 
present in at least 99% of the species and (ii) should be unambiguously 
identifiable (Supplementary material). In contrast with other published 
strategies, multicopy gene families are not excluded. The final set of 
markers included 593 proteins of which 60.3% are single copy genes. 
We also generated 172 ultraconserved fungal genomic segments derived 
from whole genome alignment of ten fungal species covering the major 
phylogenetic clades.  

3.2 Comparative analysis of markers 

A total of 2,004 FGMP markers were originally obtained, which was 
reduced to 593 after the removal of ambiguous markers. We compared 
the markers selected for FGMP (593 proteins) to those used in CEGMA 
(248 families, 1,488 proteins), BUSCO fungi (1,438 proteins) and 
FunyBase (236 families, 5,166 proteins. Using reciprocal best BLASTp 
(e-value < 10-5), 49.5% of FGMP protein markers are not found in other 
datasets whilst this proportion is 21.7% for CEGMA, 10.5% for 
FunyBase and 69.8% for BUSCO (Figure S1). Transferases and trans-
porters are common (13%). Kinases and helicases are overrepresented in 
FGMP-protein dataset where they represent 10% and 5% of 593 protein 
markers, respectively as compared to 0.8% and 2% of CEGMA makers; 
3.3% and 2% in FunyBase markers; 3.3% and 0.7% of BUSCO fungi 
markers. Kinases and helicases are multicopies gene families in nearly 
all fungi, which might explain why these genes are not present in other 
datasets which actively restrict gene duplicates. Most of FGMP kinases 
have homologs in bacteria and archeae, suggesting that they are ancient. 
Most of the helicases also have archeal or bacterial homologs as well and 
are likely a mix of ancient and derived forms.  

3.3 Evaluation of 1FKG data 

We estimated the genome completeness of 246 fungal genomes from 
1FKG. Each species was classified according to its lifestyle based on 
published literature (e.g. saprotroph, parasite). Parasites are characterized 
by a reduced genome size and rely partially or entirely on their hosts for 
survival. The average N50 is 126.7 Mb for an average number of scaf-
folds per genome of 1,029; an average genome size of 38 Mb and the 
average fraction of Ns per genome is 3.2%. The level of fragmentation of 
these genomes is high as compared to well-sequenced clades such as 
vertebrates.  

The predictions from FGMP, CEGMA and BUSCO-fungi for 
246 species suggest that most of the genomes have a completeness value 

above 80% (Figure S2; Table 1). A total of 92% of these genomes have 
CEGMA value > 95% whilst only 58.7% of these assemblies reach this 
cut-off with BUSCO-fungi, 40% with FGMP-fUCEs and 54.2% with 
FGMP-protein markers. Genomes labeled as incomplete are typically 
parasitic species with reduced metabolic capabilities. These results sug-
gest that parasites represent a twilight zone where gene losses and as-
sembly holes are confounded. Overall completeness predictions correlat-
ed with the N50: CEGMA (spearman rho = 0.35, P-value = 1.3 x 10-8), 
BUSCO fungi (R = 0.40; P = 2.1 x 10-11), FGMP-fUCEs (R = 0.17; P = 
0.005) but FGMP-protein (R = -0.05; P = 0.4). The fact that FGMP-
protein predictions are not correlated with N50 is due to the integration 
of translated DNA sequences as well as gene fragments, which allow the 
partial detection of markers even when reliable gene models cannot be 
built. Nevertheless, these sequences have to score above a precompiled 
threshold to be accepted as valid hit. False positive hits might inflate the 
estimation, but the likelihood of integrating such elements is expected to 
be negligible. These results suggest that the assembly continuity is not 
the most critical factor for the genome completeness estimation.  

We found no significant correlations between CEGMA com-
pleteness estimates and the genome size (R = -0.03; P = 0.5) or GC 
content (R = -0.004; P = 0.9). The same is true for BUSCO fungi where 
the estimations are not correlated with the genome size (R = 0.07, P-
value = 0.2) but the GC content shows a weak correlation (R = 0.19; P = 
0.001). A different pattern is seen for FGMP-fUCEs where the com-
pleteness values are correlated with the genome size (R = 0.30, P = 1.0 x 
10-6) and the GC content (R = 0.20; P = 0.001). FGMP-protein predic-
tions are not significantly correlated with genome size (R = 0.10, P-value 
= 0.1) but the correlation with the GC content is significant (R = 0.15; P 
= 0.014). The GC content is an important factor for gene prediction but 
not necessary for the estimation of completeness.  

 

 

Fig. 1.  Overview of FGMP workflow.  
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3.4 Capturing assemblies improvement/degradations 

We screened the initial and latest genome assemblies for 56 fungal spe-
cies (Supplementary material: dataset_1). For each species, we retrieved 
the initial (V1) and the latest version (V2) of the assembly and computed 
the completeness values using FGMP, CEGMA and BUSCO fungi. The 
ratio between the completeness values in the V2 versus V1 is called 
assembly index (AI), which is expressed as percent of the total number 
of markers detected. A negative AI implies a degradation of the assem-
bly (Figure 2). CEGMA predicts negative AIs in 12 species (median AI 
= -1.0%), null AIs in 12 species, positive AIs in 33 species (0.81%). AIs 
are positively correlated with the assembly size (R = 0.52, P = 2.3 x 10-5) 
and the coverage depth (R = 0.3; P = 0.02).  
FGMP protein predicts negative AIs in 36 species (median AI = -1.9%), 
null AIs in 9 species and positive AIs in 12 species (+0.5%). AIs are 
correlated with the assembly size (R = 0.34, P = 0.007) but not with the 
coverage depth.  
FGMP UCEs predicts negative AIs in 12 species (median AI = -1.4%), 
null AIs in 31 species and positive AIs in 14 species (+1.15%). AIs are 
correlated with the assembly size (R = 0.39, P = 0.002) and the coverage 
depth (R= 0.2; P = 0.06). 
BUSCO-fungi predicts negative AIs in 11 species (median AI = -1.4%), 
null AIs in 7 species and positive AIs in 39 species (+0.7%). AIs are 
correlated with the assembly size (R = 0.47; P = 0.0002) and the cover-
age depth (R = 0.33; P = 0.01). 
Among the conflicting results is Sordaria macrospora genome assembly: 
FGMP protein and BUSCO fungi predict a negative AI of 0.3% whilst 
CEGMA and FGMP-UCEs predict no improvement. The version 2 of 
the assembly has lost 1 Mb as compared to the first version but N50 has 
increased, which suggest a collapse of repeated gene families in the latest 
version of the assembly. In Kluyveromyces marxianus, FGMP protein 
predicts a positive AI of 0.3% whilst CEGMA and FGMP-UCEs predict 
no improvement and BUSCO fungi even predicts a negative AI (-0.3%). 
The N50 value has dropped but the size of the assembly remains un-
changed. Overall, the gain of sequence is the most robust predictor for 
the genome improvement. However the lack of standardized protocols 
for assembly improvements make the backtracing of inconsistencies 
difficult.  Indeed, most of the improved assemblies are mix of different 
assembly algorithms and/or sequencing technologies. 

3.5 Estimation of genome completeness from unassembled se-

quences  

Using a 30-fold simulated coverage depth, we found that N. crassa and 
A. alcalophilum have completeness of 100% and 97.3% respectively 
using FGMP-reads.  Using real Pacbio sequences, we obtained lower 
values for P. confluens and R. allomycis with 63.4% and 81.2%, respec-
tively. These results suggest that this method is convenient to estimate 
the genome completeness. However, the method is sensitive to the cov-
erage depth. 

 

 

 

 

Table 1. Genome completeness statistics of selected fungi. 

Species Size (Mb) N50 (Kb) FGMPp FGMPu CEGMA BUSCO 

 S. macr  37 524 99.7 99.6 99.1 99.8 
A. niger 35 1937 97.5 98.8 99.3 99.8 
C. neo 19 1438 90.9 90.7 97.5 93.2 
Y. lipo 21 3633 94.6 93.6 99.6 99.3 
N. ire 15 16 94.4 91.9 97.1 42.0 
R. ire 91 4 94.4 91.9 96.1 89.0 
R. all 11 61 92.7 87.2 87.9 19.0 
E. int 2 204 46.5 29.1 45.3 28.0 

FGMPp are estimations based on 593 protein markers, FGMPu are based on 172 
fungal conserved DNA segments, CEGMA on 293 protein markers and BUSCO on 
1438 fungal protein markers. Species names are as follows: Sordaria macrospora 
strain k-hell, Aspergillus niger strain ATCC_1015, Cryptococcus neoformans var. 
neoformans JEC21, Yarrowia lipolytica strain CLIB122, Rhizophagus irregularis 
strain DAOM_181602, Neolecta irregularis strain DAH-1.v1, Rozella allomycis 
strain CSF55 and Encephalitozoon intestinalis strain ATCC_50506. 

Fig. 2. Completeness statistics of 56 two-point assemblies. Assembly 
indexes (AI) represent the difference in term of completeness percentage 
between the last version of an assembly and the initial version for each 
species. Orange and grey lines show variations in assembly size and 
coverage depth for each AI, respectively.  
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